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ABSTRACT

Satellite observations are currently of major importancegéo-
sciences. Remote sensing is a strong tool to study atmas et

earth phenomena. In this work, we propose a hew motion estimaSta

tion approach with application to dust storm tracking froempte
sensing images. Dynamic natural phenomena in the atmaspher
generally turbulent due to a high Reynolds number. Metegiodl
images are still poor in time and space resolution comparetet
turbulence characteristics of the flow. To tackle this peahl we

define a new formulation of the flow equation based on a filtere

scalar transport equation. Using Large Eddy Simulatioor)eve
propose a sub-grid model which incorporates small scakesffas
missing (ie non-observed) information of remote sensingges.
For day light changes, a uniform brightness variation tesrim¢or-
porated to the model. We validated our approach on syntbétict
Numerical Simulation (DNS) of scalar propagation. Prongsie-
sults are obtained on real MTSAT-1R visible images of a dustrs
event over Australia.

Index Terms— Motion estimation, Sub-grid model, Turbu-
lence, Optical flow, Remote sensing, Duststorm

1. INTRODUCTION

Satellite observations are currently of major importancegéo-
sciences. Remote sensing is a strong tool to study atmas et
earth phenomena. In this paper, we are concerned with theséna
of dust storm events. These phenomena often appear on four
the five continents. Dust particles can be transported girahe
atmosphere over thousands of kilometers. Dust Storms lievegs
impact on health and economy of the touched regions. Thmasti
tion of the displacement of dust particle from images is inguat
for a better understanding and modeling of this phenomenon.

Ly

Recently, [7] incorporates Navier-Stokes equations inrdgilar-
ization constraint. But this method needs long temporalistipn

at regular time intervals.

These OF approaches consider that brightness should be con-
nt over small time interval, hence preprocessing is ttsegmove
day light variations. In [8], the authors proposed to ext&fdas-
sumption to light variation problems using diffusion mazlel[9]
considers brightness variation as a multiplicative andtagdactor

to the observed intensity.

In fact, dynamic natural phenomena in the atmosphere aergen
turbulent due to a high Reynolds number. Despite negitihigh
image spatial resolution and temporal rate acquisitioreokgation-
ary satellites, space and time resolutions are still toodompared
to turbulence characteristic dimensions of fluid motion.agsical
motion estimation algorithms become weak when applied atasc
guantities transported by turbulent fluid. Only [7] insdtigbulence
effects through the regularization function. But the flowaiipn
itself does not incorporate any notion of turbulence.

In this work, we propose a new model to estimate and analyse
turbulent fluid motion from remote sensing image sequerntethis
end, we define the fluid flow by a scalar transport equation g
link the concentration of the scalar to the observed gregtlm the
image. We further apply Large Eddy Simulation (LES) decosiypo
tion [11] to the scalar transport equation and model the énfbe of
small scales with a subgrid turbulent viscosity factor. lgaldallumi-
nation variation from one acquisition to another is takea account
by considering the day time light changes as an additive tertine
gpserved data.

The rest of the paper is organised as follows. We describecin s
tion 2 our motion estimation approach. In section 3, expenial
results are illustrated and validated on a Direct Numer®iadula-
tion (DNS) sequence of scalar propagation and on a real MTBAT
optical image pair, which captures the 09/22/2009 dustrs&rent

Atmospheric motion from geostationary remote sensing im-OVer Australia. We conclude in section 4.

age was well studied in meteorological community since #ie |
1960s [1]. Traditional methods used to estimate the dispheant
field are based on cross-correlation techniques [2]. Thessth-m

2. MOTION ESTIMATION

ods are easy to implement and robust to noise; however they ne In this section, we formulate the problem of motion estimaths a

large interrogation windows to be able to correctly detemtrect
correlation peaks. Moreover they are not suitable for sgalation
estimation where correlation peaks are hardly detectaddefor
exemple in clouds, dust or smoke images.

Optical Flow (OF) is a well established technique to estenthe
apparant motion of objects from image sequences [6]. Beczlas-
sical optical flow is not adapted to non-rigid motion, new@aghes
have been developed to estimate fluid motion [3, 4, 5]. Thepqse
to define the flow equation based on the continuity equatiaw-H
ever, considering incompressibility property of the fluidiahat dust
storm displacement can be simplified has 2D propagationcdhe
tinuity equation can eventually be assimilated to the atas<OF.

energy minimisation problem.

Many tasks in Computer Vision or Image Processing can be cast
as anenergy minimisatiomproblem [17, 18]. Energy-based models
can capture dependencies between variables by establishime
compatibility measure between those. The energy is definea a
function of an observation variable (the image grey-leveéls in
our case) and an unknown variable (the displacement vedoth
observation and unknown are defined over the image domaia. Th
energy model itself measures the goodness (or badness)lopesa-
sible configuration of the unknown variable, knowing the esba-
tion: by convention, the best configuration is the one thatimises
the energy function.



In the present application, we aim at recovering a 2D vejocit 2.3. Filtered transport equation with subgrid scale TE-SGS)

field W = {@(s) = (u(s),v(s)) | Vs € S}, by minimising an

equation of the form: Images are discret projective representations of the ved&@D real

world. They have limited resolution in space and tinde:(acqui-

_ . . ) sition period) and = (dz, y) (pixel size) are fixed by the image

EW.D ; Va (6(s), 1(5)) + o SSZ;S Ve (w(s)’ s )) @ acquisition conditions. Details at scales lower than thxelgire not

' observed: they are 'missing’ information. Satellite imaggquisition

wheres is a pixel of image domair$ ands’ its neighbor.V,(I, @) scales of turbule_nt_atmospheric environme_nt are too Ia_n_gqoared

is called the data term: its exact definition depends on thblem (O the characteristic scales of turbulence itself: sulelpksplace-

at hand (see section 2.2}, is a weighting coefficient that balances MeNts are important because they strongly influence the &ugle

the influence of the terriv; w.r.t to the priorV,, (prior that we will ~ motion of the observed scalar quantity. In this section, esve a
define in section 2.1). new fluid motion equgtlon, by .|ntegrat|ng small scales ¢ffeato
We seek for the (hopefully unique) solutiohi which minimises 1€ scalar transportation equation.
equation (1): The approach we propose is inspired from a well-known model
W= in BE(W. T 2 in fluid mechanics, namely the Large Egdy Simulation (LESD), [1.
e TeW (W, 1) ) 11]. One fundamental concept of LES is to postulate that ke i

whereW is the entire set of possible solutions. We refer to [13] for Stantaneous passive scalar concentratiaran be decomposed into

details on the optimisation technique used to solve (2). large and small scales; more precisely, it verifies= ct+cCr .
whereCt andC~ represent respectively the large scale (associated

to pixel grey-level value) and the small scale (non-obs#reentri-
butions. We apply the same principle and decomp@der equiv-
alently I) andw into small and large scales. One can further show
that, after inserting this new representation into equatichen only
the convective terniC) ™ contains interactions of small and large
scales; it write§Cw) " = Ctwt + 7, where7 is the residual stress
tensor.7 is embed all small scale interactions between variables.
Hence, the filtered scalar transport equation, for incosgibée

Vp (0(s),d(s")) = |u(s) — u(s')|2 + |v(s) — v(s')!Q 3) fluid, becomes:

2.1. Priorterm

V, captures the spatial dependencies between variafiles In
equation (1), it acts as a regularisation factor. It is comnaodefine

V, as a "smoothness term” [6, 12]: it enforces spatial contynaf
the velocityw by taking the norm difference of its components over
a neighborhood:

Itis a convex function of the unknown variahlé oct +a@t. Vet +Vv.E—

o9 +_
5 C 0 @)

_1
Re Sc
2.2. Scalar transport equation TE) 7 is associated to a turbulent viscosity term [19]:

The velocity field of a passive scalar is described by theast¢adns-

port equation. In dimensionless form, it writes as follows: F=-D, VC™" (8)
aC 1 _ whereD; is aturbulent diffusion coefficienFinally, inserting equa-
ot TV (C0) — prg  AC=0 @) ion (8) into (7) leads to -

where(C is the scalar concentration field of a specie spreaded in the ac+ 1

studied fluid.«w = (u, v) is the 2D appearent velocity of the concen- -t at.vet — (W + Dt> ACt=0 (9

e oC

tration field; space and time partial derivatives &fe= (a%v a%)

and% ; Ais the Laplacian operatoiRe and Sc are the Reynolds Such subgrid scalar transport equatidiE{SG$ formulation is a
and Schmidt numbers respectively. If we assume the fluid to-be new approach for motion estimation. For high Reynolds numbe

compressible (i.&7.«w = 0), then equation (4) becomes: (Re >> 1) or scalar with low molecular diffusionSc >> 1),
the contribution from turbulent diffusion becomes largenpared to
1 e ! X
ac L. VO — AC =0 ) molepglar diffusion. In our work, we define the turbulentflai?;ion
ot Re Sc coefficientD; as a statistical constant over the space domain.

The concentratiod’ of a scalar quantity (dust particules, humid-
ity, ...) transported by atmospheric wind and observed iatallte 2 4. |llumination invariance
image, can be related to the image pixel intensity vdlugor cloud
motion analysis, some authors established empiricallyali@ving ~ We established, in the previous section, the relationséfwéen the
relation: I oc [ Cdz [14]or I o ([ Cdz)fl [15], wherez is the ~ scalar concentration and the image grgy-level vadIﬁeg(qugt.ion.G):
observation depth. I(s,t) < a C*(s,t). However, this is an over simplification :
In this paper, we consider a simpler case, and asssume ¢hat tRxternal factors such as day light variation or atmospheridity
pixel grey-level value is directly proportional to the centrationC: mfiy lead to global changes of the observatfon, thoughtC™* may
not vary.
I(s,t) < o C(s,t) (6) To overcome this problem, we assume that the image’s grey-
level changes linearly from one acquisition to the net’*t /9t ~
whereq is a constant independent of time and space. In other word€)C* /0t + ((t) . This is equivalent to 'centerize’ the temporal
we consider théz/dz << 1, dz/d0y << 1. variation of C".
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Fig. 1. Synthetic DNS results on original images for [14E andTE-SGSand on degraded images (as satellite kind)faand TE-SGSand
for light unvariant approach8E+Bvar and TE-SGS+Bvar Left: RMSE between estimated and exact flow field; Rightingsted vorticity

map at time = 30 compare to exact vorticity map (b).

At last, the illumination change invariant transport eqprate-
fines our datatermin (1) ; it writes :

Va(I(s), @(s)) =

(% - 5(t)) Fat VIt - (—1 n Dt) ATt

(10)

Re Sc

with B(t) = < 3,5 01 (s)/0t. We name it the-Bvar model.

3. RESULT ILLUSTRATION

We validate our sub-grid modeTE-SG$on a synthetic DNS scalar

sequence; we compare our estimations with an approach lbased

transport equation without subgrid model (namely TE, equabd
with results from the state-of-the-art on fluid motion estiion [14].
In order to evaluate the efficiency of our illumination mqde¢ sim-
ulated day light variation effect (see Figure 1) by addedatialty
constant intensity offset different at each timeThe offset range
goes from—50 to 450 on a255 gray-level intensity image.

the transport equation are equivalent. Figure 1.b reptesba ex-
act vorticity map computed from the DSN. We observe F&atSGS
(Fig.1.e) better retrieves the vorticity map than [14] (Hig) orTE.
Our modelTE-SGSlearly outperforms both methods. FEE-SGS
the turbulent diffusion coefficient iB; = 0.25.

On degraded images, where an intensity offset has been added
to the sequence along the time, methods with brightnesatianri
model +Bvar are not sensitive to the light variation. Without
+Bwar model, TE give a strongly wrong estimationTE-SGSm-
proves the velocity estimation in turbulent scalar flowsletBvar
reduces day light variation effect on the estimation.

We processed a real pair of optical images from satellite
MTSAT-1R taken during the 22 sept. 2009 dust storm event that
happened in Australia. Image sizes 8@ x 300 pixels with a
resolution of5km by pixel. At is 1 hour. These lenght and time
scales are high compared to the atmospheric charactesisiles.

On this pair of images, we compare OUE-SGSestimations with
results from the commercial softwakaVision(which uses a cross-

We computed the average Root Mean Square Error (RMSE) becorrelation algorithm) [16]. Figure 2 illustrates the ingeair of

tween the estimated velocity. and the exact velocityi. . RSME
is computed from original and degraded images, and for ebtteo
methods. The RMSE is defined by:

N
RMSE — %Z |G — @2

The DNS sequence is composed lf}) images. To suppress small
scale information, only every10 time step computation is kept and
input images are smoothed by a gaussian filter of varianeel.

On the original DNS sequence, [14] am& give similar results
because they use same kind of flow equation. In this sequéree,
fluid is incompressibledivid = 0. Re = 3000 and Sc ~ 0.7,
then molecular diffusion is negligible compare to conwexterms.
In these conditions, it can be shown that the continuity 8gnand

(11)

images, the estimated velocity field (top) and streamlibestdm)
resulting from each approach. We observe that cross-etiosl
technigque estimates a diplacement field which is not smeoiber-
imentally, it needs large interrogation window size, anel ¢brrect
correlation peak is difficult to localize due to slowly vargi con-
centration. Results from oUFE-SGS+Bvamodel give a visually
smoother flow field thaE-SGSwhich is affected by day light vari-
ation. Streamlines generated from results givenTBySGS+Bvar
show the same behavior &sVision Dust cloud motion is more
identifiable onTE-SGS+Bvaresults and are visually more appeal-
ing than from other methods. Advantage of our method conspare
to cross-correlation approaches is that the motion fieldtisnated
from fluid kinetic equation. The estimated flow field is alsmske
(one velocity vector by pixel). FokaVision final interrogation
windows arel6 x 16 pixels.



(a) 2 successive MTSAT-1R
satellite images.

Fig. 2. Australian duststorm event in 2009. Comparison of crassetationLaVisionwith TE-SGSndTE-SGS+Bvar

(b) LaVisioncross
correlation algorithm.

4. CONCLUSION

(c) TE-SGS
algorithm.

(d) TE-SGS+Bvar
algorithm.

imagery,” Trans. Geoscience and Remote Sensing 45, no.
12, pp. 4087-4104, 2007.

In this work, we proposed a subgrid transport model to aesyso-
spheric motion from remote sensing images. Different fraisting

methods, our model takes into account non-observed smalkbssc

effects by incorporating a turbulent diffusion term intae thcalar
transport equation. In satellite images, in order to corsptnfor
the variation of global illumination from one acquisitiomanother,
we further introduced a brightness variation correctiomteExper-
imental results show that taking into account the turbutemhpo-
nent improves significantly the estimation of the displaentiields
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