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ABSTRACT

Satellite observations are currently of major importance in geo-
sciences. Remote sensing is a strong tool to study atmospheric and
earth phenomena. In this work, we propose a new motion estima-
tion approach with application to dust storm tracking from remote
sensing images. Dynamic natural phenomena in the atmosphere are
generally turbulent due to a high Reynolds number. Meteorological
images are still poor in time and space resolution compared to the
turbulence characteristics of the flow. To tackle this problem, we
define a new formulation of the flow equation based on a filtered
scalar transport equation. Using Large Eddy Simulation theory, we
propose a sub-grid model which incorporates small scale effects as
missing (ie non-observed) information of remote sensing images.
For day light changes, a uniform brightness variation term is incor-
porated to the model. We validated our approach on syntheticDirect
Numerical Simulation (DNS) of scalar propagation. Promising re-
sults are obtained on real MTSAT-1R visible images of a dust storm
event over Australia.

Index Terms— Motion estimation, Sub-grid model, Turbu-
lence, Optical flow, Remote sensing, Duststorm

1. INTRODUCTION

Satellite observations are currently of major importance in geo-
sciences. Remote sensing is a strong tool to study atmospheric and
earth phenomena. In this paper, we are concerned with the analysis
of dust storm events. These phenomena often appear on four of
the five continents. Dust particles can be transported through the
atmosphere over thousands of kilometers. Dust Storms have strong
impact on health and economy of the touched regions. The estima-
tion of the displacement of dust particle from images is important
for a better understanding and modeling of this phenomenon.

Atmospheric motion from geostationary remote sensing im-
age was well studied in meteorological community since the late
1960s [1]. Traditional methods used to estimate the displacement
field are based on cross-correlation techniques [2]. These meth-
ods are easy to implement and robust to noise; however they need
large interrogation windows to be able to correctly detect correct
correlation peaks. Moreover they are not suitable for scalar motion
estimation where correlation peaks are hardly detectable,as for
exemple in clouds, dust or smoke images.

Optical Flow (OF) is a well established technique to estimate the
apparant motion of objects from image sequences [6]. Because clas-
sical optical flow is not adapted to non-rigid motion, new approaches
have been developed to estimate fluid motion [3, 4, 5]. They propose
to define the flow equation based on the continuity equation. How-
ever, considering incompressibility property of the fluid and that dust
storm displacement can be simplified has 2D propagation, thecon-
tinuity equation can eventually be assimilated to the classical OF.

Recently, [7] incorporates Navier-Stokes equations in theregular-
ization constraint. But this method needs long temporal acquistion
at regular time intervals.

These OF approaches consider that brightness should be con-
stant over small time interval, hence preprocessing is usedto remove
day light variations. In [8], the authors proposed to extendOF as-
sumption to light variation problems using diffusion models. [9]
considers brightness variation as a multiplicative and additive factor
to the observed intensity.

In fact, dynamic natural phenomena in the atmosphere are gener-
ally turbulent due to a high Reynolds number. Despite relatively high
image spatial resolution and temporal rate acquisition of geostation-
ary satellites, space and time resolutions are still too lowcompared
to turbulence characteristic dimensions of fluid motion. Classical
motion estimation algorithms become weak when applied to scalar
quantities transported by turbulent fluid. Only [7] insertsturbulence
effects through the regularization function. But the flow equation
itself does not incorporate any notion of turbulence.

In this work, we propose a new model to estimate and analyse
turbulent fluid motion from remote sensing image sequences.To this
end, we define the fluid flow by a scalar transport equation [10], and
link the concentration of the scalar to the observed grey-level in the
image. We further apply Large Eddy Simulation (LES) decomposi-
tion [11] to the scalar transport equation and model the influence of
small scales with a subgrid turbulent viscosity factor. Global illumi-
nation variation from one acquisition to another is taken into account
by considering the day time light changes as an additive termto the
observed data.

The rest of the paper is organised as follows. We describe in sec-
tion 2 our motion estimation approach. In section 3, experimental
results are illustrated and validated on a Direct NumericalSimula-
tion (DNS) sequence of scalar propagation and on a real MTSAT-1R
optical image pair, which captures the 09/22/2009 dust storm event
over Australia. We conclude in section 4.

2. MOTION ESTIMATION

In this section, we formulate the problem of motion estimation as a
energy minimisation problem.

Many tasks in Computer Vision or Image Processing can be cast
as anenergy minimisationproblem [17, 18]. Energy-based models
can capture dependencies between variables by establishing some
compatibility measure between those. The energy is defined as a
function of an observation variable (the image grey-level pixels in
our case) and an unknown variable (the displacement vector). Both
observation and unknown are defined over the image domain. The
energy model itself measures the goodness (or badness) of each pos-
sible configuration of the unknown variable, knowing the observa-
tion: by convention, the best configuration is the one that minimises
the energy function.



In the present application, we aim at recovering a 2D velocity
field W = {~w(s) = (u(s), v(s)) | ∀s ∈ S}, by minimising an
equation of the form:

E (W,I) =
∑

s∈S

Vd (~w(s), I(s)) + αp

∑

s,s′∈S

Vp

(

~w(s), ~w(s′)
)

(1)

wheres is a pixel of image domainS ands′ its neighbor.Vd(I, ~w)
is called the data term; its exact definition depends on the problem
at hand (see section 2.2).αp is a weighting coefficient that balances
the influence of the termVd w.r.t to the priorVp (prior that we will
define in section 2.1).

We seek for the (hopefully unique) solution̂W which minimises
equation (1):

Ŵ = arg min
W∈W

E(W,I) (2)

whereW is the entire set of possible solutions. We refer to [13] for
details on the optimisation technique used to solve (2).

2.1. Prior term

Vp captures the spatial dependencies between variables~w(s). In
equation (1), it acts as a regularisation factor. It is common to define
Vp as a ”smoothness term” [6, 12]: it enforces spatial continuity of
the velocity~w by taking the norm difference of its components over
a neighborhood:

Vp

(

~w(s), ~w(s′)
)

=
∣

∣u(s)− u(s′)
∣

∣

2
+

∣

∣v(s)− v(s′)
∣

∣

2
(3)

It is a convex function of the unknown variable~w.

2.2. Scalar transport equation (TE)

The velocity field of a passive scalar is described by the scalar trans-
port equation. In dimensionless form, it writes as follows:

∂C

∂t
+∇. (C ~w)−

1

Re Sc
∆C = 0 (4)

whereC is the scalar concentration field of a specie spreaded in the
studied fluid.~w = (u, v) is the 2D appearent velocity of the concen-

tration field; space and time partial derivatives are∇ =
(

∂
∂x

, ∂
∂y

)

and ∂
∂t

; ∆ is the Laplacian operator.Re andSc are the Reynolds
and Schmidt numbers respectively. If we assume the fluid to bein-
compressible (i.e∇. ~w = 0), then equation (4) becomes:

∂C

∂t
+ ~w . ∇C −

1

Re Sc
∆C = 0 (5)

The concentrationC of a scalar quantity (dust particules, humid-
ity, ...) transported by atmospheric wind and observed in a satellite
image, can be related to the image pixel intensity valueI . For cloud
motion analysis, some authors established empirically thefollowing
relation: I ∝

∫

Cdz [14] or I ∝
(∫

Cdz
)−1

[15], wherez is the
observation depth.

In this paper, we consider a simpler case, and asssume that the
pixel grey-level value is directly proportional to the concentrationC:

I(s, t) ∝ α C(s, t) (6)

whereα is a constant independent of time and space. In other words,
we consider theδz/δx << 1, δz/δy << 1.

2.3. Filtered transport equation with subgrid scale (TE-SGS)

Images are discret projective representations of the observed 3D real
world. They have limited resolution in space and time:δt (acqui-
sition period) andδ = (δx, δy) (pixel size) are fixed by the image
acquisition conditions. Details at scales lower than the pixel are not
observed: they are ’missing’ information. Satellite imageacquisition
scales of turbulent atmospheric environment are too large compared
to the characteristic scales of turbulence itself: sub-pixel displace-
ments are important because they strongly influence the large scale
motion of the observed scalar quantity. In this section, we derive a
new fluid motion equation, by integrating small scales effects into
the scalar transportation equation.

The approach we propose is inspired from a well-known model
in fluid mechanics, namely the Large Eddy Simulation (LES) [19,
11]. One fundamental concept of LES is to postulate that the in-
stantaneous passive scalar concentrationC can be decomposed into
large and small scales; more precisely, it verifies:C = C+ + C−

whereC+ andC− represent respectively the large scale (associated
to pixel grey-level value) and the small scale (non-observed) contri-
butions. We apply the same principle and decomposeC (or equiv-
alentlyI) and ~w into small and large scales. One can further show
that, after inserting this new representation into equation 4, then only
the convective term(C ~w)+ contains interactions of small and large
scales; it writes(C ~w)+ = C+ ~w++~τ , where~τ is the residual stress
tensor.~τ is embed all small scale interactions between variables.

Hence, the filtered scalar transport equation, for incompressible
fluid, becomes:

∂C+

∂t
+ ~w+. ∇C+ +∇.~τ −

1

Re Sc
∆C+ = 0 (7)

~τ is associated to a turbulent viscosity term [19]:

~τ = −Dt ∇C+ (8)

whereDt is aturbulent diffusion coefficient. Finally, inserting equa-
tion (8) into (7) leads to :

∂C+

∂t
+ ~w+. ∇C+ −

(

1

Re Sc
+Dt

)

∆C+ = 0 (9)

Such subgrid scalar transport equation (TE-SGS) formulation is a
new approach for motion estimation. For high Reynolds number
(Re >> 1) or scalar with low molecular diffusion (Sc >> 1),
the contribution from turbulent diffusion becomes large compared to
molecular diffusion. In our work, we define the turbulent diffusion
coefficientDt as a statistical constant over the space domain.

2.4. Illumination invariance

We established, in the previous section, the relationship between the
scalar concentration and the image grey-level value (cf equation 6):
I(s, t) ∝ α C+(s, t). However, this is an over simplification :
external factors such as day light variation or atmosphere humidity
may lead to global changes of the observationĪ+ , thoughtC+ may
not vary.

To overcome this problem, we assume that the image’s grey-
level changes linearly from one acquisition to the next :∂I+/∂t ≈
∂C+/∂t + β(t) . This is equivalent to ’centerize’ the temporal
variation ofC+.



(a) RMSE for 40 successive DNS images for different methods

(b) Exact DNS vorticity map

(c) [14] vorticity map (from
original DNS)

(d) TE-SGSvorticity map (from
degraded DNS)

(e) TE-SGS+Bvarvorticity map
(from degraded DNS)

Fig. 1. Synthetic DNS results on original images for [14],TE andTE-SGSand on degraded images (as satellite kind) forTE andTE-SGSand
for light unvariant approachsTE+Bvar andTE-SGS+Bvar. Left: RMSE between estimated and exact flow field; Right: estimated vorticity
map at timet = 30 compare to exact vorticity map (b).

At last, the illumination change invariant transport equation de-
fines our data term in (1) ; it writes :

Vd(I(s), ~w(s)) = (10)
(

∂I+

∂t
− β(t)

)

+ ~w+. ∇I+ −

(

1

Re Sc
+Dt

)

∆I+

with β(t) = 1

S

∑

s∈S ∂I+(s)/∂t. We name it the+Bvar model.

3. RESULT ILLUSTRATION

We validate our sub-grid model (TE-SGS) on a synthetic DNS scalar
sequence; we compare our estimations with an approach basedon
transport equation without subgrid model (namely TE, equ. 5), and
with results from the state-of-the-art on fluid motion estimation [14].
In order to evaluate the efficiency of our illumination model, we sim-
ulated day light variation effect (see Figure 1) by added a spatially
constant intensity offset different at each timet. The offset range
goes from−50 to+50 on a255 gray-level intensity image.

We computed the average Root Mean Square Error (RMSE) be-
tween the estimated velocity~we and the exact velocity~wc . RSME
is computed from original and degraded images, and for each of the
methods. The RMSE is defined by:

RMSE =
1

N

N
∑

i

√

|~we − ~wc|
2 (11)

The DNS sequence is composed by100 images. To suppress small
scale information, only1 every10 time step computation is kept and
input images are smoothed by a gaussian filter of varianceσ = 1.

On the original DNS sequence, [14] andTE give similar results
because they use same kind of flow equation. In this sequence,the
fluid is incompressible:div ~w = 0. Re ≈ 3000 andSc ≈ 0.7,
then molecular diffusion is negligible compare to convective terms.
In these conditions, it can be shown that the continuity equation and

the transport equation are equivalent. Figure 1.b represents the ex-
act vorticity map computed from the DSN. We observe thatTE-SGS
(Fig.1.e) better retrieves the vorticity map than [14] (Fig. 1.c) orTE.
Our modelTE-SGSclearly outperforms both methods. ForTE-SGS,
the turbulent diffusion coefficient isDt = 0.25.

On degraded images, where an intensity offset has been added
to the sequence along the time, methods with brightness variation
model +Bvar are not sensitive to the light variation. Without
+Bvar model,TE give a strongly wrong estimation.TE-SGSim-
proves the velocity estimation in turbulent scalar flows while Bvar
reduces day light variation effect on the estimation.

We processed a real pair of optical images from satellite
MTSAT-1R taken during the 22 sept. 2009 dust storm event that
happened in Australia. Image sizes are300 × 300 pixels with a
resolution of5km by pixel. ∆t is 1 hour. These lenght and time
scales are high compared to the atmospheric characteristicscales.
On this pair of images, we compare ourTE-SGSestimations with
results from the commercial softwareLaVision(which uses a cross-
correlation algorithm) [16]. Figure 2 illustrates the input pair of
images, the estimated velocity field (top) and streamlines (bottom)
resulting from each approach. We observe that cross-correlation
technique estimates a diplacement field which is not smooth;exper-
imentally, it needs large interrogation window size, and the correct
correlation peak is difficult to localize due to slowly varying con-
centration. Results from ourTE-SGS+Bvarmodel give a visually
smoother flow field thanTE-SGSwhich is affected by day light vari-
ation. Streamlines generated from results given byTE-SGS+Bvar
show the same behavior asLaVision. Dust cloud motion is more
identifiable onTE-SGS+Bvarresults and are visually more appeal-
ing than from other methods. Advantage of our method compares
to cross-correlation approaches is that the motion field is estimated
from fluid kinetic equation. The estimated flow field is also dense
(one velocity vector by pixel). ForLaVision, final interrogation
windows are16× 16 pixels.



(a) 2 successive MTSAT-1R
satellite images.

(b) LaVisioncross
correlation algorithm.

(c) TE-SGS
algorithm.

(d) TE-SGS+Bvar
algorithm.

Fig. 2. Australian duststorm event in 2009. Comparison of cross-correlationLaVisionwith TE-SGSandTE-SGS+Bvar.

4. CONCLUSION

In this work, we proposed a subgrid transport model to analyse atmo-
spheric motion from remote sensing images. Different from existing
methods, our model takes into account non-observed small scales
effects by incorporating a turbulent diffusion term into the scalar
transport equation. In satellite images, in order to compensate for
the variation of global illumination from one acquisition to another,
we further introduced a brightness variation correction term. Exper-
imental results show that taking into account the turbulentcompo-
nent improves significantly the estimation of the displacement fields
in synthetic and real images.

We are currently working on a more advanced definition of the
turbulent coefficientDt.
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