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ABSTRACT we observe that the bag-of-visterms [2], which dismissks al

In this paper we provide an overview of an image represen§patial information from the image representation, is éigar

tation approach based on the description of layout and aF5|_Iar case of our approach. The idea of using attributed graph

pearance properties of groups of features. In each imagetg represent image content _has been intr_oduced before [3].
graph of quantized features of interest is constructed. ThE/OWever the approach of [3] is based on pixels groups and as
features that are assigned to the same codebook bin are theff cannotreally be applied to high resolution data.

grouped to produce a collapsed graph; the image contentn is Our representation was designed with the specific goal of

represented by the matrix of commute times of this collapseontent-based image retrieval in mind: regions that displa
graph. similar but not exactly identical features and layouts stiou

This novel image descriptor can be used to label satellitdonetheless have close representations. On the other hand,

image databases; we demonstrate the relevance and the giige information contained in the representation shouldibe s

ciency of our approach by addressing classification proslendiCiently rich to be able to discriminate between a largeari
on a dataset of 0.6m resolution Quickbird images. of visual classes. As a matter of fact, our approach is able to

o o address both problems of intra and inter class variability.
Index Terms— Image mining, classification, spectral

graph theory
2. METHODOLOGY

1. INTRODUCTION _ _ . _
The construction of our image representation proceedin se

In the field of satellite imaging interpretation, the meamssf ~ eral steps, described in full details in [1First, we sam-

human agent to access and to process the available acquirl@ interest points from the image. The choice of the detec-

data are not able to cope with the breadth and the qualityeof thtor/descriptor pair is arbitrary and should be made in accor

data itself. This situation is paradoxical because it means dance with the application and the type of visual data censid

as a scientific community, actually receive too much informa€red. Points can be extracted in a dense or sparse fashion, ca

tion to value it according to its true worth. The bottlendott ~be described by a wide array of possible descriptors and may

we face is the representation of the visual content of thed-sat be subject to certain invariances such as rotation, scal®@an

lite images. An automatic method for reliably describing th affine transformations [4].

content of image subregions would allow us to index the im-  Second we build thefeature graphof the image: it is

age databases and to perform content-based queries on thedn.unoriented weighted graph in which each interest point is

This, in turn, would open the door to precise automatic staa node and the nodes that are likely to belong to the same

tistical measures and would therefore expand our largle-scavisual part are all the more strongly connected. We consider

analysis capability. that interest points that belong to the same visual parts hav
We apply here a resolutely novel image representation inslose spatial positions and similar descriptors. Thegevoe

troduced in [1] that takes into account both the local appeardecide to connect each nodeo its M nearest neighbours

ance of regions as well as their relative layout. It is baged oaccording to the distance:

the measure of spectral properties of a graph built on aspars

set of interest poinfts sampled in the image. These proper- A, §) = Agese(iy 1) Dgeoliy 1) (1)

ties represent the distances between groups of interagspoi

where distance is computed in terms of similarity and spatia  Age.. is the distance function defined to measure the sim-

proximity. The relative importance of the appearance ard thilarity of the feature descriptorg\ ., is the "spatial” or "ge-

layout in the representation can be defined by two parametersgraphical” distance between interest points coordinates



image pixelsz, y), possibly normalised by the feature scalecommute timesC'T" can be computed as a function of the
0t Ageo( X, X;) = (wi—z)*+(yi—y;)* eigenvectorgoy )1<k<x and eigenvalued\ )1<i<x Of the

The relative contribution§ o]f the appearance and the Spé__aplauanﬁ of the graph:

tial proximity is weighted byx € [0, 1]. Changing the value

of M determines the connectivity of the feature graph and /
. : VE,E € [1, K], 2
the typical scale of the object subparts that the graph -struc "
ture will capture. o and M are the only parameters of our , 1— —pif k=&
approach that need to be defined experimentally. L(k,K) = Wt if I £k ®3)
Third , the nodes of the feature graph that are assigned to Vi dy,
the same codebook entries are grouped together to produce N o (k (RN 2
a collapsed graph The quantisation is made according to a CT(k, k) = wo Z N\ Vi i 4)
codebook of fixed sizé< that was built offline. Each node i=2 7 i F
of this graph represents a codebook entry and the weight of (5)

the edgew,,s between two nodes, £’ is equal to the sumof , % ,
the weightsw;; of the edges — j that join nodes that were with: dy = 3wy, andvol = 5, d;. Our image repre-
assigned to codebook entrigsand &’ in the feature graph. sentationy is a normalisation of/ théd x K commute time
The collapse can be simply illustrated by figure 2 and the folmatrix: x(k, k") = exp (_CTT(M)) For M = 0 the only
lowing equation, in which different colours representetiént  non-zero terms are the diagonal elements that correspond to
codebook binsw!, y = > wam. quantised features located in the image gnd equal to the
binary bag-of-visterms.

The obtained representation is of dimensio(K + 1)/2
with K of the order of a few hundreds to a few thousands.
It is thus time to note that equation 4 can also be viewed as
an embedding of the nodes of the graph in a space in which

coordinatel — 1 of nodek is equal to,/ ;:jk (k). We sort

the eigenvalues of by increasing order) = \; < Ay <

... Ak . The dimensionality of the embedding space can thus
Features graph Collapsed graph be arbitrarily reduced by considering only the fifst(with

D < K) eigenvalues. We can therefore considerably reduce
the dimensionality of¢ by considering each image as a node

Th(_a collap_sed graphis a structure that can be used to cony; 54 graph and by embedding the nodes of the graph in a space
pare differentimages, contrary to the feature graph. The Mgy |ow dimension.

trix of distances between graph nodes is an appropriateehoi
to represent the structure of the collapsed graph, but it re-
quires a definition of this distance, just like different pibde
definitions of a metric exist in a euclidean space. We coul
simply use the transition matrix of the graph or the matrix o

shortest paths between graph nodes. However, in problemge tested our approach on two datasets composed of high
where the presence or the accuracy of graph nodes is uncegsolution (0.6m) optical panchromatic Quickbird images r
tain, as it is the case here, the shortest path distance lackfised in the area of Beijing (China). For each dataset and
robustness and does not provide any statistical informatioeach category, half of the images will be used to train our

about the structure of the graph. In this respect the notion ajassifier and the other half will constitute our testingedat.
commute timebetween graph nodes is preferable.

3. RESULTS

33.1. Dataset and Parameters

1. Our first dataset is composed of 251 images of size

2.1. Graph commute times 512 x 512 containing either portions of road or veg-
o etation areas. Certain images were arbitrarily assigned
Considering a random walk on the nodes of the collapsed to one of the two classes despite the fact that they con-

graph started at node with a transition probability propor- tained instances both of vegeation and roads.
tional to the edge weights, the commute tigi& (k, k') be-

tween graph nodek, k' is defined as the average number of 2. The second dataset, illustrated in figure 1, is composed
steps required to reacdh for the first time and then to come of 878 images of siz€00 x 200 coming from seven
back tok (see [5], [6] for details). Note that commute times classes: (1) big buildings, (2) golf fields, (3) green-
can take infinite values when the graph is not connected. It houses, (4) small industry, (5) fields, (6) dense urban,
has been shown ([6], [7] for a summary) that the matrix of (7) residential area.



We employed a rotation- and scale-invariant Speeded Upan greatly boost the good classification rate for classels su
Robust Features (SURF) detector as well as the associated desfields (+38.36%) or greenhouseé+10.9%); more gener-
scriptor [8] to build our feature graphs. The features ettd  ally speaking, for each class the classification perforraanc
from our training images were clustered by k-means relgtive can be improved by setting a particular value\éf
to a codebook of siz& = 500 previous to the execution of
the algorithm. The image representations are embedded in a 4. CONCLUSIONS
space of dimensiofy = 20. The image classification step is

realized by 1 VS 1 AdaBoost. We set the values\6f= 2 The approach detailed in this paper aims at describing an im-

anda = 0.5 so as to obtain optimal performances. age representation that encompasses both the contentappea
ance and the general layout of the content. The represemtati
3.2. Performances is realised in a sufficiently loose way to cope with largeantr

class variation but on the other hand is more precise than the

Experiments on the first dataset, which is relatively simplegrderless bag of features, resulting thus in an increaserin p
are meant to demonstrate the validity of our approach. Eigutfgrmance for classification tasks.

2 represents the embedding of the image representations in a Eyen if there is not one single set of parameters for

space of dimension 2. which our approach improves over the bag-of-features for al
classes, we have shown that incorporating information tbou
the layout of regions of interest in the image represematio

can be a major improvement for certain classes.
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Fig. 1. Dataset 2. The number of images of each class is indicatedrantheses.
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Table 1: Dataset2: performance evaluation as a function of pammdil = 2)
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Table 2. Dataset2: performance evaluation as a function of pammét(a = 0.5)
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