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ABSTRACT

We view the task of change detection as a problem of
object recognition from learning. The object is defined in a
3D space where the time is the 3rd dimension. We propose
two competitive probabilistic models. The first one has a
traditional regard on change, characterized as a ’presence-
absence’ within two scenes. The model is based on a lo-
gistic function, embedded in a framework called ’cut-and-
merge’. The second approach is inspired from the Discrimi-
native Random Fields (DRF) approach proposed by Ma and
Hebert [KUMA2003]. The energy function is defined as the
sum of an association potential and an interaction potential.
We formulate the latter as a 3D anisotropic term. A sim-
plified implementation enables to achieve fast computation
in the 2D image space. In conclusion, the main contribu-
tions of this paper rely on : 1) the extension of the DRF to
a 3D manifold ; 2) the cut-and-merge algorithm. The appli-
cation proposed in the paper is on remote sensing images,
for building change detection. Results on synthetic and real
scenes and comparative analysis demonstrate the effective-
ness of the proposed approach.

1. INTRODUCTION

This paper focuses on probabilistic modeling for object struc-
tural change inference.

Probabilistic modeling emerged as an increasingly ef-
ficient framework for segmentation and object recognition
tasks. From Markov Random Fields [13] to recently intro-
duced part-based modeling for recognition [4], the goal is
to find a ’best’ global configuration of a random variable
associated to a label. Set as an energy minimisation prob-
lem, the basic challenges are : i) to define appropriately the
functional to be optimised ; it is in general characterised by
a data features term and a constraint or regularisation term;
the latter is mainly derived from prior knowledge and en-
able to introduce smoothness or to sharpen edges. ii) to set
efficient computational solution to reduce the combinatorial
calculation burden [22].

The Remote Sensing (RS) image processing field has
so far be little influenced by Pattern Recognition (PR) and
Computer Vision (CV) works. However, the two communi-
ties deal with very similar key problems –restoration, seg-
mentation and classification, flow vector field, reconstruc-
tion,... Far to be easy cases to handle, the complexity of
the scenes and the high level of noise existing in RS images
challenge the models developed from PR and CV, which of-
ten are not robust nor generic enough. RS images are cha-
racterised in particular by illumination changes, shadowing,
projective distortion, occlusion, stochastic noise –thermal
effect during the acquisition– and geometric noise. Geo-
metric noise refers to all small size objects that appear in
the scene and disturb the segmentation or detection process,
such as cars, trees, etc. A contrary to man-made object de-
tection in natural scenes, an RS image scene covering an
urban area is mainly composed of objects which have sim-
ilar structured and polygonal shapes: roads and buildings.
To takle this problem, previous works on buildings detec-
tion in dense urban areas are mainly based on models which
include high and restrictive constraints, therefore lacking of
genericity and uncapable to work on a large set of images
[6,11].

The present work was inspired from a recent publication
from Kumar [8], in which he introduced a Discriminative
Random Field (DRF) model, for man-made objects detec-
tion in natural scenes. This model formulates the constraint
term of the Gibbs energy as a function of the global image.

We show in this paper how to generalise the concept
of DRF modeling to a multi-dimensional space without in-
creasing computational cost. Application is on building chan-
ge retrieval from high resolution optical remote sensing ima-
ges covering dense urban areas. The rest of this article is
organized as follows: the next section introduces structural
object change inference from a Kernel approach based on
a so-called cut-and-merge algorithm and maximum likeli-
hood. Section 3 presents the 3D anisotropic model derived
from DRF and its practical implementation. Results are il-
lustrated in section 4; the 5th section concludes the paper.
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2. STRUCTURAL CHANGE RECOGNITION

2.1. Overview

The main idea of structural change recognition is to first per-
form object segmentation in each of the two images, then to
analyse the probability of change, for each individual ob-
ject. We do not perform a ’hard’ segmentation, in the sense
that an object can be detected even if its likelihood of being
a building is low. It enables us to estimate the change as a
cross product of probability functions, which appears to be
much more powerful than computing a simple difference.
The rest of this section gives the main cues of the approach.

2.2. Cut-and-merge algorithm

The cut-and-merge algorithm performs binary segmentation
without explicit thresholding. The cut task will blindly bi-
narize the input image and create a set of black-and-white
images, without knowledge of the object’s type we are seek-
ing for. The merge task will make use of prior knowledge
and fuse this segmented set of data such as to retrieve the
regions which maximise a given ’criteria’.

Cut : A band-pass filter is convolved several times with
the original image [18]. The filter is characterised by the
min and max values of the band. All pixels x with intensity
level I(x) satisfying min < I(x) < max are retained.
From one convolution to an other, min and max values are
progressively incremented, thus generating a set of binary
images. In each of these images, aggregated pixels define
regions which closed contours are extracted.

Merge : The likelihood of a each region and its closed
contour Ri to be a object-building is given by p i = p(Ri)
(see section 2.3). For two overlapping regions R i and Rj

resulting from two different pass-band filters, we calculate
pij = p(Ri

⋂
Rj). We then merge the overlapping regions

by retaining the one Rk that verifies :

k = arg max
k∈{ı,j,ij}

(pi, pj , pij)

In an iterative procedure, we can therefore eliminate all re-
gions unlikely to correspond to our searched object.

2.3. Functional and features

The problem is to determine whether a segmented area R i

–called “element”– is likely to be a object-building or not.
The label assigned to Ri is represented by a random value
xi. Assuming that events are independent, finding the con-
figuration X that maximizes the probability P over the im-
age is equivalent to maximizing the probability density func-
tion at each site Ri : P (X |y) = Πip(xi|yi) where yi is the
features vector computed at element Ri. We define p(x|y)
by a logistic function :

p(xi|yi) = σ(xiw
T f(yi))

w is the unknown parameters vector and f is an application
that transforms the data features to a higher dimensional
space: f : yi → [1, yi, yiy

T
i , ỹ] , where ỹ is defined as the

product of each feature with an other. A total of eight indi-
vidual feature are computed —it includes : region entropy,
edges points, intensity mean, standard deviation, gradient
direction moment and their difference, shadow parameter–,
leading to a parameter vector size of 45 degrees of freedom.
Parameters are retrieved by maximizing the log-likelihood
of P via a ICM module.

Fig. 1. Illustration of the cut-and-merge algorithm. Top:
original image. Middle: superimposition of the contours
extracted during the cut step; Bottom: building candidates
resulting from the merge step. The grey level of the con-
tours is inversely proportional to the probability to delineate
a building-like object.
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2.4. Object change detection

We consider two images I1 and I2 acquired at t1 and t2

respectively. We estimate the probability density function
p.d.f. at each of the elements i of R1 and j of R2: p1

i =
p(y1

i ) and p2
j = p(y2

j ) respectively.
The probability function that an object appears in the

two images simultaneously is given by pnc = p1
i p

2
j , while

the probability function for an object to appear in one of the
image only is : pc = p2

i (1 − p1
i ) + p1

i (1 − p2
j). Selecting

candidate contours that verify pc > 0.5 provides us with the
changed structured objects.

3. CHANGE INFERENCE FROM 3D DRF

3.1. The model

We first recall some basic notations and define the main
concept of 3D DRF modeling. A image is represented as
a graph G = (V, E), where V are the vertices/nodes of the
graph and E are the edges between vertices. In order to
create G, the image is divided into regular patches. Each
patch is a node and two mutually connected nodes within
a n-neighborhood determine a clique. Each node v ∈ V
is characterised by the data it encompasses – it can also be
features computed from the data– : yv . The label associated
to each node is a random variable xv∈V = {−1, 1}, where
value 1 stands for ’true’ (i.e. “there is a building-like object
in this patch”) and −1 for ’false’ (“no building-like object
here”).

Considering the set of multi-temporal images as a 3D
data, G is defined in the 3D space (2 spatial dimensions
+ 1 temporal dimension). G is the union of k 2D spatio-
subgraphs Gs,i∈{1,..,k}, linked by temporal edges E t, where
s and t denote the spatial and temporal indices respectively.
Then G = {⋃i Gs,i,

⋃
j Et,j}, i ∈ {1, .., k}, j ∈ {1, .., k−

1}. Then, in the specific case of two images: Gs,i={1,2} =
(Es,i, V s,i) with i = {1, 2}. Pair-wise cliques associated to
each node v cover a 5-neighborhoodN v characterised by its
four edges in the image domain, augmented with a unique
edge in time domain.

The probability distribution to retrieve the configuration
of the random variable X given the input data features Y =
{yv} is expressed by :

P (X |Y ) =
1
Z

e−U

where U = U(X, Y ) is the total Gibbs energy and Z is the
partition function. In [8], Kumar defines U as the sum of an
association potential A and an interaction potential I , such
that :

U(X, Y ) =
∑

v∈G

γvA(xv , yv)+
∑

v∈G

∑

v′∈Nv

βv,v′I(xv, yv, xv′)

Ne is the five-neighboring. A(xv, yv) is the associa-
tion potential; the interaction term I(xv, yv, xv′∈Nv) is a
smoothness factor. It determines how much a site is simi-
lar or not to its associated neighboring sites. A and I are
defined as parametric logistic functions which exact formu-
lation can be found in [8].

Knowing that object changes are characterised by conti-
nuity in spatial neighborhood and discontinuity in temporal
neighborhood, we consider an anisotropic formulation of U
given by :

βv,v′ = βv,v′′ iif (v, v′, v′′) ∈ Gs,i

βv,v′ �= βv,v′′ otherwise

The anisotropic constraint makes it possible the detection
of 3D objects which structured shape –i.e. building-like
shape– is observed in one image but not in the other. We
call C = {cv}v∈G1 the hidden variable defined such as :
cv = x1

vx2
v′ , for which v is connected to v ′ by E(v, v′) ⊂

Et. Then, in a straightforward manner:

P (C|Y ) ≡ P (X |Y )

P (C|Y ) is the probability of structural changes, defined at
each node of each of the 2D images taken individually. Note
that C is defined over the projection of G1 and G2 in the
spatial dimension and has ’lost’ the 3rd temporal dimension.

3.2. Computational issues

In order to fasten the computation, it is possible to imple-
ment the model in its 2D formulation, while modifying the
choice of the features, such that new features by them selves
are charactistics of a structural change. The simplest way is
to define new features’ vector as the difference of features
computed from bi-dimensional images.

Parameters are estimated by maximizing the pseudo-
likelihood, using a large training image set which has been
manually labelled. On the testing images set, the optimal
configuration C is computed using ICM.

4. RESULTS ANALYSIS

The two proposed methods have been implemented and vali-
dated on composite and real remote sensing images. Com-
posite images were artificially created by mapping locally
some small textured patches onto real images: it will vali-
date the method without illumination change. Remote sen-
sing images are from Quickbird satellite (resol. 0.6m/pixel,
panchromatic, acquired in 2002 and 2003 ; covering the area
of Beijing city). Ground truth is given by manual segmen-
tation. Note that Beijing area is particularly interesting to
study because of the rapid undergoing changes in prepara-
tion of the 2008 Olympic games.
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We used, for the two models, a training set of nearly
2000 object sites manually detected from 10 sub-images.
The Kernel computation (section 2) takes about 4mn on
Pentium4. Cost comes from contour feature calculation while
the optimization per see only takes less than 10 seconds.

Figure 1 illustrates the principle of the cut-and-merge
algorithm and building candidates selection. Results from
the object change detection Kernel approach are shown in
figures 2 and 4. Tables 1 and 2 give statistical analysis of
the results. We recall that the ultimous purpose is not to
delineate precisely the new/old buildings, but to locate the
changed objects, as indicated by the crosses. The kernel
approach gives a precise counting of the changed objects.

Good performance obtained from 3D DRF (section 3)
on a toy picture without noise validate the model definition
and features choice (fig.5). Note that only the changes of
structured objects are detected. Figures 3 and 4 illustrate
the approach and compare it to the kernel method. The DRF
model acts as a region-of-interest detector, by giving rough
location of areas where structural changes have appeared.

5. CONCLUSION

We proposed in this paper two probabilistic framework for
structural change inference in complex scenes. The first
one, closely related to classical differential methods, com-
putes the changes based on a likelihood function, which
makes the approach very robust and enable to decrease er-
roneous detections rate. The second model is derived from
3D DRF modeling, where the third dimension is the tempo-
ral component. Its fast implementation in 2D space makes
it extremely efficient. One may notice however that the pro-
posed model formulation is not invariant by symetry with
respect to temporal axis. From a practical point of view, the
two approaches differ by the output they provide: 3D DRF
gives a rough location of structural changes ; the minimal
area is set by the size of the patches used for the computa-
tion ; a contrario, in the cut-and-merge algorithm, the seg-
mentation step delineates the buildings’ shape and makes
possible the counting of changed objects. Extension of this
work could be on object tracking from video sequence.

GT TP FP DR CR
62 45 22 0.72 0.67

Table 1. Statistical figures on change detection (section
2). GT=Nber of changed-objects given by the ground
truth; TP=True positive; FP=False positive; DR=Detection
rate=TP/GT ; CR= Correctness rate=FP/(FP+TP).

TP FP FN AreaTrueR
0.834 0.058 0.166 0.861

AreaErrorR AreaLosetR Peri Rate AreaRate
0.060 0.139 0.244 0.189

Table 2. Statistical figures on building detection from cut-and-
merge. FN=False negative; AreaTrueRate: rate of the surface
size of the object that have been correctly recovered; AreaError-
Rate: rate of the surface area which is out side true building; Are-
aLostRate: rate of the surface area which has not been detected.

Fig. 2. Top: Original images. Center: candidate buildings’
contours retrieved from cut-and-merge; Bottom: building-object
changes represented by polygonal approximation of the contours
(right) or marked with a cross (left) –black for new building, white
for disappeared.
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Fig. 3. Illustration of the 3D DRF on real Quickbird images acquired in 2002 (right) and 2003 (left). Patches indicate areas
detected as changes (patch size=64x64pixels). New buildings are properly recovered but false detections also appear.

Fig. 4. Results comparison from 3D DRF (bottom) and kernel based approaches (top), on a composite image. Top: white
lines indicate the changed objects retrieved as destroyed and new buildings ; Bottom: White squares indicate the location of
structural changes, as detected by the DRF model.
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Fig. 5. Structural changes from 3D DRF - Application to
a toy picture. Top: original images. Middle and bottom:
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