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Abstract

With the commercial advent of optical satellite imagery with sub-meter resolution
(Ikonos, Quickbird), a higher frequency of map revision and monitoring is affordable
and realistic at a large scale. Automatic object recognition and change detection from
remote sensing data has been studied for more than thirty years by the Image Processing
and Computer Vision communities, yielding remarkable results over rural and suburban
areas. Dense urban areas are however more difficult to analyze at a high resolution: the
presence of shadows, occlusions and details profusion make their interpretation difficult.

In the present work, we tackle the issue of urban building map updating from a sin-
gle very high resolution (VHR) Quickbird image merged with a Digital Surface Model
(DSM) encoding the altitude of the scene. In particular, we address the problem of
removing exogenous variabilities between the map and imagery data (map-to-image
registration inaccuracies, simplified or mistaken objects in the map) to achieve a fi-
nal reliable change detection. To achieve such a goal, we make use of active contours
segmenting techniques to accurately match symbolized cartographic objects to their
counterpart representations in the image. We investigate how well these deformable
models can deal with urban artifacts while embedding prior shape knowledge derived
from the map as well as collateral sources of information (DSM). Besides a literature
review and a problem statement analysis exposed in the first part of the thesis, the ma-
jor achievements and contributions described in the next chapters can be summarized
as follows:

1. Camera calibration parameters optimization.
We propose an optimization scheme to accurately retrieve interior/exterior camera
orientation parameters of aerial images. This method estimates the parameters
a posteriori and uses the redundancy of n stereo-pair images. A non-linear cost
function built from the camera model is minimized by a Simplex scheme using
ground control points and tie points gathered from all images. Experimental
results show the effectiveness of the approach to refine the absolute (geocoding)
and relative (images consistency) precision of the parameters. Pairwise computed
DSMs were subsequently geocoded in the same cartographic referential system as
other data, orthorectified and mosaicked.

2. Digital map refinement from shape constrained active contours.

(a) A novel method based on active contours is proposed to match each building



symbolized in the map to its counterpart representation in the satellite image.
Geometric and extrinsic shape prior knowledge is derived from the digital
map to regularize the active contour: its shape is constrained to be akin
to the one of the cartographic building which is supposed to be matched
in the image. We experimentally show the effectiveness of this method to
overcome urban artifacts. Comparative studies are carried out with region-
based (Mumford-Shah, Bayesian models) and edge-based (Gradient Vector
Flow) active contours.

(b) The proposed shape penalty is invariant from a global transformation. In-
variance is traditionally achieved by an optimization sub-procedure based on
the gradient descent scheme. We propose an alternative based on the Sim-
plex algorithm which is showed to be more robust and to outperform the
gradient descent.

(c) As active contours schemes are sensitive to local minima of the energy they
minimize, we propose to add in the functional a new data term related to
the DSM in complement to the satellite image. As a building is more dis-
criminated from the background in the DSM than in the image, it drives
the curve to the target more robustly. Results show the lower sensitivity
to remote initialization and to local minima of the segmenting curve in this
case.

(d) Finally, we propose a new soften shape prior incorporation to address the
issue of local minima without the support of the exogenous DSM. Based on a
spatio-temporal weighting technique, this approach allows relaxation and re-
inforcement of the prior shape penalty during the active contour convergence
process. The comparison with the traditional shape prior incorporation con-
firms the potential of the proposed scheme to alleviate the sensitivity to local
minima.

3. Digital map correction using a new shape energy.
As a map is an abstracted representation of the reality, it may embody simplifi-
cation and generalization effects which introduce exogenous variabilities between
the map and the image. Besides, a map is usually achieved manually and may
contain locally mistaken objects. Since the prior shape derived from the corrupted
map constrains the active contour in a hard fashion, it is impossible to overcome
these variabilities which then bias the matching process. We address this issue
with a new shape prior energy allowing parallel discrepancies of the active con-
tour from the prior shape. This model includes a new formulation of quadratic
active contour models (Rochery et al.) to enhance corners and straight lines of
the building to be segmented in the satellite image.

4. Map-to-image change detection from data fusion and Hough voting.
Simple change indicators computed from the DSM and a multispectral image are
merged to detect obvious changes between the map and the more recent remote
sensing data. In case no obvious change is detected, map-to-image exogenous
variabilities are alleviated by the active contour matching process. An edge-based
Hough voting approach is then proposed to confirm the “changed” or “unchanged”



status of each matched building: correspondences between segments of the refined
cartographic building and segments primitives extracted from the image are eval-
uated and accumulated in a Hough voting space. The Hough voting score as well
as the geometric variation due to the active contours matching are integrated in a
stochastic framework to evaluate a “no-change” probability for each cartographic
object.

Experimental results are showed with a Quickbird satellite image (0.6 m/pixel) and
1:10,000 scale cartographic data provided by the Beijing Institute of Surveying and
Mapping.

KEY WORDS: Remote sensing images, GIS, high resolution, urban, satellite optical
sensors, active contours, prior shape constraint, optimization, change detection, map
updating, DSM, fusion.
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Notations and conventions

Typography

✽ A scalar variable is noted in italic light face: x

✽ A column vector is noted in bold straight lower case: x

✽ A row vector is a transposed column vector: xT

✽ A matrix is noted in bold straight upper case: M

Notations

〈x,y〉 inner product of two vectors x and y
|x| or |x| modulus of a scalar value or Euclidean norm of a vector

AB length of the segment [AB] where A and B are two points of the Euclidean space
∇f gradient of a scalar function
div (x) divergence of a vector
∆f Laplacian of a scalar function
min (a, b) minimum between two real numbers
max (a, b) maximum between two real numbers
sign (a) Characteristic function of the real argument a.

It is equal to +1 if a is strictly positive; -1 if a is strictly negative;
0 is a is null

H (.) Heaviside step function
δ (.) Dirac distribution
Ha (.), δa (.) Derivable and regular approximations of de H (.) and δ (.)
g (x) function with real values asymptotically tending towards zero.

g : R
+ → R

g (x) = 1
1+xp , with p ∈ N, typically p = 1, 2

I (c, r) value of the image I in column c and row r

Acronyms

✽ MAP: Maximum A Posteriori

✽ PCA: Principal Component Analysis

✽ MDL: Minimum Description Length



✽ GIS: Geographic Information System
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Chapter 1

Introduction

1.1 Application context and the need for updating urban

maps

For some years, remote sensing optical images with a sub-metric resolution in the civil
sector have no longer been the prerogative of aerial images. Satellite imaging, as shown
by the Quickbird and Ikonos programs, has now reached similar resolutions with the
advantages of lower costs and a higher acquisition frequency. It is an unprecedented
advantage for the regular maintenance of cartographic data on a large scale. It is es-
sential to have up-to-date maps for many applications. For example, it is essential to
have frequent updates on the urban fabric for planning the sustainable development
of a city in the long term. A reliable and recent representation of the road network
makes it possible to find solutions to the problems of road traffic; knowing the location
of residential areas with precision makes it possible to optimize the transport services
in poorly served areas and to know where to develop new housing projects. Urban
pollution, whether atmospheric or sound-related, can be better understood and better
controlled thanks to a map enhanced with altitude information relative to the build-
ings. In a very different context, that of natural (earthquakes, flooding) or less natural
(military conflicts) catastrophes, the quick production of maps of the damage - in terms
of infrastructure and buildings destroyed - is a key element for providing the population
with rapid relief and allow efficient reconstruction. We can then understand that above
all a frequently updated map represents a decision-support tool whether it has to be
used in an emergency or for long-term planning purposes.

Whereas the need for reliable and up-to-date maps is growing and the flow of remote
sensing images is increasing, the bottleneck in the production of cartographic data lies
in the manual processing applied to the data. Map maintenance is traditionally carried
out either by surveys in the field, or by operators detecting changes between an old
database and more recent remote sensing data. In both cases, this process is slow
and therefore costly, and consequently does not make it possible to meet the demand.
An urgent need to automate the photo-interpretation process, calling on computerized
image understanding techniques, has made itself felt. Over the last twenty years a large
number of works have been carried out aiming to facilitate map updating or to attempt
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to automate it. But the fact is that the utilization of imagery as the sole source of
information for maintaining cartographic data has failed.

1.2 Scientific goal and approach adopted

In this thesis we address the problem of updating cartographic data concerning urban
constructions using high-resolution optical satellite images (0.6 m/pixel) and auxiliary
geospatial data, in particular altimetric data of the DSM type (Digital Surface Model).
The goal of this research work consists of studying and proposing a methodology for
analyzing changes between a symbolic representation of buildings in an urban scene (dig-
ital map) and more recent remote sensing data. In this study, the analysis of changes
concerns the verification of the presence or disappearance in an image of a building
symbolized on an older digital map.

The comparison between a map and a high-resolution optical image presents two ma-
jor difficulties. The first one concerns the automated or semi-automated interpretation
of the image of an urban landscape: the profusion of detail, the presence of shadows, the
low contrast of objects and other artifacts, are all obstacles that cause the traditional
image processing and pattern recognition approaches to fail. The second one is due to
the errors and simplifications contained in the map which introduce variabilities - which
we will call exogenous - between the semantic data and the image. These exogenous
variabilities are specific to each object and are liable to be interpreted, wrongly, as an
effective change.

With a view to overcoming these problems we propose a methodology based on data
fusion and the utilization of prior knowledge. The merging of geospatial data makes it
possible to take advantage of the complementarity of their information with the goal
of ensuring greater robustness for the processing. As for the prior knowledge of the
position and shape - provided by the digital map - it makes it possible to restrict the
search space to the objects to be found in the image for a comparison with the map.

Consequently, we propose an approach based on the following principles:

✽ Detect the obvious changes between the map and the remote sensing data using
a simple method. A detection of obvious changes of buildings in the map will
make the most of the fusion of an altimetric data (DSM) and a remote sensing
multispectral image. Since these changes are free of ambiguities, no complex
processing of the images is required. We will therefore use tried and tested types of
processing acknowledged by the remote sensing and image processing communities.

✽ Develop a more sophisticated method for the more complex cases of change/non-
change. By complex situations we mean the cases where the information in the
map is partially erroneous or when the image is altered by the artifacts of the
urban environment. Under these circumstances, the detection of change cannot
be carried out by means of simple processing methods. To achieve this, we have
adopted a two-step approach:



CHAPTER 1. INTRODUCTION 3

; Making a correction to the exogenous variabilities between the map and a
panchromatic satellite image using the shape constrained active contours
technique. Active contours offer a theoretical framework that is particularly
well-suited to the integration of prior shape knowledge and to the merging of
data. Furthermore, they are perfectly suited to the integration of vector (dig-
ital map) and raster (image) data. However, the constrained active contour
models proposed in the literature do not fully answer the problems posed by
our application. In particular, the profusion of detail in very high-resolution
images in an urban region tends to multiply the occurrence of local minima of
the energy functional minimized by the active contours. The presence of lo-
cal errors in the prior shape derived from the map also limits the technique’s
matching capability. One of the goals of this thesis will be to overcome the
above-mentioned problems by proposing new solutions for a more robust and
faster convergence of the contour with, at the same time, a greater flexibility
with respect to the shape known beforehand.

; Analyzing the changes and non-changes by comparing the cartographic object
refined by the active contours with the panchromatic image. This analysis
aims to produce a change indicator whose reliability is improved by the fine
matching carried out by the active contours.

1.3 Innovations

The main innovations of this work concern the active contour models. The first orig-
inality concerns the adaptation of the constrained active contours to the problem of
map-to-image matching and the analysis of changes between a map and high-resolution
remote sensing optical data.

Our other contributions are relative to the improved robustness of these models with
respect to the local minima. We propose two solutions to compensate for this problem:
one concerns the merging of a DSM into the attachment-to-data term in addition to
the analyzed image. The better discrimination of the constructions in the DSM makes
the active contour less sensitive to the initialization and shortens the convergence time.
The second solution consists of spatially and dynamically relaxing the shape constraint
during the convergence of the active contour. This then reaches an approximate solution
of the object to be matched before the shape constraint is uniformly restored in order
to regularize the contour.

The most innovative contribution of this thesis is the creation of new shape constraint
energies enabling local and parallel discrepancies of the active contour with respect to
the prior shape. The presence of the cartographic objects’ local shape errors has led us
to create these types of model.

Lastly, we have taken advantage of the robustness of the simplex optimization algo-
rithm in circumstances where its use has not until now been explored. In particular, its
integration in the shape constraint on the active contours will be found to have better
performances than the gradient descent technique conventionally used.
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1.4 Thesis framework

To begin with, chapter 2 provides a brief state of the art concerning the updating of car-
tographic data and the extraction of objects from high-resolution remote sensing data.
We will see that the utilization of specific prior knowledge extracted from the map and
data fusion are the current trends used to facilitate the analysis of scenes. We then
precisely describe the problem addressed in this thesis, its difficulties, and the approach
that we are proposing to successfully carry out an analysis of map/image changes. Our
methodology relies on the utilization of prior knowledge and on the merging of auxiliary
data. We will use altimetric data as a source of additional information. The following
chapter describes how this data was generated from stereoscopic aerial images.

Chapter 3 describes how a Digital Surface Model (DSM) is generated from a pair of
aerial stereoscopic images. The DSM is used as a source of information in addition to the
satellite data to help analyze the urban constructions. The problem of camera calibra-
tion has been considered with using a new optimization algorithm designed to estimate
precisely the aerial image acquisition parameters. This approach makes it possible to
estimate the parameters by using the information redundancy relative to the control
points extracted from n stereopair images. A non-linear cost function constructed from
the model of the camera is minimized in order to estimate the calibration parameters.
The DSMs generated are then geocoded, orthorectified and merged. The information
contained in the DSM will be used later at the time of unequivocal change detection
(chapter 7) and with the active contour models (chapter 5). The following chapter gives
a reminder of the theoretical foundations of these mathematical tools.

Chapter 4 starts by presenting a brief state of the art concerning active contours. We
classify the various models according to their representation mode, their attachment-
to-data and regularization terms, with special attention being paid to the insertion of
exogenous prior shape constraints. Lastly, we will substantiate our choice of represent-
ing active contours by level sets and will describe the attachment-to-data and shape
constraint models which will be used in this study.

Chapter 5 shows how to improve the robustness of the shape constrained active
contours and designed to achieve a match between the cartographic buildings and the
image. The first contribution consists of proposing a different optimization algorithm
for estimating the pose parameters making the shape constraint invariant from a global
transformation. The second one concerns the insertion of the DSM in the active con-
tours’ attachment-to-data term. This type of representation is complementary to the
satellite image and enables a better discrimination of the constructions from the rest
of the scene. The third innovation concerns the incorporation of a shape constraint
that varies according to space and time. This is designed to give the active contours’
greater flexibility so as to make them less sensitive to the minimized energy local min-
ima. We will also see that the shape constraint model is not, despite everything, suited
to overcoming the local errors contained in the map. The following chapter addresses
this problem with the formulation of new energies.
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Chapter 6 describes the formulation of a new shape constraint energy criterion, com-
bining linear and quadratic energies. This is designed to overcome the errors present
in the map in order to improve the matching with the image. We propose a solution
that consists of authorizing certain deviations of the active contour with respect to the
reference shape. The class of authorized deviations is that of movements constrained by
parallelism and corresponds to the errors the most often found in the map. This model
is completed by a quadratic energy imposing generic rectilinearity and orthogonality
constraints on the active contour. The works presented in chapters 5 and 6 are designed
to improve the map-to-image matching, i.e. the consistency of the two representations.
This contributes to improving the reliability of the change analysis described in the
following chapter.

Fine matching by active contours has enabled us to reduce the variabilities between
the cartographic object and its representation in the image. These variabilities are signs
of relatively minor differences between the map and the image, and may or may not
be due to real changes between the two types of data. In chapter 7, we describe a
methodology for analyzing changes between a map of buildings and multi-source re-
mote sensing data. The approach that we are proposing is based on the merging of
altimetric, multispectral and panchromatic data processing and is split into two steps.
The first one merges change indices with a view to only validating the unequivocal
disappearance of a building. These indices are calculated by means of simple methods
using the multispectral image and the altimetric data. In most cases where it has not
been possible to identify a change clearly, a second more complex phase is carried out
in order to characterize the degree of resemblance between the cartographic object and
its representation in the panchromatic satellite image. This processing takes advantage
of the fine matching achieved by active contours and makes it possible to formulate a
non-change probability for each element of the map.

Chapters 3, 5, 6 and 7 are each illustrated with experimental results which are
analyzed and compared with the traditional approaches.

1.5 Context of the PhD study

This thesis, organized in co-tutelage, is the fruit of a Sino-French cooperation be-
tween the LIAMA (Chinese Academy of Sciences), Alcatel Alenia Space and LIMA
(ENSEEIHT/INPT). The PhD study was co-financed by Alcatel Alenia Space and
LIAMA/NLPR in the framework of projects 01.10 (Digital map updating on urban
areas using high resolution images) and MOST 863 (Multi-source data fusion and urban
development planning decision support).



Chapter 2

Analysis and formulation of the
problem

2.1 Introduction

This chapter gives an overview of the recent works carried out on the interpretation of
urban scenes using high-resolution remote sensing data. This assessment of the state of
the art makes no claim to being exhaustive and will be oriented towards the description
of methods using the fusion of remote sensing and cartographic data in order to facilitate
the difficult analysis of urban landscapes. We will then describe the problem of updating
maps in a general conceptual framework. This will lead us to more specifically formulate
the problem that we are attempting to resolve through this study, that is to say the
updating of digital maps of buildings using high-resolution optical images of an urban
environment. Lastly, we will describe a methodology designed to resolve this problem
and which is based on the attenuation of the exogenous variability between the map
and imagery data.

2.2 State of the art relative to scene analysis and map
updating from high-resolution remote sensing images

2.2.1 Specific aspects and strategies for map updating

The automatic or semi-automatic updating of maps using remote sensing data is a
problem at the crossroads between several disciplines of image processing and pattern
recognition. It refers to change detection between two multi-temporal representations
of a given scene [14, 97] and to pattern recognition for the extraction of objects (roads,
buildings, etc.) [63, 45, 8, 71, 73].

2.2.1.1 Comparing images

The approaches used for detecting changes in remote sensing are traditionally based on
a comparison of images that is made either at the level of the pixel, of the primitives
extracted from the images - typically invariants - or of the object. A complete review of
inter-image change detection techniques can be found in [97]. Whatever the algorithm

6



CHAPTER 2. ANALYSIS AND FORMULATION OF THE PROBLEM 7

used, a preliminary data alignment phase is essential to compare them at a later stage.
This matching is both geometric and radiometric.

In the case of images obtained with only slightly different acquisition views, an affine
transformation is sufficient for the geometric registration of the data; otherwise, non-
global transformations are then estimated such as the optical flow [10].The choice of
primitives derived from the image to be matched is delicate. Indeed, the precision of
the data fusion and therefore the reliability of the change detection method will depend
on the quality of the primitives extraction. In [14], P. Blanc proposes an alignment
method based on the pixels intensity (correlation) with a sub-pixel precision. In the
case of image acquisitions with significantly different resolutions, Dufournaud et al.
matched point primitives made invariant from rotation and translation [37]. Noting
that a low-resolution image is the result of a convolution of a high-resolution one by a
Gaussian kernel of variance sσ, the authors discretize the scale space s and estimate
the best direct plane similarity matching the points extracted from two images whose
difference of resolution can reach a factor as high as six.

The radiometric correction of the data consists of attenuating the differences of
illumination and of lighting represented in the images in order to make their later
comparison efficient. The most commonly used technique consists of normalizing the
images so that they have the same mean and radiometric variance [67, 118]. Other more
sophisticated techniques based on linear transformations of the lighting [34, 57] or the
modeling of the illumination have been proposed [75, 127].

2.2.1.2 Map/image comparison

The problem of comparing a map with an image is, however, different from that of
comparing images with each other, because the cartographic data is a synthetic, high
semantic level and simplified representation of the reality. Like the comparison of im-
ages for change detection, map/image comparison includes a preliminary data fusion
phase. However, no radiometric correction is applied since the map is not a remote
sensing image. The problem of superimposing a map with a SPOT-4 satellite image has
been studied by M. Roux in [105]. A map in paper format was digitized and then pre-
processed to extract the road network. This was then registered by dynamic program-
ming on linear and “junction” type primitives extracted from the image. Present-day
maps are generally taken from Geographic Information Systems (GIS) and are in fact
digital. The availability of such maps presents a certain advantage: the cartographic
data is vector-based and does not require any pre-processing as is required for digitized
paper maps; the map is digital and geocoded, its interfacing with remote sensing images
is thus facilitated. In particular, if the image is also geocoded, the superimposition of
the data prior to change detection is straight-forward.

To date, much less work has been carried out on the comparison of cartographic and
remote sensing data to achieve map updating than on detecting changes between two or
more images. Whereas the research carried out on map updating using high-resolution
optical imagery remained marginal in the nineties [54, 109], it is tending to multiply now
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as shown by the European agencies cartography programs: ATOMI project in Switzer-
land [38, 6, 133, 134], revision of the ATKIS map in Germany [124, 122, 123, 42] and
TOP10DK in the Netherlands [62, 82, 61]. Among the works already carried out on the
subject of cartographic data updating, a distinction can be made between those that
take advantage of the specific prior knowledge derived from the map in order to facil-
itate the processing, and those that neglect this high-level information. In this latter
case, bottom-up approaches are often used: prior extraction of the pertinent primitives
from the image, then higher level reasoning by making assumptions on whether the
object extracted from the image belongs to the map. As a general rule, the problem
with such an approach is the difficulty of exhaustively and correctly extracting from the
image all the primitives being sought. So, those that are missing could be incorrectly
interpreted as a change while being compared with the map. The extraction of prim-
itives corresponding to an object from the image whose nature is coherent with those
symbolized on the map is also uncertain. S. Servigne is confronted with these problems
in the framework of updating a cadastral map of the city of Padua using aerial images
[109]. The result of a low level segmentation of the images is used to attempt to match
it with the cartographic data. To begin with, a relaxation technique is used to attempt
to associate an element in cadastral database with its segmented representation in the
image. The results are not very satisfactory because the segmentation produces a large
number of contours, often fragmented, for a given object. In order to improve matching,
another region-based method is applied by injecting the prior knowledge relative to the
texture of the objects. A textures database is learnt manually from the image listing
nine different types: land, crops, tarmac, water, vegetation, roof, façade, shadow, pedes-
trian. The comparison of the cartographic and image objects is finally carried out with
respect to shape, texture and surface resemblance criteria. In [54], O. Jamet justifies the
choice of not using the information derived from the map because it is not recent and is
sometimes not reliable and would therefore bias the change detection process. He then
proposes a method of pairing off segment primitives from a stereoscopic pair of aerial
images which are compared with the vectors of a digital map of the urban constructions
(IGN, BDTopo). The comparison, formalized in the framework of the Dempster-Shafer
belief theory [111] enables to model the uncertainty associated with the map.

The prior knowledge derived from the map is however an undeniable advantage
for improving objects extraction from urban scenes or for updating cartographic data
[35, 36, 120, 122, 124, 48, 3, 123, 4, 9, 62, 12, 61, 82, 42]. Urban scenes imaged at
high resolution contain a great amount of detail and other artifacts which make their
automatic or semi-automatic analysis difficult (shadows, distortion due to the image
acquisition perspective, occlusions). The specific information derived from the map
informs us about the object location to be found in the image, which limits both the
search space and the false alarms rate. Besides the specific knowledge provided by the
map, the fusion of auxiliary remote sensing data is also the tendency for the analysis of
urban scenes at high-resolution. These additional data are found useful for eliminating
ambiguities relative to the interpretation of the scene (multispectral, infrared, altimetric,
stereoscopic images) [124, 122, 48, 123, 47, 46, 62, 83, 82, 61]. In the rest of this chapter,
we propose to describe the recent works on object extraction and map updating from
high-resolution images in an urban environment according to these two approaches, that
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is to say the fusion of remote sensing data and the utilization of prior knowledge, in
particular the specific knowledge provided by existing maps.

2.2.2 Some works on remote sensing data fusion for scene analysis at
high-resolution

2.2.2.1 Fusion of optical images

Data fusion is a formal framework in which are expressed means and tools for the al-
liance of data originating from different sources. It aims at obtaining information of
greater quality; the exact definition of “greater quality” will depend upon the applica-
tion [121]. In the framework of high-resolution optical images fusion, we can mention
the methods that aim to improve the spatial resolution of multispectral images from
better resolution panchromatic images. A complete review of these fusion techniques
is given in [125]. The gain in quality is then a more complete description of the scene,
combining a high geometric resolution with numerous spectral signatures, thus facilitat-
ing the analysis and extraction of objects. This gain is nevertheless tainted by merged
image reconstruction artifacts which introduce biases in the spatial and spectral domain.
A study comparing the performances of some of these techniques has been carried out
by F. Laporterie in [64]. In [42], M. Gerke uses an IKONOS satellite image resulting
from the fusion of a panchromatic and multispectral image (Pan-sharpening or PXS)
for updating the ATKIS road network maps. The multispectral information makes it
possible to characterize the road efficiently (thanks to the near infrared band) while
meeting the map’s topographic precision constraints.

It should be noted that the merging of optical data does not only concern images
with different resolutions. Indeed, panchromatic and stereoscopic images with identical
resolutions are also used to facilitate scene analysis, particularly at the level of built-up
areas [107, 80, 77, 53]. In [77], Nevatia et al. propose a bottom-up approach for detect-
ing buildings from aerial images: linear primitives are firstly extracted from an image,
and are then associated to formulate roof hypotheses in the form of parallelograms. The
hypotheses are verified by the detection of the building’s shadows and walls. The best
hypotheses are selected and merged with those taken from the analysis of other images.
A complete review of the extraction and 3D reconstruction of buildings is available in
[63, 45, 71, 8]

Lastly, it should be noted that images provided by optical sensors with the same
resolution and different spectral signatures are also used. The multispectral measure-
ment is particularly interesting for classifying the objects in the scene. In the works of
V. Walter [122], aerial multispectral images (RGB, 2 m/pixel) are used for a supervised
classification by maximum likelihood of agricultural or urban zones, roads and water.
The multi-band information coupled with the images’ texture information enable to
obtain encouraging results on rural and peri-urban images. In the next section we will
see that for purely urban environments, an additional altimetric data is required for an
efficient discrimination of the constructions.
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2.2.2.2 Optical and altimetric data fusion

The availability of a Digital Surface Model (DSM) representing the altitude of the ob-
jects in the scene is particularly interesting for analyzing urban environments. The DSM
is generally the result of a 3D reconstruction from at least two images, or from a direct
measurement of the reflection of a laser signal (LIDAR). A DSM enables to distinguish
the aerial structures from the ground, thus facilitating the extraction of the buildings.
This latter operation is nevertheless made delicate in the presence of vegetation which
becomes confused with the buildings in the altimetric image.

In [48], N. Halla and V. Walter filter the vegetation from a Lidar DSM by means of
a multi-echo analysis: the laser signal passing through the canopy generates two echoes.
The faster echo corresponds to the vegetation’s leaves whereas the slower one corre-
sponds to the ground. If we only take the second echo into consideration, the generated
Lidar DSM contains very little aerial vegetation and drastically limits the ambiguities
between the canopy and the buildings. In a second phase, the authors pursue the works
of [122] by applying a classification by maximum likelihood of the scene: the DSM is
then considered like the fourth band of a multispectral image (RG and near infrared).
The joint utilization of the DSM and the near infrared band makes it possible to achieve
an efficient classification of the buildings and vegetation. The DSM data also enables
to estimate the shadow areas in the scene and thus avoid their incorrect classification.

In [82], color images (RGB, 0.5 m/pixel) and a normalized Lidar DSM are the in-
put data to an algorithm for the supervised classification of constructions. A first step
consists of splitting the acquired class of buildings into sub-groups with homogeneous
spectral characteristics (ISODATA algorithm [5]). A second step deals with a classifi-
cation based on the Mahalanobis distance carried out on the remote sensing data. The
result of the classification is then compared with a digital building map to detect any
changes.

In [47] snake type active contours are used to segment the buildings represented in
an IKONOS image (1 m/pixel) and a Lidar DSM. The active contours are initialized
thanks to a coarse detection of the buildings from a DSM, they then move towards the
high gradients of the satellite image while being constrained by inflation forces derived
from the DSM [27].

2.2.3 Utilization of constraints derived from prior knowledge

In the following sections we distinguish the works on object extraction or map updating
depending on whether they are based on the generic or specific (map) knowledge of a
studied landscape. A complete review of the different types of prior knowledge used in
remote sensing is available in [9, 35].

2.2.3.1 Generic knowledge

The generic knowledge provides information on general properties relative to the radiom-
etry and/or geometry of an object to be extracted from the image. These properties
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are the result of human reasoning on the basis of acquired knowledge and most often
enable to define object models (typically the roads and buildings). The following are
examples of generic knowledge:

✽ Roads have parallel edges, a constant width and slight curvature except at inter-
sections.

✽ Roads have a homogeneous radiometry that is clearer than their environment.

✽ Buildings have straight edges and corners.

✽ Buildings have an altitude that is higher than the ground and project shadows
onto it.

This knowledge is derived from observations and is therefore considered to be empiri-
cal. In [94, 96, 95] Péteri and Ranchin use snake type active contours ([58], see section
4.2.1.3) to extract the road network from an Ikonos satellite image representing a dense
urban environment with a resolution of one meter. The interest of the active contour is
twofold: in the end it allows a non-fragmented extraction of the road network, it also
easily incorporates high level information such as geometric constraints. Notably in
[95], a parallelism constraint is used to segment the edges of the road. This geometric
constraint taken from generic knowledge enables a more robust segmentation. A multi-
scale analysis increases the robustness of the method with respect to the image’s level
of detail.

M. Rochery et al. also used parallelism in [100, 99, 101] for roads extraction using
active contours. The constraint is formulated thanks to the introduction of a quadratic
energy which enables a long range interaction between points of the active contour.
Unlike the works of Péteri [94, 96, 95], this approach is not sensitive to initialization
and naturally incorporates the notion of network. However, the results are obtained
from medium resolution peri-urban images.

In [83], H. Oriot uses statistical snakes to segment the buildings in a pair of high-
resolution stereoscopic images. A cost function is defined so as to favor the integration
of regions with great disparities inside the contour. The extraction of the building is
refined by the images’ gradient information and by a generic constraint favoring angles
of 90◦ and 180◦. This approach is semi-automated insofar as the initialization of the
active contour is carried out manually. The movement of the contour minimizing a cost
function (non-variational approach) is based on the insertion, updating and elimination
of the snake’s nodes.

In [119], Vinson et al. use rectangular deformable models in order to segment the
buildings in an ortho-image. A pre-detection of the buildings by segmentation of a digi-
tal surface model is used to initialize the model which will converge on the high gradient
areas of the image, i.e. the edges of buildings. On convergence, the parameters of the
rectangular model (barycenter, length, width, orientation) are estimated. The results of
rectangular extractions can then be merged. The choice of a rectangular model reflects
the empirical knowledge relative to the shape of the buildings that are the most often
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encountered.

Whereas the generic prior knowledge is largely used to help the extraction of objects,
it is dependent on societal and cultural aspects and can thus vary at a national or
worldwide scale (for example the road network in the old quarters of Beijing is in no
way comparable with the road network in Manhattan). This information therefore
cannot be generalized with respect to the geographical location represented by remote
sensing data. It must be completed by a more dedicated and specific knowledge that is
less constrained by human empirical knowledge.

2.2.3.2 Specific knowledge

Typically, specific knowledge is derived from cartographic data. The map indicates the
location, shape and nature of the objects represented by the remote sensing data. This
is a strong piece of prior knowledge which makes the extraction or map updating task
more robust. The map is essentially used in three ways. The first one concerns the
reduction of the search space for an object being looked for in the remote sensing data.
This enables to reduce the calculation time and the false alarms rate. The second one
concerns the training areas for the supervised classification of scenes. Whereas these
zones are traditionally defined manually, the cartographic data enables to automate
their input. Lastly, the map can be used to enrich a knowledge base with specific infor-
mation from the analyzed image.

Determination of training areas

The works of B.P. Olsen [82], N. Haala [48] and V. Walter [122] are all based on
the supervised classification of multi-sensor images (see section 2.2.2). These classifica-
tion methods require training areas defined manually by experts. These authors use an
existing map to define these zones in order to make the system automatic. However,
the utilization of this type of knowledge derived from the map makes the assumption
that the number of cartographic objects that have changed is low with respect to the
total number of objects. Indeed, too high a number of changes would deteriorate the
subsequent classification. To avoid learning errors on the boundaries of cartographic
objects, A. Busch reduces the learning space by means of morphological filterings [16].
Unlike the works of [82, 48, 122], those of A. Busch concern medium resolution optical
images. In the case of very high-resolution images such as those used by B.P. Olsen,
a distortion due to the perspective can be seen at the level of the buildings. Since the
map is in orthoscopic geometry (seen at the nadir), the data are not compatible for
superimposition prior to the learning phase. Nevertheless, the TOP10DK map used is
three-dimensional: the knowledge of the remote sensing image acquisition parameters
then makes it possible to efficiently project each cartographic building on to its homol-
ogous representation in the image.

Reduction of the search space

In [106], M. Roux et H. Mâıtre use a digitized paper map at a scale of 1:25000 of
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the city of Paris to improve the 3D reconstruction of buildings. The map, in which the
blocks of buildings are isolated, enables to restrict the search space for the homologous
points obtained by correlation for the calculation of disparities from stereoscopic aerial
images. Since the search space is reduced, the pairing errors are less common and a
smaller correlation window is used to obtain finer results.

In [114, 35], the authors use a road map as the initialization of a change detection
process with a more recent high-resolution aerial image. In [35], M. de Gunst makes
a comparison between the cartographic data and the image by correlation between the
map and a radiometric profile taken from the image. When the correlation is satis-
factory, there is no change. When it is low, a second phase in the process based on a
contextual reasoning is triggered: depending on the environment in which a change has
been detected, a list of objects likely to be detected in the image is drawn up by order
of priority. Each type of candidate object triggers a particular type of segmentation
the result of which is confronted by hypothesis tests with models defined beforehand.
If all of the tests are unfruitful, the search window is enlarged, and the parameters of
the extraction methods are adapted. In [114], C. Steger proposes a radiometric profile
analysis of the road guided by the map in order to validate the non-change of the parts
that it is made up of. When the map is not very precise, generic road parallelism and
rectilinearity constraints are used to overcome these inaccuracies. The elements of the
map can be rejected, verified or ambiguous. A second algorithm detects the new roads
by inspecting the vicinity of the parts of the map validated during the previous phase.

In the framework of the ATOMI project [38], the authors use redundant sources of
information (digital map at 1:25000, digital surface model (DSM), multispectral images)
for the extraction of roads [133] and the reconstruction of buildings [78]. The map is
used to restrict the search space. In [133], stereoscopic RGB aerial images and a digital
terrain model (DTM) are used for the extraction of roads. In [78], vector data of the
residential zones are coupled with a prediction of buildings provided by the DSM. These
data and the multispectral data are used simultaneously for an unsupervised classifica-
tion of the buildings in the image. A second phase consists of matching the cartographic
objects on the results of the classification. Since the scales of the map and of the image
are different, the symbolized buildings are often far from their representation in the
ortho-image. An affine transformation estimated by empirical scores enables the map-
to-image matching and a subsequent 3D reconstruction.

Agouris et al. [4] have developed a method enabling to detect the geometric varia-
tions of a road symbolized in a map and represented in a more recent remote sensing
image using snakes. The originality of their approach lies in the introduction of a new
external constraint energy term which depends on the degree of uncertainty associated
with the map’s planimetric precision. This uncertainty is calculated from a remote sens-
ing image whose acquisition date corresponds to the date on which the map was made:
the active contour is initialized thanks to the cartographic objects and moves without
any constraint in the image. Depending on the total energy variations, and according
to its final value, a degree of uncertainty is assigned to each of the snake’s nodes. This
degree is allocated according to fuzzy logic rules inspired by linguistics. So, a great
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energy variation and a high final energy for a given node will lead to a great uncertainty
being assigned to the point of the cartographic object on which that node was initial-
ized. This uncertainty allows the authors to express a recall force similar to that of a
spring fixed to the node of the active contour in its initial state. Finally, the external
constraint is imposed on the active contours which move on the most recent image. In
qualitative terms, the method used makes the external constraint energy proportional
to the lengthening of a spring in a certain vicinity, then it becomes constant outside of
that vicinity. The extent of the vicinity and the stiffness of the spring depend on the
previously determined uncertainty. The lower the uncertainty, the shorter the range of
the constraint energy with a great stiffness associated with the spring: since the map’s
degree of veracity is high, if there is really a change, the gradients of the new road’s
contours should be sufficiently intense to overcome the constraint. On the contrary, if
the uncertainty is high (long range, slight stiffness), it does not seem to be justified to
attract the active contour towards its initial position defined by the map. This method
appears effective on simple cases of medium-resolution optical images: the road is devi-
ated manually on portions of the road, thus simulating a slight change. The method does
not take into account the appearance of new roads whether they intersect old one or not.

An approach similar to [4] is introduced into [12] by Bentabet et al. for the extrac-
tion of roads from SAR images. Snakes, initialized by means of a map, move to segment
the representation of the road more faithfully in the image. The active contours used
are attracted by the image’s high gradient zones. They are consequently sensitive to the
noise of the remote sensing data. The authors propose a filtering of the speckle which
preserves the contour information. Considering the problem of the parameterization of
the snakes, the authors estimate the stiffness coefficient of the active contour from the
mean curvature of the road calculated from the map.

In [3, 2], Agouris et al. propose a change detection method for the buildings sym-
bolized in a map using two diachronic aerial images. One of the images was acquired
at the same date than the map was made, whereas the other one is more recent. Each
cartographic object is projected onto the image that is time-consistent with the map.
The subsampling of the cartographic polygon considered provides a list of points whose
presence will be verified in the more recent image. The change detection is carried out
by assessment of a correlation score originally developed by Grün in [44]. The goal of
this method is to find iteratively the six parameters of an affine transformation making
it possible to minimize, in the least squares sense, the radiometric differences of the
pixels in two windows belonging to each of the images. This approach enables to ob-
tain a very good matching accuracy, however it often encounters parameter estimation
non-convergence problems. The authors of [3] resolve these problems by giving more
weight to the contours of the buildings than to the rest of the image. Analysis of the
radiometric profile of the contours in the reference image, guided by the map, makes
it possible to classify the contours in three categories: single (transition between two
radiometric levels), double and triple contour. These profiles are then mathematically
modeled by a Gaussian combination whose maxima are located at the level of the con-
tours; they are finally injected into the estimation model of the affine transformation’s
parameters and significantly improve the technique. The advantage of this method is
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that it is able to detect partial changes made to a given building. The difficulty is that
an image acquired on the same date as the map was made is required; the method also
relies on a perfect superposing between the map and the image which is not often the
case because of the errors due to the cartographic inaccuracies.

In [65], Leitloff et al. propose to extract queues of vehicles from a Quickbird panchro-
matic image. This method is based on the extraction of linear primitives derived from
the image’s gradient. The knowledge of a digital map enables the authors to filter nu-
merous primitives that have no link with the cars: by assuming that they are aligned
with the road, they apply a morphological filtering that only keeps the primitives that
are parallel with the road network. This pre-processing reduces the complexity of the
calculation and the subsequent queue recognition errors based on the analysis of the
radiometric profiles.

Enriching a knowledge base

In [133], the prior knowledge is made up of rules concerning the arrangement of the
roads, of characteristic primitives such as the ground marking and the existing maps.
This latter specific information is inserted in a knowledge base system. This base will be
enriched with the image’s radiometric characteristics at the places where the coherence
with the map is verified. An unsupervised classification based on the acquired knowledge
extracts the road network.

2.2.4 Summary

In view of this bibliographic analysis, we can see that the merging of remote sensing
data significantly improves the interpretation of the landscape and, in particular, the
merging of urban scenes which are difficult to analyze. The injection of specific and
prior knowledge makes it possible to improve the object recognition and map updating
performances, thus avoiding the stumbling blocks of the traditional bottom-up methods.
This specific information is most often used to restrict the search space, define learning
zones or specifically enrich knowledge bases. However, the taking into account of the
geometric information provided by the map is more marginally used. The difficulty,
on the other hand, is naturally due to the fact that the map and the image do not
contain exactly the same information (due either to changes or to errors on the map).
A map-to-image comparison must consequently be capable of moving away from this
prior knowledge in order to find the object such as it is in the image. In the next section
we clarify these aspects in a general way by formulating the problem of map updating
that we are attempting to solve.

2.3 Position of the problem of map updating

In order to pose and formulate the problem of map updating from the remote sensing
data, we propose to use and extend the conceptual framework described in [55] and
used in [14] to analyze change detection between multi-date and multi-source data.
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This framework is of interest insofar as it is well suited to the problem that we are
addressing, but it needs to be adapted.

2.3.1 General conceptual framework

2.3.1.1 Definition of the remote sensing related universes

This formalism consists of considering the objective universe Uobjective containing the
exhaustive knowledge set that we may have relative to a given scene. This objective
knowledge is inaccessible to us in its entirety. It manifests itself in the form of physical
phenomena called observables. The knowledge of all of the observables does not make
it possible to exhaustively deduce the Uobjective because the function for the physical
transcription of this universe to Uobservable is not reversible (ill-posed problem). So, the
only way of partially knowing Uobjective is equivalent to measuring one or more observ-
ables by means of a measuring apparatus. It should be noted however that for a given
scene, the observables vary according to certain factors. In the case of optical imaging
these factors are for example:

✽ The lighting, which varies according to the position of the Sun with respect to
Earth. Depending on the illumination, the shadows cast due to the presence of
buildings will vary.

✽ The observation geometry (zenith viewing angle). In the specific case of a dense
urban environment, this geometry explains why occlusions due to buildings are or
are not present due to the image acquisition angle.

✽ The weather conditions.

✽ The stray phenomena of multiple reflections (by the atmosphere, the ground or
the objects making up the scene) will disturb and bias the observable that we
really want to measure.

The choice of the means of observation of course depends on the observable we want
to measure. In the case of optical imaging, we choose to observe the electromagnetic
rays radiated by the Sun and then reflected by the scene on to a spectral window in the
visible and near infrared domain (passive sensor). The measurement made of this ob-
servable, called observation, is also tainted by errors specific to the physical measuring
instrument. For example, the noise of the measuring sensor, or a poor calibration of
the latter will alter the final information which will be available to us and from which
we hope to obtain the knowledge of Uobjective.

We then understand that Uobservation is only a partial and biased representation of
Uobjective. These alterations are not necessarily stable over time. Thus, when comparing
the diachronic images for the change detection, these artifacts introduce undesirable
exogenous variabilities because they are likely to be wrongly interpreted as a change.
Overcoming exogenous variabilities for detecting effective changes that have been made
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in Uobjective is a difficult task which is at the heart of the whole problem of detecting
changes between two images.

2.3.1.2 Definition of Uinterpretation

The works carried out by P. Blanc in [14] attempt to address this question in a general
way for a geometric and radiometric matching of the data. However, in [14] the data
compared for detecting change all belong to Uobservation. Our case is different in that
we compare an observation with a map. A map is definitively not an observation, it
is the result of an interpretation, schematization, simplification of an observation. The
map, which belongs to Uinterpretation, is also likely to contain errors inherent to the
cartographic transcription of Uobservation towards Uinterpretation. These errors are due
to interpretation errors made by the operator who made the map (or of an automated
process, if one was used). There are two types of photo-interpretation error. Once
concerns an interpretation error relative to the nature of the manually extracted object;
for example, a lawn or a parking space could be interpreted as the roof of a building
observed at the nadir given the great similarity of their characteristics (homogeneous
radiometric zone whose contours are characterized by steep gradients). These errors are
very rare because the ambiguous cases of photo-interpretation are usually verified on
the terrain. The most common errors concern the delineation of the objects’ contours.
In [79], N. Nideröst illustrates these delineation errors which vary according to the
interpretation made by cartographers (figure 2.1).

Figure 2.1: Contour delineation errors: different segmentations of the same object by
several photo-interpreters. The diagram is taken from [79].

In addition to this, there is the contour simplification phase relative to the objects
inserted in the map which, even if this is not an interpretation error, represents a
deviation from the reality of the objects observed in the image. In the case of buildings,
some of them have a complex shape which it is pointless to transcribe with precision on
to the map for the scale concerned. The shape is therefore simplified by the operator
in a more or less arbitrary way. It is also difficult to outline when each of numerous
and of small sized buildings are agglomerated together. One solution adopted consists
of including a group of objects in a single cartographic entity. Figure 2.4 illustrates this
generalization effect. Lastly, a small-scale map superimposed over a high-resolution
image will exhibit significant generalization and location imprecision effects, which will,
in the end, make the detection of change arduous or even incoherent (figure 2.2).
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Figure 2.2: Generalization effect due to scale. The same scene is represented at different
scales: 1:25000 / 1:50000 / 1:100000 (from left to right). The diagram was taken from
[79].

A reliable method of map-to-image change detection must therefore compensate for
these exogenous variabilities present in the Uobservable, Uobservation and Uinterpretation
universes so that they are not interpreted as an effective change (table 2.1).

Universe Artifacts that are sources of exogenous
variabilities

Uobservable Lighting geome-
try

Shadows due to the objects in the scene ac-
cording to the height of the Sun

Observation
geometry

Different occlusions according to the acqui-
sition angle

Uobservation Sensor noise, quantification error (digitiza-
tion), calibration error

Interpretation error relative to the nature of
the cartographic object

Uinterpretation Object extraction inexactitudes
Simplification, generalization

Table 2.1: Classification of urban artifacts according to the different universes.

2.3.2 Problem addressed in the thesis

2.3.2.1 map-to-image change analysis considered in the thesis

In this thesis work, we examine the updating of digital maps of two buildings in two
dimensions from a more recent high-resolution panchromatic satellite image. There are
essentially four aspects to the maintenance of cartographic data:

1. Validation/deletion of the cartographic objects that are detected as being present/-
absent in the more recent satellite image.

2. Insertion in the map of new objects detected in the more recent satellite image.

3. Improvement of the planimetric precision of the cartographic objects that exist in
the more recent satellite image.
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4. The enrichment of the map by inserting new attributes. The addition of the 3D
information to a 2D map is an example.

In this study, we will explore points 1, 3 and 4 on this list. We will therefore not detect
the new buildings to add them to the map. We will limit ourselves to a map-to-image
detection that consists of individually taking each building symbolized on the map and
checking whether it still exists in the more recent remote sensing data. If the building
on the map still exists, it may be possible to refine its position and its shape thanks to
the remote sensing data (we will consider that the information provided by the image
is more reliable than that of the cartographic data). Table 2.2 summarizes the different
types of change likely to be found.

Nature of change New situation

a. Building completely demolished Bare ground

b. Building completely demolished Any building

c. Building completely demolished Smaller buildings intersecting the for-
mer footprint.

d. Building completely demolished Building with the same footprint

e. Building completely demolished Objects 6= construction (roads, trees,
urban furniture, ...)

f. Building partially demolished Building partially demolished

g. Building with new extensions Building partially extended

h. Building currently being built Building with the same footprint but
with a higher altitude

Table 2.2: Possible changes of a building in Uobjective

The change of type d is marginal and will not be examined, change type h is difficult
to detect because the map that will be used only contains two-dimensional information.
It will therefore be ignored.

It should be noted that insofar as we consider the potential presence of local shape
errors on the map, the cases of f and g represent poorly posed problems of change
detection. Indeed, it is impossible to know whether a partial map-to-image change of
low amplitude is due to a delineation error on the map or to an effective change in
the real world (extension, partial demolition of the building). So, we will not examine
these partial changes. Nevertheless, we will develop a methodology that will attempt
to correct the map-to-image incoherencies, whether they are due to the artifacts on the
map or to real changes.

We will assume that the scales of the map and of the remote sensing data used are
similar, in this way we will not be concerned by generalization effects due to the scale.
However, the delineation errors and the generalization effects on the map inherent to
Uinterpretation will have to be taken into account (figures 2.3-2.4).
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Figure 2.3: Superposing of a map of the constructions (yellow polygons) with a satellite
image. The white arrows point to the maps local shape inexactitudes.

Figure 2.4: Superposing of a map of the constructions (yellow polygons) with a satellite
image illustrating the generalization effect: a single cartographic polygon encompasses
numerous adjacent buildings.

2.3.2.2 Difficulties with urban environments

We will focus our study on dense urban environments. The difficulties intrinsic to
Uobservable and Uobservation are numerous for this type of landscape for which the uti-
lization of very high-resolution remote sensing images reveals artifacts that do not exist
at medium and small scales. These artifacts may be shadows due to the buildings or
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flyovers, a serious geometric distortion due to perspective effects at the level of the con-
structions, or to the occlusion effects. The geometric distortions of the image inherent
to the effects of the perspective and of the image acquisition angle make the planimet-
ric location of the objects seen in the image somewhat imprecise while modifying their
shape. One way of correcting this artifact is to orthorectify the image but it was not
possible carry out this processing with our data. The shadows are effectively a prob-
lem because they mask information and create undesirable artificial contours for any
computerized photo-interpretation processing. In the works of D. Boldo and H. Le Men
[15], a method is proposed for attenuating the shadow and sky occlusion effects. In an
urban environment, the occlusions are due to the high-altitude structures (buildings),
however a distinction must be made between an occlusion observed on the image and
the effect of an occlusion which is not observed. An occlusion observed on the image
generates the occultation of a piece of information (one building hides another one).
The effect of an occlusion that is not physically observed degrades the information by
partially masking it: a street may be shady because of a sky occlusion (the zone of
shadow is not directly lit be the Sun, but by the surrounding sky which results in an
attenuation of the object’s reflection in the scene) while being visible on the image.
Another typically urban effect is the back-lighting of facades which light the objects on
the ground, thus introducing a bias in the measurement of their luminance [15]. Lastly,
other difficulties are linked to the human activity that it is possible to detect on very
high-resolution images. Thus, a road with a traffic jam - where the density of vehicles
is very high - will have a radiometry that is very different from that of a road with fluid
traffic. It must be noted however that if these artifacts represent additional problems,
that may also contribute a non-negligible quantity of information. Thus, the detection
of a shadow means that a building exists in its vicinity, the detection of vehicles confirms
the existence of a road (generic prior knowledge).

2.4 Proposed methodology

Our methodology assumes that we have two panchromatic high-resolution and mul-
tispectral satellite images (RGB and near infrared) of the same scene and an older
two-dimensional digital map of the buildings. We will assume that the map and the
satellite images are initially superposable (either by the control point data or by a regis-
tration algorithm or the geocoding information). This overall matching is not sufficient
to resolve the exogenous variabilities specific to each building on the map.

We will us an auxiliary Digital Surface Model (DSM) aiming to help discriminate
the constructions from the rest of the scene. In our study, the DSM will be generated
from stereoscopic aerial images that are more recent than the map to be updated.

The method that we are proposing for carrying out this change analysis with the
map is as follows:

1. Optimization of aerial image acquisition parameters and generation of a DSM by
correlation of the stereo-pair aerial images (chapter 3).

2. For each building symbolized on the map:
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(a) Detection of unequivocal changes by merging multispectral and altimetric
data. This change detection is limited to case a in table 2.2. It cannot in
any event confirm a non-change. It is designed to detect the unambiguous
cases of change between the map and the remote sensing data (chapter 7).

(b) Attenuation of the exogenous variabilities occurring in Uinterpretation thanks
to the panchromatic satellite image. We only study the buildings that have
not been detected as having changes in step (a). We use the active con-
tours designed to finely match each building symbolized on the map with
its homologous representation in the image (chapters 4,5,6). In the case of
a cartographic building that is absent from the image (change), the match
fails and the change will be detected later in step (c). In order to perform
the fine map-to-image matching by active contours, we will take advantage of
the prior and specific knowledge derived from the map in order to overcome
the difficulties encountered with dense urban environments. This knowledge
is twofold:

i. Geographic. Since the cartographic and remote sensing data are ini-
tially superimposed, we know where to look in the image to carry out the
fine matching. So, the active contour will be initialized close to the roof
of the building to be matched thanks to the geographical information
contained in the map. It is important to note that when the image is
not orthorectified, the superposing of the map-to-image is only effective
for buildings of low to medium height (the distortion due to the perspec-
tive visible at the level of tall buildings moves the roof away from the
orthoscopic cartographic object). Since the active contour technique is
sensitive to the initialization, our method cannot take into account very
tall buildings. When the remote sensing data are orthorectified , this
limitation disappears.

ii. Geometric. We know in advance the shape of the building to be found
in the image if no change has occurred. This information will be inserted
as a shape constraint in the active contours model and will guarantee a
greater success for the matching with a lower sensitivity to urban arti-
facts. The merging of a DSM in the active contours model and a varia-
tion in the shape constraint will show a greater fine matching capability
with respect to the geographic uncertainty of the buildings on the map.
Whereas the exogenous variabilities are attenuated, the precision of the
cartographic is likely to be improved.

(c) Panchromatic map-to-image change detection. A coherence score is calcu-
lated between the segments of the resectioned cartographic object and the
segments extracted from the panchromatic image. This score, combined with
the geometric variation recorded by the matching of the active contours will
make it possible to calculate a probability of non-change indicating the pre-
sumption of a change/non-change for the building on the map considered
(chapter 7).

The result of the method is a change/non-change probability for each building on the
map. Optionally, the altitude derived from the DSM may be used to enrich the map
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which was originally in two dimensions (phase 2.b.ii, see Appendix F). If the satellite
image is orthorectified then the planimetric localization of the buildings will be im-
proved by fine matching (phase 2.b).

The satellite images and digital maps that we will use to experimentally verify the
efficiency of the method are presented in Appendix A. The remote sensing images come
from a sensor on board the Quickbird satellite. The resolutions of the panchromatic
and multispectral images are respectively 0.6 m/pixel and 2.4 m/pixel. The image
acquisition angle with respect to the nadir varies between 5◦ and 9◦. The distortion
due to the perspective is therefore relatively low but nevertheless corresponds to the
sub-optimal configuration of non-orthorectified data mentioned in 2.b.1. These satel-
lite images and the aerial data (0.2 m/pixel) represent all the city of Beijing which is
currently undergoing a rapid expansion and restructuring of its urban fabric.

2.5 Conclusion

In this chapter we have outlined the state of the art carried out recently on the extraction
of objects (roads, buildings) and map updating using high-resolution remote sensing
data. It can be seen that the merging of auxiliary data represents the current trend
for resolving the ambiguities in urban scenes. More recently, the utilization of maps
in the fusion process has shown its efficiency. The prior knowledge provided by the
map is specific and enables either to restrict the search space or to define learning
zones, or enrich a knowledge base with characteristics specific to the image. After
having described the problem of updating maps from the general angle of universes
that are specific to the observables, observations and interpretations, we have more
specifically formulated the problem addressed by this thesis. Lastly, we have proposed
our methodology for analyzing changes between a digital map of buildings and more
recent remote sensing images. This is based on the fusion of remote sensing data and
proposes to resolve the problem of exogenous variabilities between the map and the
images using the active contours technique in order to complete a reliable detection of
a map-to-image change. The proposed approach is limited to the analysis of changes
a, b, c, e of table 2.2 and is restricted to buildings of low or medium height when the
remote sensing data are not orthorectified.



Chapter 3

Generating an orthoscopic digital
surface model

3.1 Introduction

This chapter proposes to describe the process for generating an orthoscopic digital sur-
face model (DSM) from pairs of stereoscopic aerial images. It must be remembered
that in the general methodology, this DSM is a source of additional and discriminating
information at the level of buildings which will aim to facilitate the updating of maps
on the basis of a single satellite image. To begin with, a brief reminder will be given
concerning the fundamental principles of stereovision, and of the 3D reconstruction al-
gorithm that was used to generate a non-orthoscopic DSM. This algorithm is based on
a stereoscopic image correlation technique which preserves the contour of the objects
in the landscape [85, 86]. This software requires precise knowledge of the acquisition
parameters for the images used to generate the DSM. The second section of this chapter
proposes a method making it possible to refine the precision of such parameters known
beforehand. This approach, which represents the main contribution in this chapter,
requires the optimization of non-linear functionals by the simplex algorithm. Quantita-
tive results will demonstrate the efficiency of the proposed method. Lastly, we will end
this chapter with the geocoding, orthorectification and merging of the DSMs generated
by the 3D reconstruction chain.

3.2 Photogrammetric stereoscopy

Stereoscopy concerns the methods enabling to obtain a measurement of a scene’s relief
from two photographs taken from two distinct viewing angles. Inspired by the human
visual system, stereoscopy is commonly used in photogrammetry when creating relief
maps, and also in optical and electronic microscopy.

In this chapter, we will only examine the automated restitution of the relief of a
scene observed using remote sensing means (figure 3.1).The result of a reconstruction
such as this is the localization in 3D space of each of point of the scene seen in at least
two images. In the particular case of remote sensing, the reconstructed points of the

24
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landscape are often referenced with respect to the terrain, i.e. with respect to a carto-
graphic baseline. A landscape estimated elevation difference is called the Digital Terrain
Model (DTM) or the Digital Surface Model (DSM) depending on whether we are repre-
senting the relief of the ground alone or of the ground and its superstructures (buildings,
etc.). Unlike a DSM obtained by LIDAR imaging, a DSM made by stereophotogramme-
try is the result of a complex reconstruction processing, which renders it sub-optimal.
Indeed, this reconstruction is subject to the errors present in the knowledge of the im-
age acquisition (calibration) and to the performance of the mathematical models used.
The authors of [7] have, however, shown that their 3D reconstruction from stereoscopic
satellite images taken by Ikonos is better than the LIDAR data over a small extent of
the generated DSM.

(a) West image (b) East image

Figure 3.1: Example of a pair of stereoscopic images. The images are satellite data
simulated from aerial images.

3.2.1 Stereoscopy - reminder and general principle

Let P be a point in space belonging to a landscape represented by two different remote
sensing images IA and IB . These images were taken from different camera positions. CA
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and CB denote the positions of the optical centers for each of the images. The purpose
of stereoscopy is to determine the location of point P in the scene by calculating its
three-dimensional coordinates from its projections PA and PB in the images (figure 3.2).

The relative difference between PA and PB is called the parallax and it is inversely
proportional to the distance between point P and the focal planes of the images. The
parallax representing the distance in meters in the measurement plane between the two
representations of any given point, can be expressed in pixels in the image, this is then
called the disparity. By definition, the disparity d is the ratio between the parallax and
the resolution ρ of the image in m/pixel:

d =
parallax

ρ

The intersection of the plane (P,CA, CB) with the focal planes forms the conjugated
epipolar straight lines. The distance CACB is called the base which we will note B.
The optical centers are assumed to be at an altitude H from the ground.

Figure 3.2: For the stereoscopic restitution, two images are acquired from two different
viewpoints. One point P in the scene is projected onto each image at the intersection
of the image plane and of the straight line joining P to the optical center CA or CB.

The knowledge of the image acquisition conditions (orientation and intrinsic param-
eters of the camera) enables to determine the viewing directions of pixels PA and PB ,
i.e. the straight lines (PACA) and (PBCB). We can then calculate the three-dimensional
position of P by considering the intersection of the viewing directions of the two homol-
ogous points PA and PB (this phase is called aero-triangulation). The 3D reconstruction
by stereoscopy is therefore equivalent to solving two problems:

1. Calibration. Precise knowledge of the image acquisition parameters is required
for a reliable calculation of the viewing directions. This information can be esti-
mated from the images and the ground control points or from the prior knowledge.
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In section 3.3, we will propose a method making it possible to refine the precision
of these parameters, for which only an imprecise estimate is known beforehand.

2. Matching. For any given pixel PA, we must find its homologous point PB in
the conjugated image in order to calculate the intersection of the viewing axes.
This shape recognition problem is the most delicate. It should be noted that
the exploration space of PB for a given PA can be drastically reduced if the
conjugated epipolar straight lines are known. In section 3.2.2 we will describe
the surface matching method implanted in the reconstruction chain that was used
to generate the DSM.

The important parameters in stereoscopic image acquisition are the base B and the
height H, or rather their ratio B/H. In the case of a satellite, H is fixed by the latter’s
orbit and B is the only parameter on which it is possible to exercise any influence. In
aerial imaging, the setting of these parameters is more flexible.

✽ A high B/H ratio means two image acquisitions with large angles with respect
to the nadir of the observed scene. The advantage of this type of configuration
is that it gives a good altimetric location of the objects. Indeed, the closer the
angle of the inter-image viewing directions is to 90◦, the less the uncertainty on
the viewing directions will induce large errors on the altimetry. However a high
B/H ratio significantly increases the risk of occlusion (point seen in one image but
hidden in the other one due to the scene’s relief) along with the failure rate relative
to the recognition of the homologous points. A high B/H ratio will therefore not
be suitable for an urban relief since it varies greatly and quickly thus inducing
numerous occlusions.

✽ On the contrary, a not very high B/H ratio implies two very similar image acquisi-
tions with a low angle with respect to the scene’s nadir. The number of occlusions
is low, and the points to be matched are easier to recognize. However, the alti-
metric precision is degraded since it is determined from virtually parallel viewing
axes generating large errors if there is any imprecision relative to the calibration
of the remote sensing sensor. It is therefore necessary to choose a B/H ratio that
is suited to the nature of the relief in the observed scene. Besides these two limit
cases that have just been described, B/H varies typically between 0.1 and 1.2.

Finally, it should be noted that we have implicitly assumed until now that the viewing
directions of each pair of homologous points intersect with each other. This is obviously
untrue because of the errors and imprecision of the measuring instruments used to
calculate the viewing directions. In practice, the intersection point P is generally defined
as the center of the smallest segment joining the two viewing directions (figure 3.3).
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Figure 3.3: For two conjugated points PA and PB , the relative orientation enables to
calculate the position of point P in the coordinates system linked to the pair of images.
P is defined as the center of the smallest segment joining the straight lines (PA,CA) and
(PB ,CB).

3.2.2 Automated matching of images using adaptive correlation masks

The purpose of matching is to find for each pixel in the reference image IA its homologous
point in image IB . The exact geometric relationship making it possible to pass from
point (iA, jA) in IA to (iB , jB) in IB is as follows:

(iB , jB) = (iA + dc, jA + dl)

where: (dc, dl) is the true disparity at point (iA, jA) according to the columns and lines
respectively.

The automated matching of images requires the maximization of a resemblance
function between two points or two regions belonging to each of the images. The
surface approach consists of looking for homologous points from their resemblance with
the respective blocks. Let us take a pixel in the reference image, we consider a window
centered on that point, then we look for its homologous point by sweeping a window of
the same size in the other image. We just have to formulate a resemblance criterion in
order to quantify the similarity of the windows.

3.2.2.1 Resemblance criterion by crossed correlation

Techniques based on the correlation of the intensities of the images have been used in
numerous commercial stereo-photogrammetry applications, they also represent one of
the oldest methods developed in the area of computer vision. The principle of crossed
correlation for measuring the similarity between two points is to calculate the inter-
correlation coefficient from two vignettes of size K×L. The higher the correlation score,
the greater the presumption of similarity will be. The normalized centered correlation
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coefficient at pixel (iA, jA) in the reference image IA and at pixel s = (sc, sl) in image
IB is written:

ciA,jA,s =
γiA,jA,s (IA, IB)

σiA,jA (IA) σiA,jA,s (IB)

with the inter-correlation function:

γiA,jA,s (IA, IB) =

iA+K∑

m=iA−K

jA+L∑

n=jA−L

(
IA(m,n) − IA

) (
IB(m+ sc, n+ sl) − IB

)

and the variances:

σ2
iA,jA

(IA) =

iA+K∑

m=iA−K

jA+L∑

n=jA−L

(
IA(m,n) − IA

)2

and

σ2
iA,jA,s (IB) =

iA+K∑

m=iA−K

jA+L∑

n=jA−L

(
IB(m+ sc, n+ sl) − IB

)2

where:

✽ IX represents the average of the intensity of the pixels in image X inside the
window of size K × L considered.

✽ The correlation window in the conjugated image is centered on pixel s = (sc, sl).
sc and sl belong to the interval [−W,W ] which defines the search area in the
conjugated image (W > K, W > L).

The normalization of the correlation coefficient by the standard deviations of the vi-
gnettes, and the fact that it is centered, makes it possible to overcome a linear radio-
metric bias present between the two images. The correlation process is reiterated for
each pixel in the conjugated image within the search area, which enables to construct
a correlation surface comprised between 0 and 1 for each pixel in the reference image
(figure 3.4). The correlation surface illustrated in figure 3.4 shows several modes. Here
it is a complex surface. The ideal correlation surface corresponds to the case where the
homologous point is identified in a unique and unambiguous way, it then only includes
a single, high-level peak. The position of the maximum corresponds to that of the pro-
cessed pixel’s homologous point. This maximum is extracted and enables to calculate
the disparity associated with that pixel. An interpolation of this correlation surface in
the vicinity of the discrete maximum enables to obtain a sub-pixel estimation of the real
position of the maximum, and therefore of the disparity. The search for the sub-pixel
disparity is reiterated for each pixel in the reference image in order to make a disparity
map.

The assessment of the quality of matching is then carried out according to the
following criteria:



CHAPTER 3. GENERATING AN ORTHOSCOPIC DSM 30

Figure 3.4: Example of correlation surface.

✽ height of the correlation peak: the correlation value must be greater than a thresh-
old εcorr.

✽ width of the correlation peak: the spread of the peak at the summit must be
restricted.

✽ unicity: limited presence of local maxima (ambiguities) in the vicinity of the
correlation peak.

✽ divergence of the interpolation function: the sub-pixel maximum must not be de-
tected too far away from the discrete maximum.

These quality criteria make it possible to filter out the pairing errors and ambiguities
in order to obtain a disparity image that is as reliable as possible. If, for a pixel in the
reference image, none of the pixels in the conjugated image satisfy the above-mentioned
conditions, the disparity is not filled. This case will occur when the resemblance be-
tween the two pixels is not sufficiently frank, or when a point in the scene is only visible
in a single scene (occlusion).

Other correlation constraints may be taken into account to improve the reliability
of the matching and speed it up:

✽ Reciprocity constraint: if X is the conjugated homologous point of Y, Y is the
homologous point of X, hence the interest of carrying out a crossed correlation
(with one image and then the other as reference) and then a filtering to eliminate
the incoherent disparity points.
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✽ External constraints: they limit the complexity when looking for the homolo-
gous point in order to increase the processing speed. So, rectifying the two images
in epipolar geometry will make it possible to look for the homologous point of a
pixel in a reference image on a straight line in the other image, rather than a zone
in the plane. Furthermore, if we know beforehand the scene’s maximum and min-
imum altitudes, we limit the search to one part only of the corresponding epipolar
straight line. This enables to limit the calculation times since the problem of the
search for homologous pixels is then reduced to one dimension. Furthermore, the
restriction of the search space limits the occurrence of correlation errors. The
rectification in epipolar geometry nevertheless requires a precise knowledge of the
image acquisition parameters. We do not detail this image re-sampling process
which is illustrated in figures 3.5-3.6 and detailed in [129].

Figure 3.5: Pair of images in any geometry.

Figure 3.6: Pair of images in epipolar geometry.

3.2.2.2 Correlation by adaptive masks

The correlation method using vignettes with fixed dimensions has the advantage of pro-
viding maps with dense disparities. This technique is well-suited to the restitution of
DTMs, however it does have a limitation for the generation of urban DSMs. Indeed, it
tends to smooth out the altimetric transitions because of the non-homogeneous dispari-
ties contained in the vignettes. This is particularly critical for the reconstruction of the
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relief of the constructions.

The correlation method using adaptive masks was designed to compensate for this
problem and restore urban DSMs that have great altimetric discontinuities. This tech-
nique was developed by N. Paparoditis in [85, 86]. This approach enables to adapt the
shape of the window to the contours of the objects present in the image so as to reduce
the disparity variations. The principle of correlation by adaptive masks is illustrated
in figure 3.7. It should be noted that this approach is based on the hypothesis that
the altimetric discontinuities and, more generally, the scene’s slope ruptures are char-
acterized by high intensity gradients in the image space. Figures 3.8 and 3.9 show the

Figure 3.7: Adaptive correlation mask.

contribution of correlation by adaptive masks: by taking into account the contours it is
possible to avoid the pairing errors in the vicinity of the constructions.
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(a) Reference image (b) Conjugated image

Figure 3.8: Error in the case of occulted zones with a fixed correlation window. (a)
a null disparity pixel is considered. (b) its homologous point in the conjugated image
is not found because part of the blue building is taken into account in the correlation
window.

(a) Reference image (b) Conjugated image

Figure 3.9: Application of the mask on the context window. The part of the blue build-
ing is withdrawn from the correlation window thanks to the mask adaptive geometry.
The homologous pixel is found.
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The size of the adaptive correlation mask is adjusted locally and automatically. This
local adaptation is carried out considering a minimum size for which the signal-to-noise
ratio is sufficiently great to achieve a high-quality correlation. The quality is assessed
by measuring the so-called Cramer-Rao statistical bound which is a sub-determinant of
the standard deviation of the disparity’s estimation error. Figure 3.10 illustrates the
best performances of adaptive masks with respect to fixed vignettes.

(a) (b)

Figure 3.10: Disparity image generated from the pair in figure 3.1: (a) Conventional
correlation (b) Correlation by adaptive masks.

3.2.3 Principle of the reconstruction chain used

The 3D reconstruction chain used enables to process pairs of aerial and of satellite im-
ages. In order to reduce the calculation times and the correlation errors, the images are
first of all rectified in epipolar geometry thanks to the knowledge of the image acqui-
sition parameters. The images are then matched using the adaptive masks technique
described in section 3.2.2.2. The result of the matching is a disparity image for each
pair of correlated images. The roles of the reference image and of the conjugated image
are then exchanged to generate a second, equivalent disparity image. The two disparity
images are then merged and the aerial triangulation is finally implemented to produce
a DSM geocoded in epipolar geometry. Each pixel of this DSM contains an item of
spatial localization information coded by geodetic coordinates (longitude, latitude and
elevation with respect to a reference ellipsoid). The detail of the reconstruction chain
process is illustrated in figure 3.11.
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Figure 3.11: Summary of the 3D reconstruction process.

3.3 Optimizing the image acquisition parameters

In the rest of this document we will consider the data of three aerial images representing
the city of Beijing. These images are the result of the digitization of analog films (see
appendix A). The accuracy of the image acquisition parameters delivered with the three
images is crucial for transformation into epipolar geometry preceding the correlation
phase making it possible to make the DSM. It is also a determining factor concerning
the accuracy of the spatial information which will be associated with each DSM by
aero-triangulation.

3.3.1 Image acquisition parameters

The image acquisition parameters in aerial optical photography are as follows:

1. Position of the camera’s optical center expressed as three-dimensional coordinates
with respect to a reference frame R.

2. The camera’s attitude angles with respect to R.

3. The camera’s focal length f .

4. The focal plane’s Principle Point of Symmetry (PPS).

5. Distortion of the optical system (negligible for the images of Beijing).

6. Affinity parameters: six parameters corresponding to the rotation, translation and
scale factor modeling the image’s digitization. It is necessary to introduce a rota-
tion and a translation to take into account the non-alignment of the photograph
with the scanner and the offset between the first pixel digitized and the one corre-
sponding to the first pixel imaging the photograph. The scale factor corresponds
to the scanner’s enlargement (zoom).
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The parameters provided by the Beijing Institute of Surveying and Mapping (BISM)
are referenced with respect to the Beijing National System 1954 (BNS) which is a carto-
graphic projection reference frame of the Gauss-Krüger type (UTM type with a central
meridian scale factor equal to 1) associated with Krasovsky’s ellipsoid. The camera’s
attitude angles are the parameters (ϕ, ω, κ) commonly used in photogrammetry (and
not the pitch, roll and yaw (heading) angles (φ, θ, ψ) used in air navigation [11]. The
angles (φ, θ, ψ) illustrated in figure 3.12 are referenced with respect to a plane tangen-
tial to the terrestrial ellipsoid (horizon) and to the North and East directions, whereas
(ϕ, ω, κ) express the rotation between the camera reference marks and the terrestrial
reference associated with a cartographic projection (figure 3.13). The relationship of the
transition between these two triplets of angles is therefore not trivial and involves non-
linear equations taken from the cartographic projection. The affinity parameters are
not supplied directly but must be calculated using eight fiducial marks present on the
borders of the image (figures A.1-3.14). These fiducial marks are expressed in millime-
ters in the optical system’s focal plane, and can be identified manually or automatically
in the image in pixel coordinates. The affinity parameters can then easily be estimated
by resolving an over-determined linear system by the least squares’ technique.

Figure 3.12: Definition of the attitude angles (roll, pitch, heading) of a camera on-
board an aerial platform (assuming that the aircraft and the camera rotation axes are
identical). The diagram is taken from [11].
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Figure 3.13: Illustration of the angles (ϕ, ω, κ) used in photogrammetry. These angles
express the rotation between the camera reference

(
xB , yB , zB

)
and the terrain reference(

xE, yE , zE
)

associated with a cartographic projection. The diagram is taken from [11].

3.3.1.1 Calculation of the affinity parameters: internal orientation

Eight fiducial marks are expressed in the camera focal plane coordinates.

Figure 3.14: Eight fiducial marks represented in the camera’s focal plane. The focal
plane’s reference mark is centered on the optical system’s principal point of symmetry
(PPS).

The coordinates in pixels of these same marks can also be acquired manually or
automatically on the digitized images. It is then possible to solve the following system
if you have at least three marks:

{
lig = Tlig + a00Xcamera + a01Ycamera
col = Tcol + a10Xcamera + a11Ycamera
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where:

✽ (col, lig) are the coordinates in pixels of a fiducial mark considered Φ in the image.
These are measured on the image.

✽ (Xcamera, Ycamera) are the coordinates in millimeters in the focal plane of the mark
Φ. These coordinates are provided by the camera manufacturer’s specifications.

✽ (Tlig, Tcol) are the translation affinity parameters to be estimated.

✽ (aij)i,j∈{0,1} are the rotation/scale factor affinity parameters in to be estimated.

The resolution of such a linear system is carried out using the least squares technique.
We have chosen to use the eight marks simultaneously to ensure more precise estima-
tions. The residues on the eight marks vary between 0.33 and 0.36 pixels on the three
images. These parameters are estimated on the non-subsampled aerial images in order
to preserve the precision of the fiducial marks.

3.3.1.2 Assessment of the quality of the image acquisition parameters

As we underlined in the introduction to this section, the quality of the image acquisition
parameters is a determining factor for the utilization of images with the 3D reconstruc-
tion chain. This quality must be examined according to two aspects. One concerns
the precision of the geo-referencing information of the image’s pixels in the 3D scene
(absolute precision), the other is relative to the precision of the localization of a point
of the scene present in both images of a stereographic pair (relative precision) with a
view to putting it into epipolar geometry at a later time. The assessment of these two
quality criteria relative to the image acquisition parameters requires given additional in-
formation. Indeed, the Ground Control Points (GCPs) expressed in the reference frame
R and in pixel coordinates in the images are essential for assessing the absolute preci-
sion. Conjugated points identified in both images of a stereographic pair (Tie Points -
TPs) make it possible to assess the relative precision. For the same reasons as in para-
graph 3.3.1.1, the assessment of the quality is carried out on the non-subsampled images.

.Absolute precision

Formalization

The assessment of an image’s absolute precision consists of projecting all its GCPs
(expressed in the reference frame R) in the image by inverse modeling (appendix C.1).
Inverse modeling enables, thanks to the image acquisition parameters, to calculate the
position of one of the scene’ 3D points in the image. It is then possible to calculate the
mean distance between the points projected in the image and the corresponding imaged
GCPs. Approximately ten GCPs per image have been provided by the BISM.

Let us note:
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✽ GCP lk,R the kth GCP of image l expressed in three dimensional coordinates with
respect to the terrain reference frame R.

✽ GCP lk,Im the kth GCP of image l expressed in pixel coordinates.

✽ GCP lk,proj the kth GCP of image l projected into the image by inverse modeling

from GCP lk,R.

An image l contains Nl GCPs, in our case l = {1, 2, 3} and Nl ' 10. The absolute
precision assessment criterion conferred by the image acquisition parameters for image
l becomes:

dabs,l =

∑Nl
k=1GCP

l
k,projGCP

l
k,Im

Nl

Results

The absolute precision results with the image acquisition parameters provided are
of the order of two or three pixels for images 1 and 3 (table 3.1). The parameters are
not so good on the second image with nearly eight pixels’ difference on average and
a large standard deviation. An absolute optimization seems necessary in view of the
above results.

l dabs,l in pixels max
(
GCP lk,projGCP

l
k,Im

)
σ
(
GCP lk,projGCP

l
k,Im

)

1 2.3 4.8 1

2 7.5 14.1 4.7

3 2.7 6.4 1.5

Table 3.1: Results in pixels of the absolute precision quantification of the image acqui-
sition parameters for the three aerial images.

.Relative precision

Formalization

The assessment of the relative precision consists of projecting all of an image’s TPs
in the form of epipolar straight lines into the conjugated stereographic image. The rel-
ative precision criterion is the average of the distances between the calculated epipolar
straight lines and the TPs in the second image. To determine an epipolar straight line
in the second image of a stereographic couple, a TP of the first image is projected into
the terrain reference frame R by direct modeling at two different altitudes: altmin and
altmax (appendix C.2). These two 3D points are then projected into the second image
by inverse modeling. The projection into the reference frame R requires the image ac-
quisition parameters of the first image whereas those of the second image are used for
the inverse modeling.

Let us note:
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✽ TPmk,1 the kth TP of the first image in the mth stereoscopic pair. It is expressed in
pixel coordinates.

✽ TPmk,2 the kth TP of the second image in the mth stereoscopic pair. It is expressed
in pixel coordinates.

✽ EPImk,proj is the kth epipolar straight line projected into the second image of the

mthstereoscopic pair. It is calculated from TPm
k,1 .

The two images of the mth stereoscopic pair each contain Nm TPs, in our casem = {1, 2}
and Nm = 10. The relative precision assessment criterion for the pair m becomes:

drel,m =

∑Nm
k=1 dist

(
EPImk,proj, TP

m
k,2

)

Nm
(3.1)

The distance function dist(.) expressed in equation 3.1 is the distance from a point to
a straight line, i.e. the distance between the point and the intersection between the
straight line and the normal to the latter passing through the point. The TPs were
extracted manually and then refined by sub-pixel correlation [14]. Twenty TPs are
therefore selected and the ten best ones are kept in the end.

Results

The relative precision results obtained are not good enough to be used by the 3D
reconstruction chain (table 3.2). Indeed, a relative precision lower than three pixels is
required for the prior transformation into epipolar geometry phase. The precision of the
image acquisition parameters provided by the BISM is not sufficient to ensure a high-
quality geo-referencing and the transformation into epipolar geometry of the images.
These parameters will therefore have to be optimized.

m drel,m in pixels max
(
dist

(
EPImk,proj, TP

m
k,∈

))
σ
(
dist

(
EPImk,proj, TP

m
k,∈

))

1 1.7 3 0.6

2 3.9 7.7 1.8

Table 3.2: Results in pixels of the quantification of the relative precision of the image
acquisition parameters for each of the pairs of aerial images.

3.3.2 Overall optimization

3.3.2.1 Cost function

The optimization of the image acquisition parameters for the three images must take
into account both the absolute and the relative precision. The optimized parameters
will thus make it possible to transform the images into epipolar geometry (to ensure the
success of the 1D correlation of the reconstruction software) while providing high quality
geographical localization information (each pixel of the resulting DSM has longitude,
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latitude and elevation coordinates calculated by aerial triangulation). The optimization
is carried out on the non-subsampled images. It will be sufficient to divide the affinity
parameters by the subsampling factor to make them compatible with the reduced-size
images at input to the reconstruction software. The fact that we have more than two
images is an advantage for the quality of the optimization. Indeed, the information
redundancy will make it possible to better minimize each distance dabs,l and drel,m
involved in the optimization. The cost function Jparam to be minimized is then:

Jparam =

n∑

l=1

dabs,l +

n−1∑

m=1

drel,m (3.2)

Remark: if one zone in the scene is imaged by more than two photographs, we will only
consider the pair that has the greatest overlap. So, for n images, we will assume that
there are n− 1 stereoscopic pairs.

The cost function given in equation (3.2) is not a linear function of the image ac-
quisition parameters. The approach commonly used to minimize Jparam consists of
linearizing the cost function in order to achieve the optimization. We have chosen to
keep Jparam in its original non-linear form and use the simplex algorithm to estimate the
optimum image acquisition parameters. The simplex is a robust optimization algorithm
suited to non-linear functions; the detail of this method is given in appendix B. Our
reasons for choosing the simplex algorithm are as follows:

✽ since the simplex optimizes the non-linear functions directly, it is not necessary
to linearize the cost function Jparam.

✽ since Jparam is not linearized, we are likely to obtain a more precise estimation of
the image acquisition parameters.

✽ the simplex does not have any setting parameters, which makes it easier to use.

The degrees of freedom for optimization are all the image acquisition parameters, how-
ever the focal length and the PPS are assumed to be identical whichever image we
consider. The total number of degrees of freedom for an image is 15. For n images there
will be 12n+ 3 (that is to say 39 in this study).

3.3.2.2 Geo-centered Cartesian reference frame

The image acquisition parameters at input to the reconstruction software must be refer-
enced with respect to a geo-centered direct Cartesian reference frame (this concerns the
expression of the camera’s position and attitude). The origin of such a reference frame
is the Earth’s center of gravity. The (OZ) axis is the Earth’s rotation axis and it points
northwards. The (OX) axis is such that the Greenwich meridian is included in the
(OXZ) plane. (OY ) is such that the (OXY Z) reference is direct. Now, R designates
this reference frame (see [39] for other commonly used reference frames).
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The position of the camera’s optical center for each image acquisition must now
be expressed in this reference R. Since we have the position in the BNS projection
reference, the latter had to be converted using the equations of [39, pp. 100-101]. As for
the optical system’s attitude angles, it is delicate to attempt to convert them from the
BNS system to R. The main difficulty is the different nature of the reference frames used:
one is in three dimensions (R), and the other is the result of a transverse cylindrical
projection (BNS). It was simpler to estimate these angles by absolute optimization on
each image by using the GCPs converted beforehand into the system R. It is legitimate
to ask whether these angles, initialized at 0, could not have been estimated at the time
of the overall optimization. Experience has shown that the calculation of these angles
fails in this case, hence the need to do this beforehand by absolute optimization on
each image. The diagram in figure 3.15 summarizes the overall functioning of the image
acquisition parameters optimization program.
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Figure 3.15: Algorithmic summary of the optimization of the image acquisition param-
eters of n aerial images.

3.3.2.3 Results

The results obtained with the image acquisition parameters of the three images of Beijing
are given in table 3.3.
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l dabs,l in pixels max
(
dist

(
GCP l

k,proj , GCP
l
k,Im

))
σ
(
dist

(
GCP l

k,proj , GCP
l
k,Im

))

1 1.5 4.5 1.5

2 1.8 4.1 1.2

3 1.8 5.1 1.5

m drel,m in pixels max
(
dist

(
EPIm

k,proj , TP
m
k,∈

))
σ
(
dist

(
EPIm

k,proj , TP
m
k,∈

))

1 0.3 1 0.3

2 0.3 0.65 0.25

Table 3.3: Results of the optimization of the image acquisition parameters on the images
with a resolution of 0.21 m/pixel.

If we carry these results over to the subsampled images used by the 3D reconstruction
chain, we have:

l dabs,l in pixels

1 0.5

2 0.6

3 0.6

m drel,m in pixels

1 0.1

2 0.1

Table 3.4: Results of the optimization of the image acquisition parameters on the images
subsampled by a factor of three.

It can be seen that the optimization has made it possible to improve the precision
of the image acquisition parameters, and significantly so for the relative precision. It
is nevertheless important to mention that these results are sensitive to the distribution
and to the number of control points in the images. Approximately ten points uni-
formly distributed over each image are required to obtain satisfactory results. Figure
3.17 illustrates the DSM generated by the 3D reconstruction chain with the optimized
parameters and the stereoscopic pair shown in figure 3.16.
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(a) West image (b) East image

Figure 3.16: Pair of stereoscopic images rectified in epipolar geometry.

Figure 3.17: Generated DSM in epipolar geometry. Unfilled pixels are in black; intensity
is proportional to the altitude.
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The DSM generated has numerous pixels unfilled with altitude information (in black
on the image in figure 3.17) at the level of the constructions. These are in fact zones
where there are occlusions and where the facades of the buildings are difficult to corre-
late. The artificial contours due to the shadows and the objects present on one of the
images (cars, etc.) result in small unfilled zones on the road. However, the contours
of the buildings are well preserved, and most of them have a relatively homogeneous
altitude. The shadows cast on the ground are also managed well (no detection of false
buildings). Even if this image is visually imperfect, it does nevertheless contain a perti-
nent information enabling to locate the buildings and distinguish them from the ground
in most cases. The limits of the correlation are illustrated at the places annotated A
and B on the image in figure 3.17: these zones seem to belong to the ground (region
of low intensity, consequently of low elevation) when in fact they correspond to two
buildings (figure 3.16). Buildings A and B represent an extreme case of the dense urban
environment. They are in fact enclaves in a zone of shadow that makes it difficult to
observe their disparity and contours.

3.3.3 Assessment of the geocoding quality of the DSMs

The assessment of the quality of the DSM geocoding has been carried out using the given
Ground Control Points (GCPs). Each control point is expressed in pixel coordinates in
the aerial images and in 3D coordinates in the Beijing cartographic system: East (E),
North (N) and elevation (Z). The cartographic coordinates are expressed in meters,
the altitude Z is referenced with respect to the Krasovsky ellipsoid. It will be possible
to quantify the quality of the DSM when the coordinates of these GCPs are measured
in the DSM and then compared with their ground truth. The first step consists of
identifying the control points on the subsampled epipolar geometry reference images
that were used to generate the DSM. Since there is an exact correspondence between
the reference images and the epipolar DSMs generated from them, it is possible to read
the values (E,N,Z) in the DSMs for the GCPs considered. We have generated two
epipolar DSMs from 3 stereo-pair images. For each DSM, we have about ten GCPs
some of which were not used in the optimization of the image acquisition parameters.
The results are given in tables 3.5 and 3.6.
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Absolute Error

GCP ∆N ∆E ∆Z ∆Plane

1 1.0 0.1 0.8 1.0

2 -0.5 -0.1 0.4 0.5

3 1.5 0.6 2.9 1.6

4 -0.5 0.8 1.5 0.9

5 0.0 0.6 2.4 0.6

6 0.0 -1.5 0.2 1.5

7 0.0 0.0 -0.5 0.0

8 -0.5 -0.5 0.5 0.7

9 0.0 -0.2 0.8 0.2

10 -1.0 -0.1 0.2 1.0

11 -0.5 0.5 -0.3 0.7

12 0.0 -0.3 0.2 0.3

Mean 0.0 0.0 0.8 0.7

Standard deviation 0.7 0.6 1.0 0.5

Table 3.5: Absolute error between the GCPs and the 3D reconstructions of the DSM1.
∆N : error in the northern direction, ∆E : error in the eastern direction, ∆Z altimetric
error, error in the plane: ∆P lane =

√
∆N2 + ∆E2.

Absolute Error

GCP ∆N ∆E ∆Z ∆Plane

1 0.5 -0.9 1.0 1.0

2 0.0 -0.2 -0.2 0.2

3 -0.5 0.6 2.7 0.8

4 -0.5 0.1 1.6 0.5

5 0.5 0.0 1.4 0.5

6 2.5 -3.4 -0.8 4.2

7 -1.5 0.5 0.4 1.5

8 0.0 0.2 1.1 0.2

9 0.0 -0.2 0.5 0.2

10 -0.5 0.2 2.2 0.5

11 -1.5 0.4 -0.2 1.5

12 0.0 0.8 -1.3 0.8

13 0.0 -0.2 0.1 0.2

14 0.0 -0.5 -0.3 0.5

Mean -0.1 -0.2 0.6 0.9

Standard deviation 1.0 1.0 1.1 1.1

Table 3.6: Absolute error between the GCPs and the 3D reconstructions of the DSM2.
∆N : error in the northern direction, ∆E : error in the eastern direction, ∆Z altimetric
error, error in the plane: ∆P lane =

√
∆N2 + ∆E2.
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The pertinent quantities in these tables are the standard deviations which represent
the precision of the geocoding in the North, East, Z direction or in the plane. It can
be seen that the planimetric precision varies between 0.5 m and 1 m, and the altimetric
precision is 1 m. These results seem satisfactory and validate the preliminary phase of
optimization of the camera’s image acquisition parameters, and the aerial triangulation
calculation of the 3D chain.

3.4 Orthorectification of an epipolar DSM

Orthorectification consists of correcting the distortion due to the perspective that is
present in the image. Each pixel of an image in orthoscopic geometry is such that it will
be seen at the nadir. The need to orthorectify the images of urban scenes only arises for
very high resolution images representing a high relief or tall buildings. Once the image
has been orthorectified, it can be superimposed over the cartographic data which are
also in this geometry. The DSM provided by the 3D reconstruction chain is in epipolar
geometry. The geo-referencing information associated with each pixel of the DSM will
make it possible to orthorectify the latter.

3.4.1 Orthorectification by the direct method

Direct method orthorectification consists of considering each pixel of the DSM in epipo-
lar geometry and projecting it into a geocoded terrain grid [81]. Several pixels of the
epipolar DSM can be projected into any given planimetric localization in the orthoscopic
grid. Only the highest altitude pixel will be kept (z-buffer technique). The orthoscopic
grid can be coded in longitude/latitude or according to a cartographic projection. In
our case, we want to superpose the DSM with the cartographic data. Consequently, the
longitude/latitude information present in the epipolar DSM generated has been con-
verted into (E,N,Z) coordinates of the BNS cartographic projection [39, pp. 99]. Each
pixel is then projected into the orthoscopic grid which is itself associated with the BNS
reference frame. The relationship between the pixels in the orthoscopic grid and the
BNS terrain coordinates is of the type:

{
E = Emin + iR
N = Nmax − jR

(3.3)

where:

✽ R is the grid’s pitch in meters.

✽ (Emin, Nmax) are the BNS terrain coordinates of the origin contained in the epipo-
lar DSM.

✽ (i, j) are the pixel coordinates of the orthoscopic grid, respectively column and
line.

✽ (E,N) are the BNS terrain coordinates associated with the pixel (i, j).
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Figure 3.18: Orthoscopic grid associated with the cartographic projection.

3.4.1.1 Triangular interpolation

It is not possible to obtain a high-quality ortho-DSM by individually projecting each
pixel of the epipolar DSM into the orthoscopic grid. Indeed, the pixel projected into the
orthoscopic grid will have non-integer coordinates. The contribution of the projected
pixel towards its block will have to be subject to interpolation. The main question is to
decide to which block the pixel will contribute. If the block is too small, certain points
of the orthoscopic grid will not be filled and the result will not be very dense. If the
block of influence is too high, it is possible that points in the grid will have an incorrect
altitude value assigned to them. This problem will be all the more sensitive at the level
of the roofs of the buildings.

One way of settling this question is to adopt a triangular interpolation. Instead
of considering each pixel in the epipolar DSM individually, let us consider an isosceles
triangle whose equal sides are one pixel long. This triangle (ABC) of the epipolar DSM
is shown in figure 3.19 (on the left). This triangle is then projected into the orthoscopic
grid thanks to the geocoding information associated with each pixel A, B and C and
thanks to the equations system (3.3).

Figure 3.19: Projection of a triangle of the epipolar DSM to the orthoscopic grid.

The points of the orthoscopic grid included in the projected triangle will have an
altitude and a radiometry assigned to them according to the following interpolation
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formulas:

zij =
zAPB PC + zBPAPC + zCPAPB

PAPB + PB PC + PC PA
(3.4)

where:

✽ zij is the altitude of point P of the grid and coordinates (i, j). P is included in
the projected triangle (A,B,C).

✽ zX is the altitude of the point X (X = A, B or C).

If the distortion due to the perspective is large, a grid pixel will only rarely be included
in a single projected triangle. To illustrate this, let us take the example of an edge of
a parallelepiped building subject to a perspective distortion in the image. All of this
edge pixels have the same planimetric position (E0, N0) with different altitudes. In the
orthoscopic grid, this point will therefore be included in several triangles (figure 3.20).

Figure 3.20: Multiple triangles projected into the orthoscopic grid and intersecting with
the same pixel.

Our goal is to orthorectify the epipolar DSM, i.e. to obtain a vertical view for
each pixel in the orthoscopic grid. So, for a given pixel in the grid, we will assign the
maximum altitude amongst those calculated by the various triangles that include this
point.

3.4.1.2 Algorithm

The direct orthorectification algorithm with triangular interpolation is as follows:

1. Initialization of the image of the orthoscopic DSM “DSMortho” to -1 (-1 is the
value symbolizing indetermination: no altitude value provided); fix the value of
the orthoscopic grid R’s pitch in meters.

2. Convert the geodetic coordinates of the epipolar DSM “DSM epi” into BNS car-
tographic coordinates per [39, pp. 99]. Determine the values Emin and Nmax of
the converted DSMepi.
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3. For each pixel (u, v) of DSMepi, we note B = (u+ 1, v) and C = (u, v + 1):

(a) For A = (u, v) and A = (u+ 1, v + 1)

i. If the pixels A,B andC are all filled:

✽ Projection of the triangle(ABC) onto the orthoscopic grid per equation
3.3 which becomes (A′B′C ′).

✽ For each pixel (i, j) of the orthoscopic grid included in (A′B′C ′):

; Calculate the altitude zij per equation (3.4).

; DSMorhto(i, j)=max(DSMortho(i, j), zij )

3.4.1.3 Results

Figure 3.21 illustrates a DSM orthorectified and projected into the BNS system with a
pitch R = 0.65m. The comments relative to the large number of unfilled pixels in figure
3.21 and to their localization at the level of the constructions are identical to those made
for the DSM in epipolar geometry (figure 3.17). However, we note the appearance of
light scratch type artifacts. These artifacts are inherent to the triangular interpolation
technique developed in section 3.4.1.1 and to the correlation errors contained in the
epipolar DSM. Indeed, certain pixels of the epipolar DSM are the result of an erroneous
correlation generating the calculation of an abnormally high altitude with respect to
the pixel’s environment. The planimetric coordinates of this point are also false. A
triangle involving one or more of these corrupted pixels will include an abnormally high
number of pixels at the time of its projection into the orthoscopic grid. Furthermore,
these pixels will receive an altitude that is too high which explains the light-colored
appearance of these artifacts.
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Figure 3.21: DSM orthorectified with a pitch of R = 0.65m and εcorr = 0.4.

There are several ways of attenuating this problem. The first one consists of modi-
fying the rejection threshold for the inter-correlation score εcorr involved when pairing
the stereoscopic images.The result given in figure 3.21 was generated with a threshold
εcorr = 0.4. The danger of increasing εcorr is that it may make the decision to fill a
pixel more selective, and the indeterminate zones will then grow larger.
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(a) Ortho DSM generated with εcorr =
0.5

(b) Ortho DSM generated with εcorr =
0.6

Figure 3.22: Orthorectified DSM with different correlation thresholds.

The comparison of figures 3.21, 3.22.a and 3.22.b shows the propagation of the
indeterminate zones according to the correlation threshold εcorr. The artifacts are at-
tenuated when εcorr increases.

3.4.2 Pre-processing on the disparity image

Another way of reducing these artifacts consists of filtering the disparity image which is
used to generate the epipolar DSM. Two filters have been tried to attempt to eliminate
the erroneous pixels. A median filtering of size N × N (N = 3 or 7) and a rejection
filter of size N × N (N = 7). The rejection filter considers the current pixel to be
indeterminate if there are more than x% of unfilled pixels in the window. This filter
was designed subsequent to the observation of erroneous pixels isolated by unfilled pixels.

3.4.2.1 Median filtering

The median filtering whose results are shown in figure 3.23 was only carried out on the
filled pixels in the disparity image. It can be seen that this filtering enables to attenuate
the artifacts without eliminating them completely. Applying a large window does not
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reduce the artifacts better. The artifacts are also less well attenuated than by increasing
the correlation threshold.

(a) Window size 3 × 3 (b) Window size 7 × 7

Figure 3.23: Orthoscopic DSM made with a disparity image filtered with a median filter.

3.4.2.2 Rejection filter

The comparison of figures 3.21, 3.24.a and 3.24.b clearly shows the influence of the
rejection threshold for a window of fixed size. When the threshold is lowered, the
artifacts are more or less eliminated but the unfilled zones spread to such an extent that
they mask some of the pertinent information (e.g. building eaten away and annotated
with the letter C in figure 3.24.b).
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(a) Rejection at 50 per-cent (b) Rejection at 30 per-cent

Figure 3.24: Ortho-DSM made with a disparity image filtered with a rejection filter of
size 7 × 7.

The edges of the roofs of buildings are also affected by the filter’s rejection filter.
Whereas the correlation algorithm inserted in the 3D reconstruction chain preserves the
edges of the buildings, this filter tends to eat away at them and to break up the roof
altitude information.

3.4.2.3 Summary

Several methods have been tested for reducing the artifacts due to the disparity image’s
erroneous pixels. None of them is perfect in absolute terms since each one significantly
deteriorates the information contained in the DSM. Experimentally, we have observed
that the best results were obtained by successively using all the methods described and
with parameters that do not deteriorate the processed image too much. We can thus
slightly increase the correlation threshold when generating the epipolar DSM (εcorr =
0.5) in order to avoid generating too many indeterminate pixels while eliminating some
erroneous pixels. The disparity image can then be filtered by a median filter (3 × 3),
then by the 7 × 7 rejection filter with a threshold of 60% unfilled pixels. Figure 3.26.b
shows the result of orthorectification with this type of pre-processing of the disparity
image on another zone of the DSM.
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3.5 Merging DSMs

The precise geocoding image contained in each orthorectified DSM will allow us to merge
the two geocoded DSMs. The algorithm developed for this purpose is broadly based
on the correlar function used by the 3D reconstruction chain. Contrary to the corre-
lar function which merges the disparity images, we merge orthorectified and geocoded
DSMs. This algorithm attempts to merge these DSMs to the best taking into account
the inter-DSM coherence (validation of the information if the values delivered by the
other DSMs are close) and inter-DSM coherence (validation of the merger information
with respect to its coherence relative to the neighborhood). In our case the fusion is
more like a “concatenation” or a “mosaicking” since the DSMs’ overlap area only rep-
resents a quarter of their surface. The aim of the fusion algorithm is to be as general
possible while considering the merging of N and not just two orthorectified DSMs. This
algorithm is expressed as follows:

I) Determining the encompassing grid: Each DSM has a perfectly known extent
in the cartographic system in which they are projected. The first step consists of build-
ing the geocoded grid of the final DSM, resulting from the merging. This grid is the
smallest grid containing the N DSMs to be merged.

II) Loop on each pixel in the encompassing grid:
For each pixel pix in the grid:

1. Test of belonging to the N DSMs

(a) For i ∈ {1, ..., N}test whether pix ∈MNSi;

(b) If pix does not belong to any DSM: rejection

(c) If pix belongs to a single DSM: assign the DSM value to pix (whether
the value is filled or not)

(d) If pix belongs to m DSMs of which mr are filled (m ∈ {2, ..., N})
i. If mr = 0, rejection

ii. if mr = 1, assign the value of the single DSM filled at that point
to pix

iii. If mr ∈ {2, ...,m}
A. If the mr points of the mr DSMs are coherent with each other:

* assign to pix the mean value of the points that are coher-
ent with respect to their block1

* If none of the points are coherent with the block: rejection

B. If the mr − k points of the mr DSMs are coherent with respect to
each other (k ∈ {1, ...,mr − 2}), we choose the two points that are
the most coherent with each other:
* If these two points are coherent with respect to the block: we
assign their mean value to pix.

1We perform the same operation if it is impossible to calculate the coherence with respect to the
block of mr points.
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* If only one point is coherent with the block: we assign the value
of that point to pix.
* Otherwise: rejection

C. If the mr − k points of the mr DSMs are not coherent with each
other:
* If the coherence with respect to the block can be calculated: we
assign to pix the value of the point that is most coherent
with respect to the block.
* Otherwise: rejection

III) End.

In this algorithm, the notions of coherence are defined as follows:

✽ Coherence between two points pi and pj taken from two DSMi, DSMj: pi and pj
are coherent with each other ⇐⇒ |altitude(pi) − altitude(pj)| < εinter−coherence.

✽ Coherence with respect to the block of a point pi taken from DSMi: pi is coherent
with respect to the block ⇐⇒|altitude(pi) − altitude(voisinage)| < εintra−coherence.

The altitude of the block is the mean of the points of the merged DSM (result)
localized in a causal window (the pixel of interest is in the bottom right-hand part
of the window). Typically, the calculations have been carried out with a 5 × 5
pixel window. Since the DSMs have unfilled pixels that can hinder the calculation
of the mean of the coherence with respect to the block (if there are too few filled
points in the window this calculation will be meaningless), we consider that this co-
herence is ”incalculable” if more than 50% of the pixels in the window are unfilled.

The result of merging the DSMs illustrated in figures 3.25-3.26 was achieved with
εinter−coherence = εintra−coherence = 5m. Figure 3.25 illustrates the merger of two DSMs.
Figure 3.26 shows more precisely the zone framed in red.
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Figure 3.25: Merged DSM: DSM1 +DSM2.



CHAPTER 3. GENERATING AN ORTHOSCOPIC DSM 59

(a) Extract from the aerial image (b) Merged DSM corresponding to
image (a)

Figure 3.26: Enlargement of the red rectangular zone in figure 3.25.

3.6 Conclusion

This chapter presented the work carried out on generating orthoscopic DSMs. The
main contribution of this study is the optimization of the image acquisition parameters
of aerial images. These parameters known beforehand with insufficient precision have
been optimized by the simplex algorithm thanks to the given GCPs and TPs. Particular
attention has been paid to the quantitative assessment of the accuracy of the geocod-
ing of the DSMs generated by the reconstruction chain with the optimized parameters.
The reconstructed DSMs reach a planimetric and altimetric precision of the order of one
meter, which validates the method of optimization of the image acquisition parameters.
It is nevertheless important to note that the quality of the optimization depends on
the number and on the uniform distribution of the GCPs used. We have also detailed
the orthorectification and merging of several geocoded ortho-DSMs. The final merged
and orthoscopic DSM can then be superimposed with the cartographic data and the
satellite image thanks to the geocoding information. This superposing will be all the
more coherent with cartographic data that are also in orthoscopic geometry.

Lastly, we have been able to note, thanks to the results shown here, that the 3D
reconstruction produces DSMs with many unfilled pixels. In the DSM in figure 3.25,
they represent 33% of the image. These indeterminate zones are mainly localized around
buildings because of the occlusions. Indeed, two images are not sufficient for providing
the altitude of the whole scene. The current trend is to use triplets or quadruples
of images to reconstruct a landscape relief [136]. The DSMs generated in this study
therefore have a coarse appearance and would seem to be difficult to use. The correlation
errors also contribute to this. These are inherent to the difficulty of urban areas which
have numerous details and deteriorate the correlation. It should also be noted that the
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signal-to-noise conditions were not optimal: since the images were analog, they were
scanned, and digitization inevitably introduces noise. We noted that the blue spectral
band was particularly noisy which is due to a defect either in the camera or in the
scanner. Nevertheless, we will see in the next chapter that the imperfect appearance
of the ortho-DSM produced will not be an obstacle to its utilization as an additional
source of information completing the satellite image.



Chapter 4

Presentation and choice of shape
constrained active contours for
map-to-image fine matching

4.1 Introduction

This chapter presents the deformable models called “active contours” and which will
be used to match the buildings symbolized in the map with their homologous repre-
sentation in a high-resolution panchromatic satellite image. We use the flexibility of
active contours and their potential for incorporating high-level information to achieve
this fine matching, the goal of which is twofold: i) the cartographic objects will have
a finer spatial localization if the image has greater precision than what is available in
the cartographic data, which corresponds to one of the components of map updating.
ii) this matching enables to reduce the map-to-image exogenous variabilities which are
source of errors whenever detecting later changes. The urban scenes represented in the
Quickbird satellite images used have a high level of detail and certain urban artifacts
that can only be detected at very high resolution (occlusions, shadows, low contrast of
the objects, etc.). In order to overcome these difficulties, we propose to take advantage
of the prior knowledge contained in the map. As a general rule, there are three aspects
to the information provided by the map. It indicates the nature of the object to be
matched in the image (building, road, etc.), its location (the cartographic and remote
sensing data are assumed to be globally superimposed), and its shape. The location
information will make it possible to initialize the active contour close to the building
represented in the image, and its shape will be constrained by the silhouette of the
building symbolized in the map in order to overcome the difficulties associated with
urban images. In the first part of this chapter we will describe the state of the art in the
area of active contours. We will classify the various models according to their mode of
representation, attachment to the data and regularization, with special attention being
paid to the insertion of exogenous shape constraints known beforehand. Lastly, we will
justify our choice for a representation of the active contours by level set functions and
will describe the attachment to data and shape constraint models that will be used in
this study.

61
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4.2 State of the art - Prior shape constraints in active
contours

4.2.1 Active contour framework

Active contours represent segmentation techniques that enable to extract an object of
interest from an image. The segmentation is not immediate, it requires a dynamic phase
of the contour (hence the designation ”active”) which will move iteratively during artifi-
cial time t, from its initial position towards the boundaries of the object to be extracted.
Such an evolution over time can be formalized mathematically in the form of an evolu-
tion equation explicitly or implicitly expressing the speed of the active contour at each
of its points. There are several ways of obtaining an evolution equation. One consists
of deriving this equation from the minimization of an energy functional, in which case
we speak of a variational approach. An alternative consists of constructing an evolution
equation by analogy with other scientific disciplines such as Physics, this is the geomet-
rical approach. We will focus on describing, and then using the variational approach in
this thesis. With an approach such as this, the energy functional can be outlined as the
sum of two classes of energy terms. The first class concerns the internal energy of the
contour aiming to control its intrinsic constraints, such as its regularity for instance. In
section 4.2.2 we will see that it is possible to insert more specific geometrical constraints
derived from the prior knowledge that we have of the object to be segmented in the
image. The second class concerns the attachment to data term which will make the
active contour interact with the characteristics extracted from the image. In the works
of Foulonneau [40] and Jehan-Besson [56], this external energy term is called criterion
and is constructed from descriptors. A descriptor is a measurement taken on the im-
age enabling to characterize a boundary or a region. A boundary descriptor could, for
example, be the image’s gradient map, a descriptor of a region R could be the mean of
the image’s pixels contained in R. Depending on the descriptor chosen in the energy
functional, we will derive different types of active contours that will be more or less
effective according to the nature of the image to be analyzed.

We can therefore see different types of active contours taking shape. They are
differentiated by the way with which the evolution equation is deduced, by the active
contour’s representation mode and, lastly, the attachment to data term which can be
based either on the boundaries, the regions or on both. The goal of this section is to
detail and explain these different ways of classifying the active contours. Hereinafter,
we will restrict ourselves to two-dimensional active contours moving in the plane. We
recommend that the reader should consult the works of [13, 110, 87, 108, 56, 102, 40]
for an exhaustive view of the state of the art in the area of active contours.

4.2.1.1 Representation of an active contour

Explicit representation

Historically, it was the explicit representation of the active contour that emerged first
in the Computer Vision community thanks to the pioneering works of Kass, Witkin and
Terzopoulos in 1987 [58]. This type of representation is achieved by parameterizing an
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oriented active contour1 C with respect to a parameter p and to a time factor t: C (p, t).

C =
{
C (p, t) ∈ R

2, C2
∣∣p ∈ [a, b] ⊂ R, t ∈ R

+
}

(4.1)

It is important to note the existence of other ways of representing a contour in
an explicit manner (B-Splines, Fourier base, ... ). For simplicity, we shall however
explain only the method presented in equation (4.1). C’s evolution equation can then
be formalized in a general way, by breaking down the speed of C (p, t) according to its
normal component N and tangential component T in (p, t) in a Frênet Frame (T,N):

∂C (p, t)

∂t
= vN (p, t)N (p, t) + vT (p, t)T (p, t) (4.2)

where N (p, t) is the normal unitary vector of the contour C in C (p, t); T (p, t)is the
unitary tangent vector of the contour C in C (p, t). In [108], Sapiro shows that if the
normal speed does not depend on the parameterization, then the tangential component
of the speed does not influence the deformation of the active contour, but only the
parameterization. We can, therefore, without any loss of generality, consider that in the
rest of the document, the active contour moves according to its normal:

∂C (p, t)

∂t
= vN (p, t)N (p, t) (4.3)

The definition presented in equation (4.1) corresponds to a continuous curve C in the
plane. Since the image is physically and discretely represented by a regular pixel grid,
the contour C must also be made discrete. In practice, making the contour discrete is
an under-sampling with regard to the variable p (figure 4.1).

The active contour is therefore made up of a list of nodes whose positions are updated
in accordance with the equation (4.3) as C moves. The discretization of equation (4.3)
then becomes:

C (mi, t+ 1) = C (mi, t) + ∆tvN (mi, t)N (mi, t) (4.4)

where mi is the ith node among N . If we consider that the number of N nodes is fixed
over time, we foresee the following problems: if the length of C increases over time,
the polygonal approximation of the object to be segmented will be very coarse: if the
length decreases, there is a risk that the nodes will be very close to each other and
this will create numerical instability if the finite differences scheme is used to estimate
derivatives along C in order to compute the value of vN (since the denominator tends to
zero). Decreasing the time step ∆t in the equation (4.4) allows us to avoid these insta-
bilities but causes an increase of the computational time so that this quickly becomes
impractical. There are three ways of solving the problem: i) re-sampling the C nodes
so as to keep the distance constant between the nodes, ii) adding diffusion terms in the
expression of speed and thus try to soften the curve of the active contour (the distance
between the nodes is thus decreased but does not approach zero), or iii) filtering the
oscillations caused by the instability. These non intrinsic solutions are less than optimal
and create other problems not associated with the segmentation issue per se and thus
influence to a large degree the resulting object extraction. Two other problems persist

1In this document we consider that C is counter-clockwise oriented.
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Figure 4.1: Under-sampling of an explicitly represented contour that is parameterized
by its arc length.

that are directly related to the explicit representation: the contour C can not undergo
topological changes, and, in addition, cross-artifacts of the contour can appear. The
first problem is solved by re-parameterizing the active contour [72]. The second diffi-
culty can be handled by use of disconnection”de-looping” techniques [51].

Implicit representation

In 1988, the work of Osher and Sethian [84] presented a less natural way of represent-
ing a contour. This is an implicit representation taken from the Physics of interfaces,
called ”level sets”. The principle is as follows: a closed contour C (t) is represented
as the zero of a function with n + 1 dimensions (in the plane, n = 2, see figure 4.2).
Originally, it was a function of the signed Euclidean distance that was proposed to rep-
resent the n+ 1st dimension of the level set. However, other functions can be chosen,
for example, Haker et al. represent a 3D surface as a function u, solution of Laplace’s
harmonic equation ∆u = 0 [49].

Within the framework illustrated in [84], φ is the level set function verifying the
following properties:

✽ φ is a Lipschitz function with real number values such that φ : R
2 → R

✽ whatever the time t, the zero of φ (x, t) is the closed contour C (t):

∀x ∈ R, C (t) =
{
x ∈ R

2 |φ (x, t) = 0
}

(4.5)

✽ φ (x) is the signed distance between the point x and the contour C (t). The sign
of φ (x) depends on x belonging to the internal or external part of the contour
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that we note respectively as Ωin (t) and Ωout (t). By convention, we choose φ (x)
positive as the inside of C (t) and negative as the outside:





φ (x, t) = 0 if x ∈ C (t)
φ (x, t) = d (x,C (t)) if x ∈ Ωin (t)
φ (x, t) = −d (x,C (t)) if x ∈ Ωout (t)

(4.6)

with d (x,C (t)) as the smallest Euclidean distance from point x to the contour C (t):

d (x,C (t)) = min
xc∈C(t)

|x − xc| (4.7)

Figure 4.2: Representation in three dimensions of the intersection of a level set with the
image plane (zero level). The contour implicitly represented is that of figure 4.1. The
caption indicates the signed Euclidean distance of the contour.

Such a representation has certain advantages over explicit representations. First,
a contour represented by a level set can change its topology with time, so it is not
necessary to have a priori knowledge of it. The evolution equation is numerically more
stable and avoids having to remap the explicit representation nodes. The problem of
the contour loops is resolved naturally by the flexible topology of C (t). And finally,
using level sets, it is possible to obtain several interesting geometric properties that are
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intrinsically part of the contour or of any other level line. In this way, the normal can
be set at φ or at any other point of the image and therefore, all the more so, at any
other point of the contour if only one knows the point set such as φ (x, t) = 0. The
inside normal contour is given by the following:

N (x) =
∇φ (x)

|∇φ (x)| (4.8)

The curvature κ is also easily derived by:

κ = div (N) = ∇.
( ∇φ (x)

|∇φ (x)|

)
(4.9)

=
φxx (x)φ2

y (x) − 2φx (x)φy (x)φxy (x) + φyy (x)φ2
x (x)

(
φ2
x (x) + φ2

y (x)
)3/2 (4.10)

The level sets also allow logical operations on the sets such as the calculation of the
union or of the intersection.

The evolution equation does not address specifically the contour C (t) as in (4.2),
but the level set function. We derive the following evolution equation from φ (x, t) by
differentiating the equation (4.5) relative to the time t:

∀x (t) ∈ C (t) ,
∂φ (x (t) , t)

∂t
= 0 (4.11)

It then becomes:
∂φ (x, t)

∂t
+

〈
∇φ (x, t) ,

∂ (x (t))

∂t

〉
= 0 (4.12)

φt (x, t) + 〈∇φ (x, t) ,xt (t)〉 = 0 (4.13)

Then, after decomposing the expression xt (t) in a similar manner as (4.2) we obtain:

φt (x, t) = −〈∇φ (x, t) , vN (x, t)N (x, t)〉 (4.14)

It is important to note that the implicit formulation frees itself from the parameter-
ization p in the active contour C (t), and this parameterization caused a numerical
instability and topological problem in the explicit representation. Making the φ (x, t)
function discrete can be done through a regular footprint grid ∆x and ∆y (Eulerian
approach), as opposed to the Lagrangian explicit according to p which is more delicate
(see figure 4.1). For a given contour C (t), the associated level set is the calculation of
the signed distance of this contour (equation 4.6). For a given level set, if one want to
retrieve the contour C (t), the zeros of φ (x, t) have to be calculated (equation (4.5)).
The extracted contour is therefore a linear approximation of the true contour repre-
sented by φ (x, t) (figure 4.5).

Comments:

✽ It is important to note that a level set is not merely a calculation artifice that
allows us to use different evolution equations for an active contour. A level set
is an intrinsic representation different from explicit ones and, as a consequence,
results in an alternative numerical solution.
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✽ The implicit representation presents a loss of spatial information with respect to
the representation by nodes (snakes). It is possible to know if one is placed on
the contour (level zero); on the other hand, it is impossible to decide where one is
situated. The sequencing relation between the points is lost. The problem of nodes
is dual: it allows for localization on the contour since the nodes are organized as
an ordered sequence. However the calculation of the distance between any pixel
of the image to the contour is not direct.

✽ Note that with an explicit representation by nodes, it is possible to model open
or closed contours. It is more difficult to process open contours using level sets.

✽ And finally, the computational complexity with level sets is greater than with
explicit methods. This is inherent to the encoding in the form of a signed distance
function of dimension n + 1 (n being the dimension of the image), whereas the
explicit procedure governs a much smaller number of nodes.

4.2.1.2 Geometric and variational approach

Geometric approach

After having chosen an implicit or explicit presentation model, the normal speed
needs to be determined vN (x, t) which will allow the evolution of the active contour.
The ability of the active contour to segment a particular object represented in the image
depends on the calculation of this velocity vector field.

The geometric approach, by analogy with Physics, or by purely mathematical con-
siderations establishes directly the evolution equation of the active contour. In [17] and
[68, 69], the authors describe an active contour subject to an Euclidean heat flow or
to the average curvature κ (by analogy with the equation for the propagation of heat),
vN = κ. This flow has diffusing and smoothing properties and prevents the active con-
tour from presenting singularities [110]. This is only an internal regularity constraint
of the active contour. To make the contour develop, the authors introduce a constant
normal speed, vN = κ + c. This constant is analogous to the effect of a swelling or re-
tracting force introduced by Cohen et al [27]. The data fit term is a function g weighting
the normal speed. In their experiments, the authors use an edge-based term: when the
contour reaches the high gradient zones of the image, the weighting function tends to
zero. The expression of the normal speed is, finally,

vN = g (|∇I|) (κ+ c) (4.15)

The main problem in this approach is the sensitivity of the initialization of the ac-
tive contour. This is inherent in the data fit term based on the limits as well as on the
unequivocal swelling/retracting forces used during contour evolution. The initialization
needs a strong a priori knowledge of the localization of the object being extracted. This
technique has been shown to be effective in a semi-automatic approach on medical im-
ages.
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Variational approach

It is possible to formulate a functional J which minimization through the calcula-
tion of variations gives an evolution equation for the active contour C (t); this is the
variational approach. The functional is composed of energy terms or criteria which are
intrinsic (internal constraints on C (t)) or extrinsic (attachment to the data). While the
intrinsic criteria are often based on the limit defined by C (t), the extrinsic criteria are
either based on the edges or on the regions. We will use this dichotomy working on the
extrinsic criteria to differentiate the edge-based from the region-based active contours.
The gradient descent technique is traditionally used to deduce the evolution equation
of the contour C using the calculation of the variations,

∂C

∂t
= − ∂J

∂C
(4.16)

An active contour evolving in accordance with the equation (4.16) tends to minimize
the energy J whose minimum corresponds to the segmentation of the desired objects in
the image.

4.2.1.3 Edge-based active contours

An edge-based active contour takes account only of the information present in the
vicinity of C (t). Thus, only the information present a the level of the edges of the
object being segmented will be used. In order to formulate the functional, in the first
place a descriptor of the boundary must be chosen, called kb (x). This descriptor can
be a map of the image gradient module or the field of the gradient vectors in each pixel
of the image I. The criterion built from the descriptor is then an integral along the
contour C (t):

Jb (C (t)) =

∫

C(t)
kb (x) da (x) (4.17)

where da (x) is a length element. We choose to present two types of edge-based active
contours, the snakes and the geodesic active contours.

- Snakes

In [58], Kass, Witkin and Terzopoulos in 1987 represent the active contour in an
explicit manner in formulating the functional as the sum of three edge-based terms,

Jb (C (p, t)) = α

∫ b

a

∣∣∣∣
∂C (p, t)

∂p

∣∣∣∣
2

dp+ β

∫ b

a

∣∣∣∣
∂2C (p, t)

∂p2

∣∣∣∣
2

dp− γ

∫ b

a
|∇I (C (p, t))|2 dp

(4.18)
with {α, β, γ} ∈ R

+. The first two terms are intrinsic criteria, a particular case of
Tikhonov’s operator, developed to the second order and with the weights wk constant,

Jb,T ikhonov (C (p, t)) =

n∑

k=0

∫

C(t)
wk (p)

∣∣∣∣
∂kC (p, t)

∂pk

∣∣∣∣
2
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The first of the intrinsic criteria can be assimilated with an elastic constraint on
the nodes of the discretization of C (p, t), which causes neighborhood nodes to get
closer together. The second of the intrinsic criteria is a rigidity constraint on the active
contour, regularizing the curvature (fine sheet model). The last term of the equation
(4.18) is the extrinsic criterion of attachment to the data based on the gradient image
amplitude. We note that the more C (p, t) is placed on an elevated image gradient,
the weaker is the global functional Jb (C (p, t)). In a variational approach, the second
step is to derive the evolution equation of the active contour of which the solution is a
minimum of the functional. In [58], the authors use the Euler-Lagrange equations so as
to minimize Jb (C (p, t)). In Lagrange’s formalism, S is the “action” and is defined by,

S =

∫
L (t, qi, q̇i) dt (4.19)

where L is the Lagrangian, difference between kinetic and potential energy in a mechan-
ical system of n particles. L depends on the positions and the speeds of the particles
as well as the time. Minimizing the ”action” (least action principle), is to annul an
infinitesimal variation S̃ of S created by the infinitesimal Lagrangian variation L̃. The
minimization of S is successful in resolving the following n differential equations,

∂L
∂qi

=
d

dt

(
∂L
∂qit

)
, i ∈ {1, ..., n} (4.20)

Given a closed active contour (cyclic conditions at the limits), the equation (4.20)
is successful in resolving the following partial derivatives equation,

α
∂2C (p, t)

∂p2
+ β

∂4C (p, t)

∂p4
+ γ

∂
∫
C(t) |∇I (C (p, t))|2 dp

∂C (p, t)
= 0 (4.21)

In discretizing the active contour in n nodes mi, the authors of [58] solve the equa-
tion (4.21) using the finite differences scheme and obtain finally the following matrix
equation,

AV + fv = 0

with A a pentadiagonal Toeplitz matrix,

V = (C (m0) , ...,C (mn))

and fv =

(
∂

R

C(t)|∇I(C(p,t))|2dp

∂C(mi)

)

i∈{1,...,n}

.

The desired solution is V, however, A is not invertible (0 is an eigenvalue of A). The
solution must therefore be sought out in an iterative manner. The method proposed
by [58] produces numerical instabilities, in particular because of the calculation of the
fourth order derivative in equation (4.21). In addition, the active contour tends to
contract in the part of the contour which has the strongest gradient. In [126], the authors
propose a rapid algorithm which avoids the difficulties of [58]. The main contribution
of this method is to propose an alternative to the estimations by finite differences of the
first and second derivatives in the functional, increasing thus the calculation speed and
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the precision in the results. The weight coefficients (α, β), of these derivatives are also
variable during the iterations: in accordance with a criterion relative to the curvature
(threshold) and to the value of the greatest gradient in the vicinity of the current node,
their values can diminish in order to model geometric singularities (angular points).
This category of active contours is however limited,

✽ The functional expressed in equation (4.18) depends on the parameterization p of
the active contour, and this makes it non intrinsic.

✽ The result of the segmentation is sensitive to the parameters α, β, and γ, that need
to be fixed and adjusted according to the analyzed image. There is no theoretical
framework for determining these values, but only empirical choices.

✽ Inherently within the manner of representation, the topology of the contour cannot
evolve. In addition, it can only segment convex forms.

✽ As we noted above, this type of contour is numerically unstable because of its
explicit representation.

✽ Finally, the initialization of the contour must be very near the object to be seg-
mented in the image which, in general, is of little interest.

- Geodesic active contours

In [18], Caselles et al. show that minimizing the equation functional (4.18) with
β = 0, is the same as finding a geodesic curve in a Riemann space whose metric depends
on the analyzed image. The proposed functional is then,

Jb (C (p, t)) = α

∫ b

a

∣∣∣∣
∂C (p, t)

∂p

∣∣∣∣
2

dp+ γ

∫ b

a
g (|∇I (C (p, t))|) dp (4.22)

The functional expressed in equation (4.22) has the same difficulties as that proposed
in (4.18): it is non intrinsic and depends on arbitrary parameters α and γ. In accordance
with the Maupertuis principle [18], Caselles et al. show that minimizing the equation
functional (4.22) is the same as minimizing the active contour length LR (hence the
name geodesic) in accordance with a metric derived from the image,

LR =

∫ L(C(t))

0
g (|∇I (C (s, t))|) ds (4.23)

Compared to the Euclidean length of C (t)which is by definition LE =
∮
ds, we

observe that the new definition of the length includes a weighting in g (|∇I (C (s, t))|)
which is a term depending on the data. Thus, the more the active contour crosses high
image gradient areas, the more the length is decreased. The segmentation problem
becomes therefore to find a geodesic contour in which the metrics depend on the image.
In minimizing the functional which from here on is intrinsic (4.23) using the calculation
of variations, the authors establish the evolution equation of the contour by gradient
descent. Representing the contour by a level set, they obtain as follows,

φt (x, t) = g (|∇I (C (p, t))|) κ |∇φ (x, t)| − 〈∇g (|∇I (C (p, t))|) ,∇φ (x, t)〉 (4.24)
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The first term of the equation (4.24) is related to the curvature of the active contour
and has a regulatory effect. This term appears naturally and justifies the suppression
of the term controlling the rigidity of the contour given in the equation (4.18). This
term guarantees the regularity of the weighted curve by the function g, thus stopping
the progression of the contour in the zones of high gradient. The second term is the
truly new element of the geodesic curve. Indeed the terms based on the curvature have
already been introduced with geometric approaches. However, the second term of the
equation (4.24) allows us to stabilize the active contour on the edges characterized by
a true gradient value. Usually, a contour progression in which the speed is weighted
by g is workable if the gradient value is sufficiently high to cause g to tend toward
zero. In practice, the value of the gradient is not necessarily very high, thus bringing
about a “leak” of the active contour crossing those zones where |∇I| is not significant.
This type of phenomenon appears also when the value of the gradient is not constant
along the edge of an object to be segmented. In this latter case, the second term of
the equation allows us to partially alleviate the problem in applying a rigid reverse
force, thus stabilizing the contour and avoiding the problems of the purely geometric
approach.

The geodesic active contours are an improvement over the “snakes” on several lev-
els. First, the functional of the geodesic contours is intrinsic. These latter take account
of the case of a variable gradient value along the edge of the object to be segmented.
Secondly, they allow us to segment non convex objects and can easily be transposed to
a level set representation. And finally, we can note and underline the contribution of
the geodesic contours, which unify the variational and geometric approaches.

The drawbacks of edge-based active contours

Even though they are largely used for image segmentation, the edge-based active
contours are subject to a number of problems limiting their application to relatively
simple images. The main difficulty in this approach is the purely local character of the
information used to move the active contour. This makes it necessary to initialize the
active contour very near to the object to be segmented. The descriptor that is cur-
rently chosen for these types of active contours is the image gradient module. Thus,
if all or a part of the active contour is found in the zones of homogeneous luminance,
not having a high gradient, the contour will not be moved by any external force. Fi-
nally, the other problem caused by the local character of the edge-based contours is
the sensitivity to image noise. Since the edge descriptors are calculated locally, the
neighborhoods considered are relatively small compared to the size of the image and
are therefore influenced by the noise to a large degree. Pre-filtering of the image is a
solution that is always available to diminish the problem. However, the filtering has
the effect of delocalizing the edge of the object thus making the segmentation imprecise.

To partially alleviate the problem caused by the sensitivity to the initialization of
the edge-based active contours, Cohen [27] proposes to add an artificial swelling or
retracting force aimed at bringing the active contour to the edges of the object to be
segmented. This is the same as adding a constant c into the evolution equation of the
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geometric or geodesic contours in the following manner,

φt (x, t) = [κ+ c] g (|∇I (C (p, t))|) |∇φ (x, t)| − 〈∇g (|∇I (C (p, t))|) ,∇φ (x, t)〉 (4.25)

As a function of the sign of c, the active contour extends outward or contracts according
to its normal. The choice of the sign is therefore critical since it requires a priori knowl-
edge regarding the localization of the object to be extracted in relation to the initial
state of the active contour C (t = t0). Cases where the active contour is partially inside
and partially outside the object to be segmented is equally difficult.

- Diffusion of the gradient information using the Gradient Vector Flow (GVF)

In order to make the image gradient information not local, Xu and Prince [128]
propose to diffuse the image gradient by using a vector field of components (u,v).
Given f , the normalized gradient module of the image I, the diffusion of the gradient
information is carried out by the minimization of the functional:

JGV F (u, v) =

∫

Ω
µGV F

(
u2
x + u2

y + v2
x + v2

y

)
+ |∇f |2 |(u,v) −∇f |2 dx (4.26)

where µGV F is a positive constant.

The first term of the equation (4.26) depends on the appearance of the field (u,v).
For the weak gradient areas, this term is predominant and regularizes (u,v). On the
contrary, for strong gradient areas, the second term connected to the data causes (u,v)
to resemble the image gradient ∇f . In [128], the authors propose to deduce the GVF
(u,v) from the gradient descent minimizing JGV F :

{
ut = µGV F∆u− (u − fx) |∇f |2
vt = µGV F∆v − (v − fy) |∇f |2

(4.27)

The GVF thus obtained can also be incorporated with the active contours represented
explicitly [128] or implicitly [91]. In [91], N. Paragios uses this diffused vector field with
active contours represented by level sets. Here is one of the models presented in [91]:

φt (x, t) = g (|∇I (C (p, t))|) (κ |∇φ (x, t)| − 〈(u,v),∇φ (x, t)〉) (4.28)

The first term of the equation (4.28) regularizes the curve and the second lines up
the normal of the active contour with the GVF and tends to direct C towards the
areas of high gradient. This gradient vector flow technique allows us to make the edge
information less local and at the same time allows the active contour to segment non
convex objects.

4.2.1.4 Region-based active contours

An effective alternative to edge-based active contours is the use of region-based active
contours which use intrinsically the global information of the image. The descriptors of
a region R are often statistical quantities such as the average, the variance, the texture
or the histogram of the region concerned. The energy functional constructed from such
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descriptors k (x, R) is then the double integral of the region R (t), defined by C (t).
Optionally, it is possible to add an edge-based descriptor kb (x) either for introducing a
regularizing term or for inserting a data fit term that is complementary to terms derived
from region-based information,

Jr (R (t)) =

∫

R(t)
k (x, R (t)) dx +

∫

C(t)
kb (x) da (4.29)

Region-based active contours are part of a very active research area ever since the 1990s
in Computer Vision. In the beginning, the work of Zhu et al. [137] presented a method
of region competition within the mixed framework which was at the same time Bayesian
and tended to minimize the Minimal Length Description criterion (MLD). The authors
consider the image pixels to be like the realization of a random variable in which the
density of Gaussian probability has parameters which differ depending on its belonging
or not belonging to a region defined by the active contour. Based on this work and
on that of [18], N. Paragios (using an approach completely Bayesian) introduces active
geodesic regions which integrate the edge-based term of the geodesic contours for the
supervised segmentation of scalar images, and moving objects tracking from the video
sequences [87, 90]. The work of M. Rousson [103, 102] continues that of N. Paragios,
extending them to color images and to the segmentation of textured zones which no
longer respond to Gaussian criteria.

At the same time, the work of D. Mumford and J. Shah, carried out in 1985, brought
about the opening up of another more geometric branch in the area of region-based seg-
mentation [74]. This work has recently become popular in the Computer Vision com-
munity thanks to T. Chan and L. Vese [19]. Rousson shows in [102] that the minimal
partition limit in the work of Mumford and Shah is a particular case of the Bayesian
approach. There is a plethora of recent works on region-based segmentation[19, 20, 21,
25, 40, 74, 88, 87, 92, 90, 103, 102, 117, 137]. They are related to the supervised and
unsupervised segmentation or classification of N image partitions, to the use of tex-
ture information, and to the analysis of sequences of images. In the framework of the
present work, we limit ourselves to the bimodal segmentation of a scalar image. Even
if the number of partitions is known a priori (N = 2), their statistical properties in the
image are not known (the opposite of supervised approaches). We present the two main
region-based segmentation models that will be used for our application: the Mumford-
Shah model (and its derived forms) as well as the model based on the Bayesian approach.

The Mumford-Shah functional

In 1985, D. Mumford and J. Shah proposed, in [74], a segmentation method applica-
ble for any type of signal. In the framework of image processing, the idea is as follows:
for a given image I , an ideal image is sought out, namely U which is piecewise homoge-
neous and which is an approximation of I. The image U is a collection of homogeneous
regions in which the intersections form a set B made up of regular edges. The authors
formalized this idea in the form of the following functional:

JMS = µ2

∫ ∫

R
(U − I)2 + µ

∫

R−B
|∇U |2 + νLB (4.30)
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where (µ, ν) ∈ R
+ and LB is the length of the boundaries making up the set B. The

first term of the functional causes U to resemble the image I. The second term forces U
to be homogeneous within each region (the inter-regional discontinuities are preserved).
And finally, the last term causes the boundaries partitioning the image U to have a
minimal length LB. The minimization of this functional is therefore the same as finding
the set of the boundaries of B segmenting the image I into homogeneous parts. This
segmentation technique also allows us to eliminate image noise at the same time.

More recently, Chan and Vese applied this segmentation technique to the limiting
case of two regions which is the minimal partition limit [19]. The authors reduce U to
the average of I inside and outside region R. This simplification, called cartoon limit, or
more poetically, Mondrian Universe [40], constrains U to be piecewise constant (and not
homogeneous). The expression of the functional in the form of level sets is as follows:

JCV (φ, t) =

∫

Ω
(I (x) − cin (φ (x, t)))2Ha (φ (x, t)) dx

+

∫

Ω
(I (x) − cout (φ (x, t)))2 (1 −Ha (φ (x, t))) dx + ν

∫

Ω
|∇Ha (φ (x, t)) dx| (4.31)

The quantities cin and cout being by definition the average of the image pixels I inside
and outside the active contour in time t:

cin (φ (x, t)) =

∫
Ω I (x)Ha (φ (x, t)) dx∫

ΩHa (φ (x, t)) dx
(4.32)

cout (φ (x, t)) =

∫
Ω I (x) (1 −Ha (φ (x, t))) dx∫

Ω (1 −Ha (φ (x, t))) dx
(4.33)

where Ha is a regular approximation of the Heaviside function. The minimization of
the functional of the equation (4.31) by the method of gradient descent produces the
following evolution equation,

φ (x, t)t = −
{

(I (x) − cin (φ (x, t)))2 − (I (x) − cout (φ (x, t)))2 + κν
}
δa (φ (x, t))

(4.34)
where δa is a regular approximation of Dirac’s distribution. This approach allows for a
segmentation less sensitive to the initialization of the active contour compared to edge-
based methods. It is also an easily used method that is relatively inexpensive in terms
of calculations. However, this model restricts segmentation to homogeneous objects. It
is, nonetheless, possible to move away from the hypothesis of strict homogeneity if the
object in question is sufficiently set off from the image background. That is the case for
certain results of [19] illustrating the segmentation of galaxies (star constellations) that
are not homogeneous but which stand out singularly from the interstellar space. Chan
and Vese then introduced in [20] a less drastic simplification of the image U in allowing
it to be piecewise homogeneous. The values of U depend then on the pixel position x
and on its positioning on the inside or the outside of the region set apart by the active
contour:

U (x) =

{
Uin (x) , if x ∈ Ωin (t)
Uout (x) , if x ∈ Ωout (t)
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The Mumford-Shah functional then becomes,

JCV (φ, t) =

∫

Ω
(I (x) − Uin (x))2Ha (φ (x, t)) dx

+

∫

Ω
(I (x) − Uout (x))2 (1 −Ha (φ (x, t))) dx

+µ

∫

Ω
|∇Uin (x)|Ha (φ (x, t)) dx

+µ

∫

Ω
|∇Uout (x)| (1 −Ha (φ (x, t))) dx

+ν

∫

Ω
|∇Ha (φ (x, t)) dx| (4.35)

Deriving the equation (4.35) respectively relative to Uin (x), Uout (x) and φ (x), the
authors deduce the evolution equation of the ideal image U and of the active contour
implicitly represented by φ. Using a different approach, Tsai et al estimate Uin (x) and
Uout (x) using a stochastic theory of optimization [117].

Bayesian approach

We recall the formulation of the maximum a posteriori (MAP) method given in [87, 90,
102] and its link with previous works based on a Bayesian approach.

Given p (P (Ω)| I)the probability of getting a partition P (Ω) of a given image I, an
optimal segmentation of the image is obtained when this probability is maximized. In
accordance with Bayes formula, this probability is expressed in the form,

p (P (Ω)| I) =
p (I| P (Ω))

p (I)
p (P (Ω)) (4.36)

with p (I) being the probability of observing a realization I of the image. p (P (Ω))
is the probability of obtaining an image partition P (Ω) among all the possible par-
titions. p (I| P (Ω)) is the probability of obtaining an image I for a partition P (Ω)
which is known a priori. The hypothesis of equiprobability is commonly retained for
the observation probability of a realization I of the image. Thus, the equation (4.36)
becomes,

p (P (Ω)| I) ∼ p (I| P (Ω)) p (P (Ω)) (4.37)

In [104, 102], Rousson injects into p (P (Ω)) an a priori knowledge in the form of optimal
partitions that can be obtained. In another way, this term allows the active contour to
be regularized if it depends on the length L (C) of the contour,

p (P (Ω)) =
ν

2
exp−νL(C) (4.38)

with ν being a constant belonging to R
+. Maximizing the probability above is the same

as finding a partition of the minimal length. This term is the same as the one that
was introduced into the Mumford-Shah functional in equation (4.30). In [87, 90], N.
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Paragios considers p (P (Ω)) constant (equiprobability). He adds to the region-based
functional derived from MAP the edge-based term from the geodesic contours which
has a diffusing and regularizing term.

The calculation of p (I| P (Ω)) requires other hypotheses in order to be successfully
carried out:

✽ The regions of the optimal partition are not correlated:

p (I| P (Ω)) = p (I| P (Ωin,Ωout)) = p (I| P (Ωin)) p (I| P (Ωout)) (4.39)

This hypothesis is reasonable since the aim of the segmentation is to separate out
the regions of the image where the properties are different.

✽ On the other hand, the following hypothesis is stronger and more restrictive: the
pixels of a single region have the same probability to be observed. This hypothesis
is shown to be in error in textured regions or in those with repeated patterns
where there is a local interaction between the pixels. The equation (4.37) then
becomes,

p (I| P (Ω)) =
∏

x∈Ωin

p (I (x)| P (Ωin))
∏

x∈Ωout

p (I (x)| P (Ωout)) (4.40)

The maximization can be reformulated as an expression of energy minimization as
follows,

J (Ωin,Ωout) = − ln {p (P (Ω)| I)} (4.41)

In replacing the expressions of equations (4.38) and (4.40) in the formulation of the
equation (4.41), we arrive at the following energy functional,

J (Ωin,Ωout) ∼ −
∫

Ωin

ln (p (I (x)| P (Ωin))) −
∫

Ωout

ln (p (I (x)| P (Ωout))) + νL (C)

(4.42)
In [87, 90], [102] and [137], the authors presuppose that the probability densities follow
normal distributions in which the only parameters are the average c and the variance σ
calculated on Ω:

p (I (x)| c, σ) =
1√

2πσ2
exp−

(I(x)−c)2

2σ2 (4.43)

In [87, 90], the Gaussian distribution parameters are known in advance through a super-
vised process. In [102] and [137], these parameters are dynamically calculated during the
evolution of the active contour. In [137], the expression of the functional does not come
from MAP but from the method referred to as MDL (Minimum Description Length).

With the hypothesis of a Gaussian distribution, and in representing the active con-
tour by a level set, the energy functional becomes,

JBayes (φ, t) =

∫

Ω

(
(I (x) − cin (φ (x, t)))2

2σ2
in

+ ln

(√
2πσ2

in

))
Ha (φ (x, t)) dx
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+

∫

Ω

(
(I (x) − cout (φ (x, t)))2

2σ2
out

+ ln

(√
2πσ2

out

))
(1 −Ha (φ (x, t))) dx + νL (C)

(4.44)
in which the variances on the inside and the outside of the active contour are, by
definition,

σ2
in (φ (x, t)) =

∫
Ω (I (x) − cin (φ (x, t)))2Ha (φ (x, t)) dx∫

ΩHa (φ (x, t)) dx
(4.45)

σ2
out (φ (x, t)) =

∫
Ω (I (x) − cout (φ (x, t)))2 (1 −Ha (φ (x, t))) dx∫

Ω (1 −Ha (φ (x, t))) dx
(4.46)

The evolution equation of the active contour derived from the gradient descent of the
functional (4.42) is then,

φ (x, t)t =

{
−(I (x) − cin (φ (x, t)))2

2σ2
in (t)

+
(I (x) − cout (φ (x, t)))2

2σ2
out (t)

+ ln

(
σ2
out (t)

σ2
in (t)

)
+ κν

}
δa (φ (x, t)) (4.47)

The Gaussian distribution parameters are evaluated at each iteration by the maximum
likelihood method, which is the simple estimation of the average and variance in this
case. In [137], Zhu et al arrive at a functional that is similar to the equation (4.47)
without the regularizing term. The procedure based on the MDL dissimulates however
the clearly announced hypotheses of the Bayesian framework in order to arrive at this
result. We note that for σ2

in (t) = σ2
out (t) = cst, we return to the Mumford-Shah model

expressed as equation (4.34) by Chan and Vese.

4.2.2 Segmentation with specific shape constraint

The models presented in the preceding section, whether they are edge-based or region-
based models, are functions of the pixel intensity in the image. Thus, if the object to
be segmented is altered by noise, occlusions or by a weak contrast at the boundaries,
the result will be strongly influenced by those artifacts that degrade the quality of the
extraction. This is particularly critical in the case of medical images (ultrasound im-
ages for example), which have a weak signal to noise ratio and present organs in which
certain parts of the contour are extremely weak or even hidden. Because of this, the
Computer Vision community in Medical Imagery was the first and the most active to
resolve this problem by inserting prior shape knowledge into the segmentation process.

As regards an object to be segmented, the a priori knowledge is of many types. It can
be related to the radiometry of the object (color, luminance), its textural properties or
its shape. In this chapter, we focus solely on the a priori knowledge of the shape. That
allows us to constrain the active contour so it resembles a shape (or family of shapes)
of the reference and to regularize specifically on those parts of the active contour in the
image where the artifacts are present.
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Since the beginning of the 90s, many papers have shown how the input of a specific
shape prior could improve the segmentation results [33, 29, 31, 32, 30, 41, 40, 66, 21,
24, 23, 25, 22, 92, 104, 102, 113, 131, 130]. We shall examine briefly the most important
works about the insertion of prior shape knowledge and differentiate between statistical
approaches (which use a set of reference shapes) and those that are deterministic (single
shape prior). In general, the shape constraint is introduced by a distance that allow us
to compare the active contour in time t with the prior shape. Within the framework of
variational approaches, this distance is used for the formulation of a shape constraint
energy, Jshape which is then added to the term respecting the connection with the data,

J = Jimage + λJshape (4.48)

where J is the global energy functional, Jimage is the energy of connection to the data
and λ ∈ R

+. We propose to describe these distances as a function of the way in which
the active contour is represented (implicitly or explicitly). This dichotomy is not perfect
since certain approaches can be formulated with one or the other of these representation
systems. We will identify these approaches when necessary.

4.2.2.1 Non statistical approach

Explicit representation

In [41] A. Foulonneau proposes to use geometric moments to characterize both the
active contour and the reference shape. A distance based on these moments is then
created to measure the distance between the active contour and the a priori shape. In
order to guarantee a more compact and less redundant representation, the geometric
moments are projected on an orthogonal base of Legendre polynomials. The parameters
of this explicit representation have the advantage of being intrinsically invariant from
translation and scaling. A detailed analysis of the invariance extension to rotation, or
more generally to affine transform, is available in [40]. As is the case in all representa-
tions using a base (Legendre or Fourier), the order truncation of the base is a delicate
decision. In order to represent shapes having singularities (corners), a high order must
be used in order to obtain an approximation of quality. This is a problem that increases
the calculation complexity and restricts the representation possibilities of such explicit
methods.

Implicit representation

Y. Chen was the first to introduce a shape constraint in the form of a level set
[24, 23]. However, we note that this formulation can also be presented explicitly. The
author proposes an energy constraint term invariant from similarity transform, Tsim
which, within the variational approach framework, takes the following shape,

Jshape (C, Tsim) =

∫ 1

0
d2 (TsimC (p)) |Cp (p)| dp (4.49)

in which d (x) = d (C∗,x) is the distance between the coordinate point x and the refer-
ence shape C∗. The term is weighted by a constant λ and added to the data fit term of
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geodesic active contours. The results obtained from this approach show a marked im-
provement for medical image segmentation. However, this scheme is still very sensitive
to the initialization because of the edge-based term connected to the data. Invariance
by similarity requires an optimization of the parameters of Tsim during the active con-
tour evolution. The author estimates their values by gradient descent. Adjusting the
weight λ is not a trivial matter. If the weighting is too weak, a poor segmentation of
the object risks being obtained and a too strong weight will prevent the active contour
from respecting the information derived from the image.

In [32], D. Cremers proposes the following term for the energy constraint,

Jshape (φ, ψ0) =

∫

Ω
(φ (x) − ψ0 (x))2 dx (4.50)

This quadratic term is the difference between the level set φ representing the active con-
tour and the one encoding the reference shape ψ0. This formulation has the advantage
of preserving the intrinsic characteristics of the flexible topology created by the level
sets. On the other hand, this energy depends on the size of the integration domain and
is not invariant from any transformation. D. Cremers notes that such a distance only
allows us to extract the object known a priori in the image, operating like a filtering
system in the shape space of the the active contour. He then proposes a new energy
capable of locally applying the shape constraint on the image,

Jshape (φ, ψ0, L) =

∫

Ω
(φ (x) − ψ0 (x))2 (L (x) + 1)2 dx +

∫

Ω
λ2 (L (x) − 1)2 dx

+γ

∫

Ω
|∇H (L (x))| dx (4.51)

The function L called “dynamic labelling”, only takes the values of +1 or −1. The
function L reinforces the shape constraint as it tends towards 1 and annuls it as it con-
verges towards -1. This last behavior is favored when the active contour is more distant
from the prior shape (static in the present case). The last term of the equation (4.51)
assures the regularity of the function L. This energy allows us to segment a corrupted
object thanks to the shape prior as well as the surrounding objects having the same
radiometry without knowing in advance the place where the constraint has to be applied.

In [104] the authors propose the following energy constraint,

Jshape (φ, ψ0) =

∫

Ω
(φ (x) − ψ0 (Tsimx))2H (φ (x)) dx (4.52)

This formulation has the advantage of no longer depending on the integration space Ω
since the integral is now applied to the inside of the active contour. It is also invariant
from direct plane similarity as in the equation (4.49). But as D. Cremers shows in
[31], this quadratic distance is not symmetric and is not capable of taking account of
objects with several components. He therefore proposes a pseudo-distance verifying
the positiveness and symmetrical properties without, however, satisfying the triangular
inequality,

Jshape (φ, ψ0) =

∫

Ω
(φ (x) − ψ0 (x))2

h (φ (x)) + h (ψ0 (Tsimx))

2
dx (4.53)
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in which h (φ (x)) = H(φ(x))
R

Ω
H(φ(x))dx

. This energy allows us also, in this way, to successfully

segment a multi-component object partially erased or noised over.

In [21], is formulated another symmetrical constraint energy that is independent
from the integration domain,

Jshape (φ, ψ0) =

∫

Ω
(H (φ (x)) −H (ψ0 (Tsimx)))2 dx (4.54)

This term compares the inside areas of the active contour to the reference shape with
respect to the standard norm L2.

4.2.2.2 Statistical approach

The object to be segmented in the image may present a certain variability when com-
pared to the reference shape. This is the case, for example, for medical images in which
the organ shape varies from one individual to another, depending on the means of acqui-
sition, the orientation of the camera or the time in the case of video sequences (cardiac
echography). Since these variations compared to the reference cannot be modeled by
an affine linear transformation, many works have focused their efforts on the learning
of diverse reference shapes so as to confer a maximum degree of flexibility to the shape
constraint. Thus the active contour is permitted to be deformed in the sub-space of the
shapes defined by the learning. Since the learned forms are redundant, they are often
projected into an orthogonal sub-space by a principal component analysis (PCA) in
order to establish the main variability modes. A problem inherent in the processing of
the shapes for the learning process, is their optimal alignment: they have to be placed
in the same reference system so they can be compared without bias. The approach fre-
quently adopted is to estimate the greatest direct plane similarity permitting optimal
alignment (the Procrustes method). When certain shapes are too different, a clustering
method is used to classify them in sub-families [24].

Explicit representation

Pioneering work on the insertion of statistical shape constraint is attributed to Staib
and Duncan [113]. The authors propose representing explicitly the active contour using
a Fourier base. The learning samples allow an evaluation of the density of probability for
each parameter of the explicit representation (which are the coefficients of each element
of the base). Assuming that the prior shape probability is Gaussian, they formulate
their segmentation criterion by MAP. The optimal segmentation is thus obtained when
the active contour satisfies the dependence on the data with a maximum degree of like-
lihood with the learned samples.

A similar approach is used by Cootes et al in [28]. However they use a different
explicit way to represent the contour in using snakes. These pick up “control points” at
chosen points of the learning shapes. The process is manual or assisted and represents a
strong constraint, i) the choice of control points can affect the final result, ii) it is a slow
stage which restricts the flow of data to be processed. We will see that the problem was
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resolved in [33, 104]. After the learning shapes are lined up, they are projected onto an
orthogonal sub-base by PCA. There is no energetic criterion allowing a comparison of
the active contour with the reference shapes: at each iteration, the spatial variation of
each of the nodes attracted by the high gradient zones is projected on the shape sub-
space and this constrains the displacement, and in the end, the active contour shape.
This work is translated into a Bayesian framework and generalized to invariance from
affine transformation in [131].

In [33], D. Cremers introduces the Diffusion Snakes based on a representation by
B-splines. The advantage of the B-splines base is a greater compactness of the represen-
tation of the learning shapes as well as their local characteristics (unlike a Fourier base,
a control point variation modifies the curve locally). In addition, this approach is more
general as it can model singular shapes with corners. A statistical analysis by PCA
allows to determine the main variability modes. The shape constraint is formulated as
the Mahalanobis distance between the active contour and the average reference shape.
This term has the advantage to be intrinsically invariant from direct plane similarity.

Implicit representation

Leventon et al propose in [66] to represent the learning shapes in the form of level
sets. As in the methods presented, the PCA is used to derive the principal deformation
modes. The shape constraint is also derived from a MAP type approach. However, it
appears in the evolution equation as a correcting term equal to the difference between the
level set of the active contour and that of the most probable shape (linear combination
of the eigenmodes). This rather unnatural way of introducing the shape constraint is
formalized more generally in the energy functional of a variational approach in [104, 102].
In these works, the learning shapes are once again represented by their level sets. These
are aligned in the first instance by an estimation of the optimal direct plane similarity
using the equation (4.50). The average shape is represented as the average of the level
sets, φM (x, t), the variance σM (x) is calculated for each pixel from the learning shapes.
The shape constraint energy, which is incorporated in a MAP process, is then:

JShape (φ, T ) =

∫

Ω

(
(sφ (x, t) − φM (Tx, t))2

sσM (Tx)
+ ln (σM (Tx))

)
δa (φ (x, t)) dx (4.55)

The first term of the energy represents the shape constraint that is normalized using
the average variance for measuring the confidence of the model. Then the strongly
repetitive zones among the learning samples (with weak variance) will have a shape
constraint that is particularly reinforced.

4.2.2.3 Shape constraint invariance from geometrical transformation

As we have seen, invariance of the shape constraint with respect to certain geometri-
cal transformations is crucial. Indeed, without this invariance, the segmentation power
would be drastically reduced to objects from the image corresponding exactly to the
reference. The invariance from affine transformation is a recurring problem in Com-
puter Vision. Some representations give a natural invariance to a sub-class of affine
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transforms, for example direct plane similarities [33, 113]. Others require the addition
of extrinsic parameters that allow the realization of invariance [104, 21, 23, 24].

In the case of an energy criterion for the shape constraint represented by a level set
(equation (4.54)), it is possible to calculate analytically the level set φ2 of a contour
represented by φ1 and transformed by direct plane similarity Tsim:

φ2 (x) = sφ1

(
T−1
simx

)
(4.56)

where s is the scale factor of Tsim. The equation (4.56) can be expressed in the form,

φ2 (x, y) = sφ1

(
(x− µx) cos (θ) + (y − µy) sin (θ)

s
,
− (x− µx) sin (θ) + (y − µy) cos (θ)

s

)

(4.57)
where θ is the angle of rotation, and (µx, µy) the translation of Tsim. The extension of the
analytic relation between level sets for a transformation with an anisotropic scale factor
or with an affine transformation is more delicate and is still an open question. In [30], D.
Cremers proposes a formulation of the intrinsic constraint with no parallel estimate of
the pose parameters. However, it is limited to translation and scaling invariance. And
finally, the interesting work of Riklin-Raviv et al. [98] allows us to model a perspective
type projection in intersecting the signed distance function with an inclined plane (and
not a horizontal plan of the set 0).

4.2.3 Segmentation with a generic shape constraint: quadratic models

A new class of higher order active contours was proposed by M. Rochery and I. Jermyn in
[101]. The finality of these recent models is to incorporate global geometric constraints
within active contours. If this constraint is more specific than the generic constraints
for contour regularization, it is less specific than for the incorporation of prior shapes
described in the preceding paragraphs.

The proposed active contours are based on a variational approach and minimize the
quadratic energy defined below in the space of one-chains,

Jquad(C) =

∮ ∮ 〈−→
t (p), F

(
C(p),C(p′)

)−→
t (p′)

〉
dpdp′ (4.58)

where
−→
t (p),

−→
t (p′) are the tangent vectors of the active contour C at points p and p′. F

is the covariant tensor weighting the interaction between the two points of the contour
C(p) and C(p′). The derivation of Jquad with respect to the curve C allows us to deduce
a non local shape constraint force for each point C(p) which is expressed as a simple
integral on the contour.

In [99], the authors use quadratic models to extract roads from remote sensing im-
ages. They are interested in the particular case in which the tensor F is the identity
matrix and formulate an energy designed to improve the segmentation of linear struc-
tures with parallel edges (roads). The quadratic energy thus proposed is,

Jquad(C) = −
∮ ∮ 〈−→

t (p),
−→
t (p′)

〉
Ψ
(∣∣C(p) −C(p′)

∣∣) dpdp′ (4.59)
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in which Ψ is a decreasing function representing the interaction potential between the
contour points on the abscissa p and p′:

Ψ (x) =





1 if x < dmin − ε
0 if x > dmin + ε

1
2

(
1 − x−dmin

ε − 1
π sin

(
π x−dminε

))
otherwise

(4.60)

Note that the energy formulation in (4.59) is minimal if two neighboring points of the
contour (|C(p) −C(p′)| < dmin) have co-linear tangents. This aids in the extraction
of rectilinear structures. On the other hand, this energy is high for two neighboring
points with anti-parallel tangents. Thus, the two parallel edges of an extracted road,
will have a minimal width dmin above which the repulsion caused by the energy tends
to zero at the same time as the profile Ψ. Other variants of quadratic energy implying
dependence on the data fit term have been proposed. The results of such active contours
represented by their level sets are promising. The insertion of such strong geometric
constraints which are non local has been effective, and the implicit representation allows
the natural inclusion of the concept of network.

4.3 Active contours for fine map-to-image matching: choice

and implementation

4.3.1 Choice of the active contours representation

Within the framework of fine map-to-image matching that we propose to study in this
thesis, we have opted for an implicit representation of the active contour by level sets
for the following reasons,

1. Implicit representation allows for a natural modeling of the corners. This point
has particular significance for our application since we consider objects (buildings)
which present these geometric singularities.

2. Contrary to explicit representations, representation by level sets is parameters
free. The use of this method is therefore more general and easier.

3. Implicit representation allows natural modeling of the objects with a complex
topology. It is therefore possible to model buildings with interior courtyards.

4. The topology of an active contour represented by a level set can change during the
convergence. This property does not seem very pertinent for our application since
we assume that the shape constraint determines the topology of the active contour.
However, we will see that it is possible to use the flexible topology produced by
level sets in order to solve the problem of local minima (see section 5.4).

5. The level sets are numerically more stable than the explicitly represented contours,
in particular for the modeling of geometric singularities.

6. Comparison between two forms represented by their level sets is direct and effec-
tive. For this reason, the incorporation of prior shape constraints is easier.



CHAPTER 4. PRESENTATION AND CHOICE OF ACTIVE CONTOURS... 84

On the other hand, the drawbacks of the implicit representation are as follows,

1. Greater computational complexity. That is inherent to the n+1 dimensions order
of the level set representing the active contour. We will see in section 4.3.4.1 how
the level set restriction on a narrow band results in a reduction of the calculation
time.

2. The distance function for the level sets is not preserved in the Hamilton-Jacobi
evolution equations. This implies a periodic re-initialization of the level sets during
the evolution of the active contour. The calculation cost is therefore increased.

4.3.2 Choice of a term for the dependence on data

In this study, we use two region-based models for the dependence on the data: that
of Chan and Vese [19] and the Bayesian model [90]. Chan and Vese’s model is more
effective if the image to be analyzed is piecewise constant. This restricts the field of
application of our method to buildings for which the radiometry of the roof is uniform.
We will see how the Bayesian model frees us from this hypothesis and may make it
possible to process homogeneous buildings. Our motivation in choosing region-based
active contours is based on their decreased sensitivity to initialization and to noise
compared with edge-based active contours. However, we shall also explore edge-based
contours because of their ability to process inhomogeneous buildings. In order to make
the contour less sensitive to initialization, we will use the Gradient Vector Flow (GVF)
method which allows to diffuse the very local information of the image gradients. The
level set evolution equations with respect to the active contours that we will use are as
follows:

4.3.2.1 Region-based models

✽ Chan and Vese model

φt (x, t) = −δa (φ (x, t))
(
− [I (x) − cout (φ (x, t))]2 + [I (x) − cin (φ (x, t))]2

)

(4.61)
in which φ is the level set representing the active contour, δa a regularized ap-
proximation of Dirac’s distribution, cin and cout are averages of the image I on
the inside and outside respectively of the active contour.

✽ Bayesian model

φt (x, t) =

{
−(I (x) − cin (φ (x, t)))2

σ2
in (t)

+
(I (x) − cout (φ (x, t)))2

σ2
out (t)

+ ln

(
σ2
out (t)

σ2
in (t)

)}
δa (φ (x, t)) (4.62)

in which σ2
in and σ2

out are the variances of the image I on the inside and the outside
respectively of the active contour. In the equations (4.61-4.62), the regularization
term has been omitted for two reasons. It tends to round the corners which could
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present the active contour and we try to avoid this effect since we want to seg-
ment buildings whose boundaries often present singularities. And, in addition,
the shape constraint term has a regularizing effect.

✽ Range of application

; Building with small elevation (negligible perspective distortion). This con-
straint comes from the incompatibility of the geometries in which the carto-
graphic and remote sensing data are projected. Since the map is orthoscopic,
the satellite image is not rectified. Therefore, in the case of buildings with
very high elevation, the initialization of the active contour coming from the
map will be placed at the level of the building footprint in the image. The
active contour will therefore be distanced from the roof to be segmented, and
this will make the result of the fine matching hazardous.

; Building without generalization effect in the map. Generalization consists in
clustering several buildings within a single map component, which may make
the considered cartographic object inhomogeneous: this is not compatible
with the proposed region-based active contours model.

; The cartographic representation of the building is not mistaken. We will
discuss at the end of this chapter the presence of errors in the map and we
shall illustrate the limits of the proposed shape constraint model (see section
5.6).

4.3.2.2 Edge-based model

✽ Geodesic models with Gradient Vector Flow

We adapt the model presented in equation (4.28) taken from [91] in the following man-
ner:

φ (x, t)t = −〈(u,v),∇φ (x, t)〉 (4.63)

where (u,v) is the gradient vector flow (GVF) resulting from the diffusion of image
gradient information. With respect to the equation (4.28) the regularization term has
been omitted as well as the weighting term that is inversely proportional to the image
gradient modulus. We justify the first omission by the insertion of a shape constraint
which will have a regularization effect. The second is justified by the fact that the field
(u,v) is null on the areas of high gradient which is redundant with the function g(|∇I|)
of the equation (4.28).

And finally, the last adaptation of the model we use is the information of the gradient
which will be diffused by the calculation of the field (u,v). We diffuse some segments
primitives that are extracted from the areas of high image gradient. These primitives
come not only from a detection of the contours, but also from a subsequent chaining
which allows us to find the image segments. The segments primitives are of a higher
level and are more likely to characterize buildings whose footprints or roofs are made
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of rectilinear boundaries. The use of the segments is similar to a filtering of the image
gradient, avoiding to take into account peripheral objects such as trees or urban furniture
which do not respond to any rectilinear criterion. Figure 4.3 illustrates the extraction
of these primitives.

(a) Primitive segments extracted from the
chaining of the high gradient points (red)

(b) Gradient vector of the segments dif-
fused by the Gradient Vector Flow method.

Figure 4.3: Example of the extraction of segments (a) and of the associated gradient
vector flow (b).

✽ Range of application

; Building with low elevation.

; Building with or without generalization effect in the map, with a roof of
any shape. The inhomogeneity of clustered buildings in a single cartographic
object can be handled by the model that is based only on the image gradients.

; The cartographic representation of the building is not mistaken.

4.3.3 Choice of the shape constraint

There are three aspects to the prior knowledge derived from the map. First, it is
knowledge on the nature of the object that we intend to match into the image (we
process only the buildings). Second, it is knowledge on the localization which allows us
to look for the building at the appropriate point in the image, and we use this knowledge
to initialize the active contour. And finally, the map give us the shape of the building
that we are likely to find in the image. We constrain the active contour to be akin to
the shape derived from the map in using the energy described in (4.54). The derivation
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of this energy with respect to the level set φ gives the following equation,

φ (x, t)t = −∂Jimage
∂φ

+ 2λ (H (φ (x)) −H (ψ (x))) dx (4.64)

with
ψ = ψ0 ◦ Tsim

where Jimage is any energy criterion of the dependence on the data, φ is the level set
representing the active contour; ψ0 is the level set representing the prior shape derived
from the map, λ ∈ R

+.

The criterion of the equation (4.54) has the advantage of being independent of the
integration domain Ω, and gives a discriminating measure of two shapes represented
implicitly by φ and ψ0 [102]. The shape constraint is invariant from the transformation
Tsim which allows to introduce degrees of freedom between the active contour repre-
sented by φ and the static prior shape ψ0. Tsim is a direct plane similarity which allows
the invariance of the shape constraint from rotation of angle θ, of the translation µ and
scale factor s which is identical in image directions (Ox) and (Oy),

Tsimx = s

[
cos θ − sin θ
sin θ cos θ

]
x +

(
µx
µy

)
(4.65)

According to the expression in the equation (4.54), it is not possible to deduce
analytically the parameters ξ = (s, θ, µx, µy) of Tsim from the system:

(
∂Jshape
∂ξi

)

i=1,...,4

= 0 (4.66)

Numerical optimization methods are then used to estimate the parameters ξ̂ during the
evolution of the active contour. The optimization by gradient descent is commonly used
to resolve this problem. We will discuss an alternative to it in section 5.2.

4.3.4 Algorithm and optimization

4.3.4.1 Reducing calculation time: use of the Fast Narrow Band method

If we implement in a strict sense the evolution equation (4.64), we would have to review
all the pixels x of the image in order to completely fill the function φ of the instant n+1.
That would be expensive in calculation time and would be useless. As a matter of fact,
only the values of φ near to zero are of interest because the zero crossings represent the
active contour. In practice, we carry out the updating of the active contour in a narrow
band around the zero level of the set φ. When the active contour is on the verge of
leaving the narrow band, this last is reconstructed from the last position of the contour.

The distance function of the level set is not preserved in the evolution equations
of the Hamilton-Jacobi type which are usually derived from variational approaches.
Therefore, the condition|∇φ| = 1 is not verified through time. Two options are possible
to solve the problem. The most satisfying is to derive evolution equations which are not
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of the Hamilton-Jacobi type, as José Gomes proposed in his thesis, and in [43]. The
calculation complexity is increased but the problem is solved in an elegant manner. The
second way that we have chosen is to reinitialize the level set every N iterations when the
contour is on the verge of leaving the narrow band. The concept of re-initialization in a
narrow band was originally proposed in a paper by D.L. Chopp dealing with the physics
of interfaces [26]. In [115] Sussman proposed a method for narrow band reconstruction
by using the differential equation:

φτ (x, t) = sign (φ (x, τ)) (1 − |∇φ (x, τ)|) (4.67)

This approach proposes an approximation of the distance function, which is as fine
as the number of iterations is large. The problem with such a method is the necessity of
calculating the gradient of the level set φ, and this can be delicate in the neighborhood
of a geometric singularity. A poor estimation of the gradient in these regions will bring
about and propagate errors in the estimation of the distance function. In [60], R.
Keriven discusses older algorithms of re-initialization. R. Keck discusses in considerable
detail the influence of the re-initialization on the precision of the calculations within the
framework of fluid mechanics [59]. In [89], N. Paragios and R. Deriche propose a faster
local method – called Hermes– than [115], and in [110], Sethian describes a technique
based on Fast Marching. We have chosen a method proposed by Yui in 2002, called
Fast Narrow Band and which is faster than the aforementioned approaches [132].This
method is made up of two phases:

1. For each pixel in the coordinates x belonging to zero level of the level set, an
approximation of the distance to the neighborhood pixels is assigned according to
the circular neighborhoods illustrated in figure 4.4: the process is repeated for the
circular neighborhoods progressively larger until the size of the desired narrow
band is reached. When a pixel is assigned several times a different value, the
minimal value is kept. At the end of this phase, a narrow band containing coarse
approximations of the distance function is constructed.

2. For each pixel in the narrow band, we look for pixels belonging to the contour (0
level of the level set) in the circular neighborhood whose radius value has been
assigned in advance. Among all the pixels of the contour that are found, their
Euclidean distances to the pixel of reference is calculated; the minimal value is
finally attributed to the pixel being considered in the narrow band.
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Figure 4.4: Circular neighborhoods used for the construction of the narrow rapid band.
The caption gives an approximation of the pixel distance to the center.

This astute procedure allows for manipulation of circular neighborhoods thus limiting
considerably the research space for the pixels of the contour. Nevertheless, we can be
critical about the necessity of the contour to have a pixel precision and not sub-pixel.
This loss of precision creates a penalty for future calculations of the curvature. The
authors propose to correct this problem by diffusion at the end of the second algorithm
phase. We propose to adapt the algorithm of the fast narrow band in order to calculate
the exact distance function, and, while keeping a precise sub-pixel contour,

1. For each point with the sub-pixel coordinates xcontour,sp belonging to the con-
tour, we round off the coordinates on the pixel grid while remembering the link
xcontour → xcontour,sp, then we assign an approximation of the distance function
to the neighboring pixels in accordance with the circular neighborhood as shown
in figure 4.4: we reiterate the process for the circular neighborhoods progressively
larger until we reach the desired size of the narrow band. When a pixel is assigned
several times a different value, the minimal value is kept. At the end of this phase,
a narrow band containing coarse approximations of the distance function is con-
structed.

2. For each pixel in the narrow band,we look for pixels belonging to the contour
(0 level of the level set) in the circular neighborhood whose radius value has
been assigned in advance. For each pixel found in the contour, xcontour,k, the
Euclidean distance is evaluated to the sub-pixels xcontour,sp,k,i linked to xcontour,k.
The minimum value of all the xcontour,sp,k,i is finally attributed to the pixel that
is being considered in the narrow band.

The building up of the narrow band occurs for three kinds of events: the construction
of φ (x, t = 0), the reconstruction of the narrow band when the active contour is on the
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verge of leaving it, and when the level set needs to be reinitialize because it is so longer
a distance function. Practically, we preferred to work with a very narrow band of two
or three pixels and reinitialize at each iteration of the active contour.

The construction of a narrow band is indispensable and its dual operation is also
necessary. Finding the contour from the level set by the detection of the zeros of
the latter intervenes for two reasons: the display of the active contour, and the re-
initialization of the fast narrow band. The extracted contour of the level set is a linear
approximation of the real contour (figure 4.5). It is detected by the sign changes of the
function φ (x, t), and the sub-pixel coordinates are calculated by linear interpolation.

Figure 4.5: Linear approximation of a contour

4.3.4.2 Evolution diagram of the shape constrained active contour

The evolution diagram shown in figure 4.6 describes the updating algorithm of the active
contour. In this figure, the function F is defined by the evolution equation. In all the
experiments carried out on real images, the polygonal prior shape derived from the map
and the initial active contour are identical.

✽ In practice, the image space considered in order to cause the active contour to
evolve is a sub-set of Ω. Typically, a sub-image of 256 by 256 pixels is extracted
from the satellite image Quickbird (which uses 30,000 by 30,000!) at the spot of
the cartographic polygonal that we want to match and revise. If the size of the
box encompassing the polygonal is greater than 256 by 256 pixels, we extract a
larger sub-image having a margin of 100 pixels with respect to the encompassing
box.
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✽ In a case where region-based models are used, the characteristic of homogeneity
of the buildings represented in the image can be forced by pre-processing it with
anisotropic diffusion (preserving the contour).

✽ Generation of the level set ψ0 representing the prior shape is carried out during
initialization and covers the totality of the sub-image studied (unlike the set φ
calculated only in a narrow band). In order to reduce the calculation time, we use
Maurers algorithm [70] which allows for a calculation of the Euclidean distance
on binary images in O (N) where N is the number of pixels in the image. The
cartographic polygon is thus rasterized before the application of this algorithm.

✽ We decided to estimate the parameters of Tsim after each updating of the active
contour.

4.4 Conclusion

This chapter retraced the state of art of active contours with a particular attention paid
to the incorporation of the prior shape constraint. We exposed our choice of active
contours represented by level sets in order to carry out the matching of the buildings
of the map onto the image. Different terms expressing the relationship with the data
were selected in order to bring the active contour close to the building represented in
the image. Two region-based models were chosen because of their simplicity of imple-
mentation and their decreased sensitivity to the initialization. They are, nonetheless,
limited to the segmentation of homogeneous buildings in the image. An edge-based
model, intrinsically more sensitive to the initialization will be used to match inhomo-
geneous buildings. Finally, details related to the implementation and the reduction of
the calculation complexity of the level sets were described. The following chapter will
present our contributions for improving the robustness of the chosen models with shape
constraint.
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Figure 4.6: Evolution diagram of the shape constrained active contour



Chapter 5

Robust shape constrained active
contours

5.1 Introduction

This chapter examines the improvement of the robustness of shape constrained active
contours which are intended to achieve a matching between the cartographic buildings
and the image. The goal of such a matching is to increase the map/image consistency to
enable a later “no-change” detection that is reliable. We propose to improve the active
contour models proposed in the previous chapter in order to increase their matching
power. The first contribution consists of proposing a different optimization algorithm
for estimating the pose parameters making the shape constraint invariant from a global
transformation. The second one concerns the insertion of the Digital Surface Model
(DSM) in the active contours’ attachment to data term. This type of representation is
complementary to the satellite image and enables a better discrimination of the con-
structions from the rest of the scene. The third innovation concerns the incorporation
of shape constraint varying according to space and time. This is intended to confer
greater flexibility on the active contours to make them less sensitive to the local minima
of the minimized energy. The experimental results proposed at the end of the chapter
enable to assess the contribution of these three solutions to increasing the robustness
and efficiency, in terms of calculation time, of the map-to-image matching.

5.2 Robust estimation of the Tsim parameters by the sim-

plex algorithm

As we mentioned in section 4.3.3, it is possible that the expression of the shape constraint
energy described in general terms in equation (5.1) may not have an analytical solution
of the parameters (ξ)i∈(1,...,N) of the overall transformation T :

Jshape (φ, ψ) =

∫

Ω
D (φ (x) , ψ0 (Tx)) dx (5.1)

93
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where D represents a distance measuring the similarity between the shape of the active
contour φ and the reference shape ψ0. This is the case of the energy formulated in
equation (4.54) where D (φ (x) , ψ0 (Tx)) = (H (φ (x)) −H (ψ0 (Tx)))2 and T = Tsim
(N = 4). In the absence of a formal expression of the parameters that would have made
the approach intrinsic, it is necessary to estimate them by numerical optimization as the
active contour evolves. In [21, 23, 104, 24], the authors propose to calculate numerically
the parameters minimizing the energy of equation (4.54) by gradient descent. We then
have four equations relative to each of the Tsim parameters, that is to say the scaling s,
rotation θ and translation µ:





sn+1 = sn + ∆tsF
(
φ, ψ0, s

n, θn, µnx, µ
n
y

)

θn+1 = θn + ∆tθG
(
φ, ψ0, s

n, θn, µnx, µ
n
y

)

µn+1
x = µnx + ∆tµxM

(
φ, ψ0, s

n, θn, µnx, µ
n
y

)

µn+1
y = µny + ∆tµyN

(
φ, ψ0, s

n, θn, µnx, µ
n
y

)
(5.2)

where n is the iteration rank, φ and ψ0 are the level sets respectively representing the
active contour and the prior shape. ∆ts, ∆tθ, ∆tµx and ∆tµy are the time steps associ-
ated with each of the gradient descents estimating the Tsim parameters. The detail of
the expressions of the functions F,G,M and N is given in [21].

The estimation of the parameters using the four descents of system (5.2) may be
found to be extremely perilous. The delicate point is the tuning of the time steps of
the four descents relative to each of the parameters. Whereas each descent estimates
a parameter with a different geometrical meaning (translation, rotation, scaling) it is
highly likely that the speed of each descent will not be the same. For example, the
descent estimating the rotation should be much slower than the translation descents.
However, there is no theoretical framework making it possible to clarify this question
which gives rise to empirical settings that are difficult, unstable and which influence the
estimation of the parameters. Lastly, the inter-dependence of the four gradient descents
means that a poor estimation of one parameter in a descent will affect all the others
to such an extent that it will rapidly make the optimization diverge. Daniel Cremers
mentions the issue of tuning the gradient descents in [30].

A more favorable alternative that we have chosen is to use the simplex algorithm (a
reminder of the detail of this algorithm and some illustrations are given in appendix B).
We then minimize the shape constraint energy detailed in equation 5.1) by a finding
a set of N optimum parameters estimated simultaneously. The optimization is carried
out by reflection, expansion and contraction of a polyhedron with N + 1 vertices in the
parameters’ space. The advantage of the simplex is the absence of setting parameters
that may impact the result of the optimization. This approach, which is less sensitive
to the energy local minima, is more robust than the gradient descent. It is a zero order
method (it does not require the calculation of the cost function’s gradient) that is better
placed to find a minimum of a functional that is not strictly convex. Lastly, the simplex
is able to minimize more complex shape constraint energies, with more parameters to be

estimated, without requiring the theoretical calculation of the partial derivatives
∂Jshape
∂ξi

inherent to the gradient descents.
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However the simplex is more complex to calculate than the gradient descent. Indeed,
the iterative construction of the vertices of the simplex requires the evaluation of the cost
function Jshape which is therefore performed many times during the convergence process.
Jshape is an integral over the whole image domain and involves a great calculation
complexity, which will significantly increase the calculation times with respect to the
gradient descent. It is nevertheless possible to limit the integral calculation of Jshape
within a narrow band in order to lower the calculation workload. The expression of the
energy of equation (4.54) then becomes:

Jshape (φ, ψ) =

∫

Ω
N (φ (x) , εb) (H (φ (x)) −H (ψ (x)))2 dx (5.3)

where the function N (φ (x) , εb) is equal to 1 if |φ (x)| ≤ εb, otherwise it is equal
to 0. The value of εb which is chosen arbitrarily is a trade-off between the calculation
complexity and the desired precision of the parameter estimation. Indeed, a broad band
would enable a good differentiation of shapes φ and ψ, which will guarantee a precise
and robust assessment of the parameters, but for a high calculation cost. A band that is
too narrow, on the contrary, will lead to a rapid convergence on an imprecise estimation,
or even a local minimum of the energy functional. A half-band of three pixels εb = 3 has
been found to be a satisfactory compromise. The only parameterization of the simplex
algorithm is relative to the construction of the initial simplex. The first vertex of the
simplex is calculated from a set of initial parameters ξini, the remaining vertices are
constructed by adding an individual variation δξ(i) into each of the parameters of ξini.
In the case of Tsim, four parameters have to be estimated. The simplex will therefore
have five vertices and its initial state will be:

✽ Initial vertex 1: calculated from (sini, θini, µx,ini, µy,ini)

✽ Initial vertex 2: calculated from (sini + δs, θini, µx,ini, µy,ini)

✽ Initial vertex 3: calculated from (sini, θini + δθ, , µx,ini, µy,ini)

✽ Initial vertex 4: calculated from (sini, θini, µx,ini + δµx , , µy,ini)

✽ Initial vertex 5: calculated from
(
sini, θini, µx,ini, µy,ini + δµy ,

)

The choice of values of δξ(i) conditions the size of the initial simplex and therefore its
capacity for estimating the parameters that are distant from ξini. The safest choice
is a relatively large initial simplex which will guarantee a better robustness of the
optimization but at the price of a higher calculation cost. The comparison of the two
algorithms on the basis of experimental results is given in section 5.5.2.

5.3 Fusion of exogenous terms in the attachment to the
data energy functional

Examination of figure 5.1 shows that the buildings represented in the panchromatic
satellite image are locally discriminated from the rest of the image, but not globally.
So, the radiometry of a building may be different from its immediate vicinity without,
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for all that, being discriminated from the rest of the image in the sense of the statistical
quantities such as the mean. These quantities are however used in the region-based
models that we have chosen. This difficulty, which is inherent to urban environments,
will make the convergence of the region-based active contour sensitive to initialization.
This will then have a greater risk of reaching a local minimum of the energy functional
to be minimized.

However the Digital Surface Model (DSM) that we have previously generated (see
chapter 3) seems to meet better the characteristics of the models chosen and based on
the region information. Indeed the intensity of the DSM pixels is proportional to the
altitude of the reconstructed objects, guaranteeing that the buildings will stand out from
their immediate surroundings, or from the rest of the image if the construction density
is not too high. It is possible to force the discrimination of a building represented in
the DSM by modifying the latter’s histogram. For our application, we have adopted
the following way of doing this:

IclippedMNS (x) =
1

2
max

x∈IMNS

(IMNS (x))

[
1 +

2

π
arctan

(
IMNS (x) −m+ s

ζ

)]
(5.4)

wherem is the mean altitude of the DSM within the cartographic polygon superimposed

with the DSM; s = ζ tan
(
π(2ratio−1)

2

)
guarantees that the pixels of the DSM of value

m will have an assigned value equal to max (IMNS (x)) × ratio. The value of ratio has
been set at 0.95 in our experiments. The variable ξ enables to set the slope of the arctan
function, the lower the value of ξ with respect to 1, the steeper the slope will be when
IMNS (x) = m−s, thus increasing the contrast between the building considered and the
objects that are not so tall. On the contrary, the building will have an intensity that is
only very slightly different from taller objects. We have chosen ζ = 0.5. Figure 5.1 shows
part of the original DSM and the result of the pre-processing formalized in equation
(5.4). It can be seen that the pre-processed DSM is more like a two-phase image in
the sense of the mean, and will have a better chance of working with the attachment
to data term of the Chan and Vese model or of the Bayesian model. However, the 3D
reconstruction of the DSM is very ”noisy”, there are a large number of unfilled pixels.
So, it would seem difficult to obtain a precise segmentation of the building using the
DSM alone.

We propose to merge the radiometric information from the satellite image and the
altitude information from the DSM to accomplish the building segmentation. This
merging of exogenous data is justified by the complementary representations of the
scene proposed by the remote sensing image and the DSM:

✽ In the satellite image, the boundaries of the building are most often easy to charac-
terize and the image has a very high signal-to-noise ratio. However the presence of
shadows, peripheral objects on the ground or partially masking the building make
segmentation difficult. The heterogeneity of the radiometry of the building’s roof
or environment may cause the attachment to data models based on homogeneous
regions to fail.
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(a) Satellite image (b) DSM (intensity of the image proportional
to the height)

Figure 5.1: Different representations of the same scene: satellite image and 3D recon-
struction

✽ Inversely, the DSM represents the boundaries of the building’s roof poorly because
the three dimensional reconstruction is delicate in places of altitude transitions.
However the problem of shadows and of peripheral objects located at the level of
the ground is eliminated. The building represented in the DSM is better discrim-
inated from the rest of the image.

These two representations complete each other in a satisfactory way. But, if we want
to merge them, they must fulfill certain consistency conditions:

1. The data must represent the same subject of interest: this poses the prob-
lem of the date of data acquisition. Since the data are exogenous, they are likely
to have been acquired at different times, times between which changes may have
occurred. So, a building represented in the DSM generated from the aerial images
taken in 1999 may have disappeared from the Quickbird image taken in 2002.
This consistency condition means that we must test the merging of the exogenous
data on areas where the object of interest in the scene is unchanged between the
acquisition dates.

2. Data must be superimposable: each pixel of the data to be merged must rep-
resent the same part of an object in the scene. This clause raises two questions.
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The first one concerns the precision of the data registration. In our case, the image
and the DSM are geocoded in the same cartographic system. The image has a
geocoding precision lower than the pixel whereas that of the DSM is equal to two
pixels. This seems sufficient, given that at the end of the active contour conver-
gence it is possible to reduce the influence of the DSM and thus give more weight
to the image which is the more reliable of the two. The second issue concerns the
geometry of the data to be merged. The DSM is in orthoscopic geometry whereas
the Quickbird satellite image is not. This will certainly cause superimposition
problems for the tall buildings which present a distortion due to the perspective
in the image: the roof and the footprint are then not superimposed, contrary to
the DSM. This will constrain us to only process the buildings that are not very
tall, in the absence of an orthoscopic satellite image.

If it is assumed that the two consistency conditions are verified, we merge the satellite
image and the DSM in the Chan and Vese’s region-based attachment to data energy
functional in the following way:

Jfusion,CV (φ) = JCV (φ)

+λMNS

[∫

Ω
|IDSM (x, y) − cDSM,in|2H (φ (x, y)) dxdy

+

∫

Ω
|IDSM (x, y) − cDSM,out|2 (1 −H (φ (x, y))) dxdy

]
(5.5)

where JCV is defined in equation (4.31), IDSM is the image of the DSM. The statis-
tical quantities indexed by DSM are defined as in (4.32-4.33) but while referring to the
DSM. The term that we have just added to the JCV functional is the Chan and Vese
attachment to data energy term relative to the DSM exogenous data term.

The extension of the Bayesian model of equation (4.44) is similar:

Jfusion,Bayes (φ) = JBayes (φ)

+λMNS

[∫

Ω

(
|IMNS (x, y) − cDSM,in|2

2σ2
DSM,in

+ ln
(
2πσ2

DSM,in

)
)
H (φ (x, y)) dxdy

+

∫

Ω

(
|IMNS (x, y) − cDSM,out|2

2σ2
DSM,out

+ ln
(
2πσ2

DSM,out

)
)

(1 −H (φ (x, y))) dxdy

]
(5.6)

It is also be conceivable to merge the DSM data term with the attachment to data
model based on the boundary information (GVF) (section 4.3.2.2). We choose to inte-
grate the DSM in the form of a region-based term. Indeed, the DSM better meets the
characteristic of a piecewise constant or homogeneous image. It would therefore seem
to be better justified using a model based on the region information rather than on the
boundaries. The integration in the GVF model of the DSM according to the Chan and
Vese model is equivalent to the following equation:

φ (x, t)t = −〈(u,v),∇φ (x, t)〉



CHAPTER 5. ROBUST SHAPE CONSTRAINED ACTIVE CONTOURS 99

−λMNSδa (φ (x, t))
{
− [IMNS (x) − cMNS,out (φ (x, t))]2

+ [IMNS (x) − cMNS,in (φ (x, t))]2
}

(5.7)

According to the models of equations (5.5) to (5.7), the active contour will move
in parallel on two images: the DSM and the satellite image, and will be a trade-off
between the information derived from these two representations and that of the prior
shape constraint. It should be noted that the precision of the DSM geocoding (' 1m) is
lower than that of the rectified Quickbird image which will be used as the most reliable
source of information (' 0.2m). We therefore cancel the weight λMNS at the end of
the convergence process so that the active contour is more faithful to the image. The
preliminary phase consisting of giving more credit to the DSM is intended to bring us
close to the final solution rapidly without the problems of local minima.

In [47], T. Guo moves a snake-type active contour on an orthoscopic remote sensing
image and a DSM taken by LIDAR. A notable difference with respect to our approach is
the utilization of an attachment to data term based on the boundaries in the altimetric
and satellite image, which required the use of artificial inflation forces. Furthermore,
no shape constraint was used and a DSM of higher quality, taken from a measurement
rather from a reconstruction, was used.

The contribution of the DSM for a lower sensitivity to local minima is presented in
section 5.5.5.1.

5.4 More flexible incorporation of the prior shape: spatio-

temporal flexibility of λ

Still with a view to making the map-to-image matching more robust, we discuss in this
section the influence of the weight λ which balances the image information and the
shape constraint in equations (4.48) and (4.64). The setting of this constant, which
weights the influence of the shape constraint, is not trivial for the following reasons:

1. Too weak a constraint would not allow the active contour to be regularized suffi-
ciently and it would thus be sensitive to the alterations to the image. This would
lead to an erroneous segmentation of the object which corresponds to a local min-
imum of the functional J of equation (4.48). In this case, the local minima, which
we will called “minima of the first kind”, are numerous.

2. On the contrary, an excessive preponderance of the shape constraint limits the
active contour’s possibilities for escaping from the local minima of the functional
to be minimized J . In this type of situation, it will cost the active contour more
to deform itself to reach the target in the image than to rest motionless and faith-
ful to the shape imposed by the constraint. The chosen solution is therefore a
local minimum (of the second kind) which corresponds also to a poor segmenta-
tion/matching of the object in the image.
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Determining beforehand an optimal value λopt of the constraint weight appears to be
a delicate task since it would depend both on the image and on the degree of alter-
ation that it comprises; these characteristics are not, nevertheless, known in advance.
In the context of medical imaging, Y. Chen proposes to try several values of the shape
constraint weight and to adopt the value corresponding to the best solution assessed
thanks to radiometric profiles [22]. This solution would seem to be sub-optimal since
λopt is not estimated with certainty and, furthermore, the segmentation process must
be repeated several times. Lastly, the delicate setting of λ is all the more difficult when
the objects in the processed images are not well differentiated from the background. In
this case, the information relative to the image is weakened compared with the shape
constraint which becomes predominant, which increases the occurrence of local minima
of the second kind. This effect is all the more significant when the active contour is
initialized too far from the object to be found in the image.

To solve the problem of local minima inherent to an under or over-estimation of
the shape constraint, we propose to convert the constant weight λ of equations (4.48)
and (4.64) into a space function. The goal of this type of function is to relax the
influence of the constraint in the vicinity of level 0 of the level set ψ, while keeping
a strong and uniform constraint far from the prior shape. This provides a greater
freedom and flexibility for the active contour which nevertheless remains bounded in
space. Consequently, the active contour will be able to globally resemble the prior shape
while allowing local variations. This flexibility is a determining factor for avoiding the
local minima of the second kind. We propose to formalize the spatial profile of relaxation
as a symmetrical function of the distance to the prior shape:

λspace (ψ (x)) = λ

(
1 − e

−
“

ψ(x)
d

”2)
(5.8)

The spatial relaxation function of equation (5.8) is null on the loci of the shape constraint
and asymptotically tends towards the constant λ far from the prior shape represented
by ψ. The parameter d controls the size of the relaxation space. This formulation does
not have any theoretical justification and other simpler expressions could satisfy the
relaxation criteria. In section 5.5.5.2 we will verify experimentally that the derivability
and the steady point of λspace in ψ (x) = 0 improve the insensitivity to the local minima.

The existence of the relaxation space parameterized by d is intended to prevent the
active contour from being subject to the local minima of the second kind. However,
the freedom granted to the active contour in the relaxation space will not make it
possible to avoid the minima of the first kind. To resolve this problem, we propose to
reduce the relaxation space at a later time (from t1). When this space decreases, the
efficiency of the shape constraint is restored uniformly over the image domain. The
idea is therefore to achieve a coarse segmentation of the image’s object with spatial
relaxation (t < t1), and then to re-establish the uniform prior shape subsequently to
overcome the alterations to the image (t ≥ t1). The weight of the shape constraint thus
becomes a function of space and of the iterative process’s artificial time. The reduction
of the relaxation space is achieved by replacing the constant d with a piecewise linear
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function and decreasing as a function of time:

d (t) =





d0 if t < t1
(ε− d0)

t−t1
t2−t1

+ d0 if t1 ≤ t < t2
ε if t2 ≤ t

(5.9)

where (d0, ε, t1, t2) ∈ R
∗+ with d0 > ε and ε � 1. d0 is a constant that determines

the initial size of the relaxation space and t2 sets the speed of the decrease. In section
5.5.5.2 we will see that a simpler time decrease of the Heaviside step type is less efficient
because of the inertia due to the estimation of the parameters of Tsim.

Finally, we strengthen the spatial relaxation and the restoration of the uniform
constraint by replacing the factor λ of equation (5.8) by an increasing time function
λa (t) which will control the overall amplitude of the spatio-temporal function of the
shape constraint weight. During the relaxation phase (t < t1), the value is minimal to
provide greater flexibility to the active contour. From t1, the amplitude increases to
reach a maximum which will strengthen the re-establishment of the constraint in order
to overcome the alterations to the image. The spatio-temporal function of the shape
constraint’s weight is finally:

λflex (ψ (x) , t) = λa (t)

(
1 − e

−
“

ψ(x)
d(t)

”2)
(5.10)

where λa (t) varies between λmin and λmax with a profile opposed to that of equa-
tion (5.9). Figure 5.2 illustrates the spatio-temporal function λflex (ψ (x) , t) in three
dimensions.

Figure 5.2: Spatio-temporal variation of the function weighting the shape constraint.
d0 = 3, t1 = 100, t2 = 400, λmin = 1.25 et λmax = 2.
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5.5 Application and analysis of the experimental results

This section presents the result obtained with the three innovations proposed, that is to
say the estimation of the global transformation’s parameters by the simplex algorithm,
fusion of exogenous data in the attachment to data term of the active contours and lastly
the spatio-temporal variation of the shape constraint. We will compare these results with
the most conventional models and will examine to what extent the solutions that we have
proposed make it possible to overcome the problem of local minima. Lastly, we will not
restrict ourselves to the remote sensing domain and will illustrate the results obtained
with images used in Computer Vision and in medical imaging. These images share the
same characteristics as the satellite images in an urban environment: a lack of overall
discrimination of the object to be extracted with respect to the image’s background.

5.5.1 Experimental protocol

In all the experiments described below, the active contour and the prior shape have the
following characteristics:

1. The prior shape represented by the level set ψ0(x) corresponds exactly to the
boundaries of the object to be segmented/matched in the image.

2. The initial active contour represented by the level set φ(x, t = 0) is similar to the
prior shape ψ0(x). It is then transformed by a similarity Tsim whose parameters
are ξ0 = (s0, θ0, µx,0, µy,0). The goal of this type of transformation is to create
a geometric deviation between the initial active contour and the image’s target
object in order to examine the method’s matching capability.

In some cases, we will illustrate the active contour’s evolution from the initial state to
the final convergence in the form of a sequence either going from left to right or from
top to bottom.

5.5.2 Simplex vs gradient descent comparison for estimating Tsim pa-
rameters

In order to compare the performances of the two algorithms, let us consider the follow-
ing experiment: a prior shape ψ0 is chosen from the two examples in figure 5.3. The
active contour represented by φ and transformed by Tsim will not move over time (no
external force due to the image is used, we only work in the shapes’ space).

The goal is to determine whether the two methods manage to estimate ξ0 by mini-
mizing the energy given in equation (5.3).
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(a) (b)

Figure 5.3: Prior shapes (in white, {x/ψ0 (x) = 0}) and their associated level sets (gray
levels, |ψ0 (x)|). (a) toy (b) L-shaped building.

The number of iterations required to achieve convergence and the calculation time
will be compared. We carry out the same experiment several times with different
initializations(s0, θ0, µx,0, µy,0):

1. Translation only: ξ0,1 = (1, 0, 10,−5).

2. Rotation only: ξ0,2 = (1, π/3, 0, 0).

3. Scaling only: ξ0,3 = (1.2, 0, 0, 0).

4. Direct plane similarity: ξ0,4 = (1.2, π/3, 10,−5).

In the experiments carried out, we placed the accent on the robustness of the opti-
mizations by working with a narrow band of 11 pixels. The calculation times will be
high, but the goal of these experiments is to compare the two algorithms rather than
their absolute performances. The simplex and the gradient descent will have converged

when they verify the criterion:
∣∣∣Jn+1
shape − Jnshape

∣∣∣ < 10−4. The two algorithms were

parameterized as follows:

1. Gradient descents: ∆ts = 5.10−7, ∆tθ = 2, 5.10−7, ∆tµx = 2, 5.10−3 and ∆tµy =
2, 5.10−3

2. Simplex: δs = 0.25, δθ = π, δµx = 10 and δµy = 10

Tables 5.1 and 5.2 respectively give the results obtained with the gradient descent and
the simplex. The first thing we note is the robustness of the simplex which estimates ξini
correctly in every situation. The gradient is more sensitive to the local minima of the
energy functional Jshape and therefore fails in three cases to provide a correct estimation
of the parameters. The second remark concerns the calculation time. The simplex
has shown itself to be much more efficient than the gradient descent. The number of
iterations required to achieve convergence is lower with, in these experiments, a higher
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speed varying between a ratio 5 to 68. The main reason for the slowness of the gradient
descent is the numerical stability. A small time step must be used for each descent in
order to meet the stability conditions, with the risk of the system becoming unstable
or divergent. It is nevertheless important to note that a slightly different setting of the
time steps could provide slightly faster or slightly longer convergences. The results in
table 5.1 must therefore be qualified but they do give an order of magnitude concerning
the convergence times.

Absolute error

Shape Experiment ∆θ in rad ∆s ∆µ in pixels Iterations Time (s)

ξ0,1 0 0 0 440 15
Toy ξ0,2 0.8 1.05 (−14.3,−3.17) 1680 58

ξ0,3 0 0 0 550 21
ξ0,4 0.8 1.05 (−14.3,−3.17) 2780 98

ξ0,1 0 0 0 420 11
L-shaped ξ0,2 0 0 0 2750 68
building ξ0,3 0 0 0 330 8

ξ0,4 0.3 1.51 (16.47, 12.54) 1170 30

Table 5.1: Absolute error between ξ0 and its estimate ξ̂0 by the gradient descent algo-
rithm and calculation time.

Absolute error

Shape Experiment ∆θ in rad ∆s ∆µ in pixels Iterations Time (s)

ξ0,1 0 0 0 338 3
Toy ξ0,2 0 0 0 251 3

ξ0,3 0 0 0 204 3
ξ0,4 0 0 0 390 3

ξ0,1 0 0 0 201 <1
L-shaped ξ0,2 0 0 0 312 1
building ξ0,3 0 0 0 216 1

ξ0,4 0 0 0 276 1

Table 5.2: Absolute error between ξ0 and its estimate ξ̂0 by the simplex algorithm and
calculation time.

5.5.3 Contribution of the prior shape knowledge for segmentation

In this section, we compare the performances of the active contours chosen in section
4.3.2 with and without incorporation of prior shape information. The goal is to illus-
trate the need for using the knowledge of the shape in order to correctly segment an
object whose representation is altered in an image.

Figure 5.4 shows the results obtained with the Chan and Vese model and the
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Bayesian model with a building meeting the homogeneity criterion. In this experi-
ment, the initial active contour has not undergone any transformation (ξ0 = 0) and is
therefore exactly superimposed over the U-shaped building in the image. Despite an
initialization of the active contour that matches the desired solution, it failed to seg-
ment the considered building. It can be seen in this case that the behavior of the active
contour is as expected on the image’s low-contrast areas: the contour “leaks” and then
propagates itself throughout the image, encompassing the zones that have the same
statistical properties. These results also illustrate a more selective segmentation of the
Chan and Vese model due to its restriction to the partitioning of the image’s constant
zones. The Bayesian model, which is more permissive, segments a homogeneous and
more extensive zone of the image.

(a)

(b)

Figure 5.4: Segmentation without insertion of prior shape information and ξ0 = 0. (a)
Chan and Vese model (b) Bayesian model.

The experiments shown in figure 5.5 were conducted under the same initial condi-
tions and the same models as in figure 5.4. However, the incorporation of prior shapes
is taken into account. In this case we can see that the results are similar whatever
the model used: a satisfactory segmentation is obtained and the artifacts due to the
low-contrast zones are overcome. It was found necessary to opt for a different shape
constraint weight λ according to the attachment to data model used. The empirical
choice of λ is a trade-off between the information contained in the image and the prior
shape constraint. If λ is too low, the active contour is free to be influenced by the
attachment to data term which is likely to be corrupted by the noise, the occlusions or
other urban artifacts. Inversely, too great a weight would be equivalent to minimizing
the contribution of the image which leads the contour towards the building that we
are attempting to segment. The active contour would therefore loose in flexibility and
would be more inclined to reach the local minima of the functional to be minimized (we
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will examine this point in section 5.5.4). If a weight λ = 1 is suitable for the Chan and
Vese model, it is insufficient for the Bayesian model. Indeed, this latter model differs
from that of Chan and Vese by the normalization of the image terms by the variance
inside and outside the active contour. Whereas the outside of the active contour in
the image is more “disordered” than the homogeneous building that we are seeking to
segment, we have in a general way: σ2

in (t) < σ2
out (t). When the contour converges on

the homogeneous target we have σ2
in (t) � 1: the division by this term then drastically

increases the attachment to data term inside C (t). To counter this effect, we choose a
higher value of λ (λ = 10).

(a)

(b)

Figure 5.5: Segmentation with insertion of prior shape information: (a) Chan and Vese
model and λ = 1 (b) Bayesian model and λ = 10.

The need to use the knowledge of the prior shape is once again illustrated in figure 5.6
with the active contours based on the diffused image gradient information (GVF). Un-
like with the experiments in figures 5.4 and 5.5, the initial active contour is not exactly
superimposed over the object to be matched in the image: the initial contour has under-
gone a parameter transformation ξ0 = (s0 = 1.1, θ0 = 0.1, µx,0 = −4, µy,0 = 1). Figure
5.6.a shows that the segmentation of the building fails in the absence of a shape con-
straint. As we have already noted with the region-based active contours, the deformable
model without constraints is too free and becomes sensitive to the artifacts of the urban
images. In the case of figure 5.6.a, the great number of details produces numerous zones
of high gradients which attract the active contour and distance it from the boundaries
of the building. Figure 5.6.b shows the improvement brought by the shape constraint:
the building in the image is correctly segmented despite an initialization that is far
from the initial active contour. The invariance by direct plane similarity of the shape
constraint makes it possible to overcome the initial superposing errors thanks to the
dynamic estimate of the Tsim parameters.
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(a)

(b)

Figure 5.6: Segmentation with an edge-based active contour (GVF) and
ξ0 = (s0 = 1.1, θ0 = 0.1, µx,0 = −4, µy,0 = 1): (a) result without any prior shape con-
straint. (b) result with prior shape constraint (λ = 5).

5.5.4 Sensitivity to the initialization of the shape constrained active
contours

The evolution of the active contours minimizes an energy functional by gradient descent.
This optimization is global and not local. Thus, all the possible configurations of the
contour in the image will not be tested so as to minimize the energy functional. On the
contrary, the active contour must be initially close to the final solution so that it can
converge on it. So, a non-null overlap between the initial contour and the target in the
image is essential. In this section, we examine the sensitivity of the shape constrained
active contours with respect to the initialization in order to assess the robustness of the
algorithms and their capacity for solving the map-to-image matching problem. Never-
theless, we only examine a single class of initial matching error: the one that can be
modeled by direct plane similarity.

5.5.4.1 Comparison of the region-based models

Figures 5.7 to 5.12 illustrate the sensitivity of the Chan and Vese and Bayesian models
with respect to the initialization of the active contour. Figure 5.7 shows that the
Chan and Vese model is not sensitive to a weak translation on the three examples
illustrated.Figures 5.8.a and 5.8.c show that if the matching of the rectangular buildings
does not seem to pose any problem with an initial rotation of 0.3 rad, we can see,
however, that that of the U-shaped building has failed (figure 5.8.b). There are two
reasons for this:

✽ The first one is relative to the images that we use. In a dense urban environment,
a building considered does not stand out singularly from its environment. Thus,
if the initialization is too distant, a convergence on the desired object may be
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highly random. This convergence is made even more hazardous for the Chan
and Vese model where the only statistical quantity examined is the mean. It is
very possible that during the iterative process, cin (φ (x, t)) ' cout (φ (x, t)) which
would result in the active contour being immobilized, preventing the matching
(local minimum).

✽ The second reason is inherent to the shape constraint term. It is possible that
the attachment to data term makes the active contour tend towards a state that
does not belong to the space of shapes authorized by the shape constraint energy.
So, even if the object represented in the image is the solution minimizing the
energy functional, it is probable that it will cost more for the shape constraint
term to come close to it than the gain made by the attachment to data energy. We
then reach a status quo between these two antagonistic forces, making the active
contour converge on a local minimum of the energy functional.

The Chan and Vese model seems to be very sensitive to a variation of the scaling
factor. This is a convincing manifestation of the lack of radiometric discrimination of
the building to be matched in the image in the sense of the mean (figures 5.9.a and
5.9.b).
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(a) (b) (c)

Figure 5.7: Sensitivity to translation: segmentation with the Chan and Vese model
incorporating a shape constraint. The initial active contour of experiments (a),
(b) and (c) has been transformed by a direct plane similarity of parameters ξ0 =
(s0 = 1.0, θ0 = 0.0, µx,0 = 5, µy,0 = 5).
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(a) (b) (c)

Figure 5.8: Sensitivity to rotation: segmentation with the Chan and Vese model
incorporating a shape constraint. The initial active contour of experiments (a),
(b) and (c) has been transformed by a direct plane similarity of parameters ξ0 =
(s0 = 1.0, θ0 = 0.3, µx,0 = 0, µy,0 = 0).
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(a) (b) (c)

Figure 5.9: Sensitivity to the scaling factor: segmentation with the Chan and Vese
model incorporating a shape constraint.
(a) ξ0 = (s0 = 1.5, θ0 = 0.0, µx,0 = 0, µy,0 = 0);
(b) ξ0 = (s0 = 0.8, θ0 = 0.0, µx,0 = 0, µy,0 = 0);
(c) ξ0 = (s0 = 1.5, θ0 = 0.0, µx,0 = 0, µy,0 = 0).
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The results obtained with the Bayesian model in figures 5.10.b and 5.10.c are similar
to those obtained with the Chan and Vese model concerning the sensitivity with respect
to translation. However, we note that the segmentation of the first rectangular building
fails (figure 5.10.a). This is inherent to the Bayesian model which is more permissive
and authorizes the segmentation of objects of non-uniform intensity. This flexibility of
the model associated with a shape constraint that is too great (λ = 10) makes it possible
to explain the erroneous result obtained. We will see in section 5.4 how to solve this
problem with a variable weight λ. As for the rotation (figure 5.11), it can be seen that
the matching of the U-shaped building has succeeded (figure 5.11.b), just as that of the
rectangular buildings has, whereas the Chan and Vese model has failed (figure 5.8.b).
As we have mentioned earlier, the normalization by the variance of the image inside the
active contour makes it possible to render the attachment to data term preponderant in
order to overcome the shape constraint term which had tended to create local minima.
Like with the Chan and Vese model, the sensitivity test with respect to the scaling
factor fails for the experiments in the experiments in figures 5.12.a and 5.12.b. This is
due to a poor initialization and a lack of discrimination of the building in the image.
On the contrary, since the light-colored building in the third experiment is singularly
different from the rest of the scene, the segmentation succeeds whatever the model used
(figure 5.12.c).
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(a) (b) (c)

Figure 5.10: Sensitivity to translation: segmentation with the Bayesian model and
shape constraint. The initial active contour of experiments (a), (b) and (c) has been
transformed by a direct plane similarity of parameters
ξ0 = (s0 = 1.0, θ0 = 0.0, µx,0 = 5, µy,0 = 5).
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(a) (b) (c)

Figure 5.11: Sensitivity to rotation: segmentation with the Bayesian model and shape
constraint. The initial active contour of experiments (a), (b) and (c) has been trans-
formed by a direct plane similarity of parameters
ξ0 = (s0 = 1.0, θ0 = 0.3, µx,0 = 5, µy,0 = 5).
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(a) (b) (c)

Figure 5.12: Sensitivity to the scaling factor: segmentation with the Bayesian model
and the shape constraint.
(a) ξ0 = (s0 = 1.5, θ0 = 0.0, µx,0 = 0, µy,0 = 0)
(b) ξ0 = (s0 = 0.8, θ0 = 0.0, µx,0 = 0, µy,0 = 0)
(c) ξ0 = (s0 = 1.5, θ0 = 0.0, µx,0 = 0, µy,0 = 0).
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5.5.4.2 Edge-based model

Figure 5.13 shows the matching result with the active contour based on the image’s GVF.
The illustrated matchings in this figure are satisfactory. It should however be noted
that the initialization error is small. With a more distant initialization, the constrained
segmentation fails (figure 5.14). These experiments demonstrate that even with the
spatial distribution of the gradient information, the active contour remains sensitive to
the initialization. The reason is the profusion of details surrounding the building which
easily trap the active contour in a local minimum of the energy functional.
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(a) (b) (c)

Figure 5.13: Sensitivity to initialization: segmentation with an active contour based on
the contour information (GVF) and with the shape constraint.
(a) ξ0 = (s0 = 1.1, θ0 = 0.1, µx,0 = −4, µy,0 = 1)
(b) ξ0 = (s0 = 1.0, θ0 = −0.1, µx,0 = −1, µy,0 = −2)
(c) ξ0 = (s0 = 1.0, θ0 = 0.1, µx,0 = 0, µy,0 = 2).
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(a) (b) (c)

Figure 5.14: Sensitivity to a distant initialization: segmentation with an active contour
based on the contour information (GVF) and with the shape constraint.
(a) ξ0 = (s0 = 1.1, θ0 = 0.25, µx,0 = −4, µy,0 = 1)
(b) ξ0 = (s0 = 1.0, θ0 = −0.25, µx,0 = −2, µy,0 = −3)
(c) ξ0 = (s0 = 1.0, θ0 = 0.1, µx,0 = −2, µy,0 = 2).
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5.5.5 Solutions for a lower sensitivity to the initialization and to the
local minima

The experiments in the previous section have shown that the active contours used were
sensitive to a distant initialization with respect to the object to be segmented in the
image. We explain this sensitivity by the lack of discrimination of the object of interest
with respect to the rest of the image and by the presence of the shape constraint which
is inclined to make the contour converge on the local minima. In this section, we
present the results concerning the fusion of the DSM with the satellite image and the
spatio-temporal shape constraint. We will examine experimentally to what extent these
two solutions resolve the problem of the local minima which prevent from an efficient
matching.

5.5.5.1 Results with fusion of the exogenous data into the attachment to
data term

Figure 5.15 illustrates the result obtained with the U-shaped building and the models
proposed in equations (5.5) and (5.6). Despite the initialization intentionally made
far from the building in the image, the matching succeeds. This shows that the good
discrimination of the building in the DSM manages to lead the active contour to the
target in the image. At the end of convergence, the contribution of the DSM is relaxed to
give more weight to the image in which the boundaries of the building are better defined.
Figure 5.16 illustrates the same experiment as figure 5.15 but without integration of the
DSM. It can be seen that in this case the active contour does not manage to segment
the building.
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(a)

(b)

Figure 5.15: Successful matching with a distant initialization and insertion of the ex-
ogenous DSM in the energy functional. (a) Chan and Vese model, (b) Bayesian model.

Figure 5.16: Failed matching with a distant initialization and the Chan and Vese model
(no incorporation of the DSM).

The comparison of figures 5.17 and 5.18 illustrates the efficiency of the proposed
method. In the experiment in figure 5.18 where only the satellite image directs the
active contour (Bayesian model), the matching fails. The distant initialization and the
presence of shadow explain the result obtained. The shadow is an artifact that is absent
from the DSM which then manages to direct the contour to the correct solution (figure
5.17).
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Figure 5.17: Successful matching with a distant initialization and insertion of the exoge-
nous DSM in the energy functional (GVF model for the image, Chan and Vese model
for the DSM).

(a) Etat initial (b) Etat final: segmentation incorrecte

Figure 5.18: Failed matching with a distant initialization and the Chan and Vese model
(no incorporation of the DSM).

Lastly, the experiment in figure 5.19 illustrates the complementarity of the region
information from the DSM (Chan and Vese) and from the boundary extracted from the
image’s segments (GVF). The force derived from the DSM manages to bring the active
contour close to the final solution by overcoming the artifacts likely to trap an active
contour only moved by the image’s gradients. The building is, in the end, successfully
segmented (figure 5.19), unlike the case of figure 5.20 without incorporation of the DSM.
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Figure 5.19: Successful matching with a distant initialization and insertion of the exoge-
nous DSM in the energy functional (GVF model for the image, Chan and Vese model
for the DSM).

(a) Initial state (b) Successful matching

Figure 5.20: Failed matching with a distant initialization and the GVF model.

The last advantage of DSM fusion concerns the reduced convergence time. Table 5.3
compares the convergence times with and without merging of the DSM thanks to the
calculation of their ratio. The experiments performed to establish these comparisons
were carried out with buildings of figures 5.7.a and 5.7.b with different initializations.
We see that the convergence times are shorter with the DSM fusion. This improvement
is due to the great discrimination of the building in the DSM compared with the image.
So, the joint utilization of the DSM makes it possible to surely and more efficiently lead
the active contour to the target object in the image. The results in table 5.3 depend on
the initialization of the active contour and of the image being analyzed. Nevertheless,
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they show a real tendency to improve the efficiency.

Experiment ratio

U-shaped building, experiment 1 1.4

Rectangular building, experiment 1 1.3

U-shaped building, experiment 2 2.5

Rectangular building, experiment 2 1.3

Table 5.3: Ratio between the convergence times without and with DSM merging, ratio =
twithout fusion
twith fusion

.

5.5.5.2 Results with a spatio-temporal shape constraint

The experiment illustrated in figure 5.21 reproduces the experiment in figure 5.10.a
with the spatio-temporal weight of the shape constraint expressed in equation (5.10).
The amplitude of the constraint weight varies between λmin = 3 and λmax = 30 when
the initial non-interaction distance is d0 = 7 pixels. Whereas the matching of the
rectangular building failed with a constant shape constraint weight and the Bayesian
model (figure 5.10.a), it succeeds with its formulation which varies according to space
and time (figure 5.21). The second image in the sequence illustrates the first phase of the
algorithm: since the weight is low, the contour can undergo topological changes in order
to segment the areas with similar radiometry. This segmentation is obviously limited
in space. The third image in the sequence illustrates the second phase: the weight
increases gradually and continuously which tends to penalize and therefore reduce the
surface of the second region that appeared in the previous step. Finally, the contour
converges on the correct solution.

Figure 5.21: Segmentation with a spatio-temporal variation of the shape constraint and
the Bayesian model (λmin = 3, λmax = 30, d0 = 7).

Figure 5.22 shows a successful matching with an initialization that is distant from
the target in the image. The difficulty of the scene is the presence of a neighboring
building (square) with radiometric properties that are similar to those of the building
of interest. When a constant constraint weight is used (figure 5.23), we note that this
peripheral building is also segmented, preventing a satisfactory matching. Inversely,
the spatio-temporal constraint of the shape constraint provides the active contour with
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sufficient flexibility to authorize a change of topology to achieve a coarse segmentation
of the object (second image in the sequence in figure 5.22). When the uniform constraint
is restored at a later time, the local errors in the segmentation situated in the relaxation
space are eliminated and a successful matching is finally achieved.

Figure 5.22: Segmentation with a spatio-temporal variation of the shape constraint and
the Bayesian model (λmin = 27, λmax = 70, d0 = 7).

Figure 5.23: Segmentation with a constant shape constraint weight and the Bayesian
model (λ = 50).

The experiments shown in figure 5.24 reproduce with a flexible constraint the ex-
periments that failed in figure 5.14 with a constant shape constraint weight and the
edge-based model (GVF). The improvement due to the constraint variation is more
subtle with the GVF model. In the first case (figure 5.24.a), the adaptive weight does
not make it possible to obtain a correct matching, whereas it is efficient with the other
two examples. With an edge-based active contour based on the image’s gradient, the
spatio-temporal weight does not make it possible to achieve a successful matching with
an initialization that is too distant. Indeed, these deformable models are affected by the
image’s local information, which is a problem when the shape constraint is relaxed. So,
it is probable that the contour remains trapped during the period when the constraint
weight is low, which prevents us from coming close to the building to be matched in the
image.
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Figure 5.24: Spatio-temporal variation of lambda with the GVF model and λmin = 1,
λmax = 5, d0 = 5:
(a) ξ0 = (s0 = 1.1, θ0 = 0.25, µx,0 = −4, µy,0 = 1)
(b) ξ0 = (s0 = 1.0, θ0 = −0.25, µx,0 = −2, µy,0 = −3)
(c) ξ0 = (s0 = 1.0, θ0 = 0.1, µx,0 = −2, µy,0 = 2).
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In figure 5.25 we propose to conduct experiments with images that do not belong
to the remote sensing domain. These images present the same difficulties as the remote
sensing data in an urban environment, that is to say a lack of discrimination of the
object of interest with respect to its environment. The experiments with images 5.25.a
and 5.25.b show the efficiency of the flexible shape constraint weight with the Bayesian
model. The utilization of a constant weight prevents a successful matching: the con-
tour’s lack of flexibility quickly makes it founder in a local minimum of the energy
functional (figure 5.26).

(a)

(b)

Figure 5.25: Segmentation with spatio-temporal variation of the shape constraint weight
(Bayesian model): (a) λmin = 15, λmax = 100, d0 = 15 (b) λmin = 50, λmax = 100,
d0 = 10.

(a) (b)

Figure 5.26: Failed matching with a constant shape constraint weight (Bayesian model):
(a) λ = 20 (b) λ = 70 .
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Lastly, we propose experiments with different ways of making the shape constraint
vary according to space and time. The experiment shown in figure 5.27.a reproduces the
one in figure 5.22.a but without spatial relaxation of the constraint, only the temporal
variation in amplitude of equation (5.10) is used. We note that contrary to the spatio-
temporal case, the segmentation fails. The absence of relaxation in this case does
not allow the active contour to be sufficiently flexible to coarsely segment the object of
interest before the restoration of the uniform constraint. The utilization of a lower value
λmin to provide greater flexibility would fail insofar as the flexibility given would not be
spatially bounded. The contour would then segment the peripheral objects that have
the same statistical properties as the target. The experiment in figure 5.27.b reproduces
the experiment shown in figure 5.25.b. A spatio-temporal weight is also used, but with
a simpler formulation of the spatial profile:

λflex(ψ(x), t) = λa (t)

{
|ψ(x)|
2d(t) if |ψ(x)| < 2d(t)

1 otherwise
(5.11)

where ψ is the shape constraint level set, d(t) and λa (t) are defined in equation (5.10).
The piecewise linear formulation of the spatial relaxation of equation (5.11) is certainly
more intuitive than that of equation (5.10). Nevertheless, the experiment in figure
5.27.b using this type of formulation fails. The problem with this type of profile is an
excessive strengthening of the shape constraint in the vicinity of the level zero of ψ.
So, the constraint is not relaxed as much as with the presence of a steady point of the
exponential formulation in equation (5.10). Increasing the size of the relaxation space d0

would not be a viable solution since when the latter is too extensive, the active contour
would be likely to be influenced by the surrounding artifacts and objects, preventing the
coarse segmentation of the object of interest before the re-establishment of the uniform
constraint. The advantage of the spatial profile of equation (5.10) is that it authorizes a
great relaxation very close to the prior shape while keeping a high constraint at a greater
distance. Lastly, the experiment in figure 5.27.c repeats the experiment in figure 5.22.a
with a simpler formulation of the temporal profile. The temporal variations of λa (t)
and d(t) are replaced by Heaviside step functions that are respectively increasing and
decreasing. The restoration of the shape constraint is thus achieved abruptly and not
gradually. In this case, figure 5.27.c shows that the segmentation fails. The reason
for such a result concerns the dynamic estimation of the Tsim parameters enabling the
invariance of the shape constraint from direct plane similarity. Whereas the relaxation
space is effective, the active contour coarsely segments the object of interest in the image.
The bounded spatial variations of the active contour with respect to the reference shape
may slightly bias the estimation of the Tsimparameters. So, when the uniform constraint
is restored suddenly, the active contour resembles the reference shape transformed by
Tsim whose parameters are poorly estimated. Consequently, the active contour may
be found far from the object to be segmented in the image and with a uniform and
strong shape constraint, which makes it very sensitive to the local minima that we are
seeking to avoid. Inversely, a gradual re-establishment of the shape constraint enables
the estimator of the Tsim parameters (here the simplex) to make an estimation that is
less and less biased whereas the active contour converges on the target (figure 5.27.c).
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(a) (b) (c)

Figure 5.27: Failed matching (Bayesian model) with: (a) single temporal variation of
the shape constraint with λmin = 30, λmax = 70 (no spatial relaxation); (b) spatio-
temporal variation of the shape constraint with a spatial profile defined in equation
(5.11) and λmin = 27, λmax = 70, d0 = 7 ; (c) spatio-temporal variation of the shape
constraint with Heaviside step functions for λa (t) and d(t).

Besides the possibility of ensuring a more robust convergence, the spatio-temporal
flexibility of the shape constraint weight also makes it possible to significantly speed
up the calculation time (tableau 5.4). Indeed, during the first phase, the weak shape
constraint provides a sufficient degree of flexibility so that it efficiently comes close to
the target in the image. The uniform and constant constraint which tends to slow
down the contour’s movement is only re-established at the end of the process to regu-
larize the segmentation. Table 5.4 compares the convergence times without and with
a spatio-temporal variation of the shape constraint using the calculation of their ratio.
Like for the case of fusion of exogenous data, the experiments performed to establish
these comparisons were carried out with the buildings in figure 5.7.a and 5.7.b with
different initializations. Like with the results with DSM fusion, the tendency shown is
an improvement in efficiency, which also depends on the initialization and on the scene
being analyzed. .

Experiment ratio

U-shaped building, experiment 1 1.8

Rectangular building, experiment 1 3.1

U-shaped building, experiment 2 4.3

Rectangular building, experiment 2 2.0

U-shaped building, experiment 3 2

Rectangular building, experiment 3 1.3

Table 5.4: Ratio between the convergence times without and with spatio-temporal shape
constraint: ratio =

tuniform constraint

tspatio−temporal constraint
.
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5.6 Limits of the model with shape constraint

Digital maps are often tainted with errors because they are the result of manual process-
ing, which is in fact imperfect and subjective. If these errors can be modeled by compo-
sition of a translation, rotation and scaling, our method will be capable of overcoming
this since the shape constraint energy term is invariant from direct plane similarity.
Usually the errors observed on the map are local and cannot be modeled and corrected
by a global transformation (see section 2.3 detailing the errors of Uinterpretation). It
is therefore possible that in places, the cartographic object and its homologous repre-
sentation in the image may be incoherent without obeying any particular rules (figure
5.28).

Figure 5.28: Superimposition of the ground truth (grayed) and a locally erroneous
cartographic polygon.

The cartographic errors will have an impact and will make themselves felt on the
results of the segmentation as illustrated in figures 5.29 and 5.31. In figure 5.28 we
can see that a correction involving a rotation would improve the match between the
map and the ground truth made by hand. However, the local inconsistencies remain:
the central bar of the U-shape is not wide enough on the map, the left-hand bar is not
long enough either, whereas the size of the right-hand bar seems to be correct even if
it appears to be too wide. The result of the matching with a locally erroneous map
is then a trade-off between the image and the corrupted shape constraint. Figure 5.29
illustrates the example of the U-shaped building with the Bayesian model. Figures 5.30
and 5.31 illustrate the result with the GVF-based model without errors on the map
(figure 5.30) and with local shape errors (figure 5.31). The presence of local errors
in the map is a problem since we will use them to assist and constrain the matching
process. In the next chapter we will propose to overcome this obstacle by making the
incorporation of the shape constraint more flexible.
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Figure 5.29: Final convergence of the active contour with an erroneous prior shape.

(a) Map-to-image initial superimposition (b) After matching

Figure 5.30: Matching by GVF-based active contour and with a non-erroneous prior
shape.
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(a) Map-to-image initial superimposition (b) After matching

Figure 5.31: Matching by GVF-based active contour and with an erroneous prior shape
derived from the map.

5.7 Conclusion

The goal of this chapter was to show the contribution made by the insertion of the
shape constraint for the fine map-to-image matching by active contours. The proposed
matching technique makes it possible to match individually each building symbolized
on the map on its homologous representation in a high-resolution panchromatic satellite
image. The end-purpose is to reduce the exogenous map-to-image variabilities in order
to improve the consistency between these two representations enabling a more reliable
later detection of non-change.

Experimental results enabled to measure the contribution of the prior shape derived
from the map in order to compensate for the difficulties inherent to urban images. Three
types of active contours were used and they showed a certain sensitivity to initializa-
tion and to the local minima of the minimized energy functional. We have proposed
two solutions to make the deformable models more robust. The first one concerns the
injection of an orthoscopic DSM in the attachment to data energy and allows a better
discrimination of the constructed layer with respect to the ground in the image. The
force derived from the data in the DSM then directs the active contour more surely
and efficiently towards the building in the image. The second contribution consists of
spatially and temporally relaxing the shape constraint during the convergence process.
The spatially bounded flexibility given to the active contour authorizes an approximate
segmentation of the object in the image before being specifically regularized by the
restoration of a uniform constraint. Experimental results have shown the efficiency of
these two approaches with a reduction of the computational times. An alternative to
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the gradient descent has also been proposed in order to ensure the invariance of the
shape constraint from global transformations. Our alternative based on the simplex
technique has been found to be more robust and efficient in terms of calculation times
than the conventional descent method.

Lastly, we have assumed that the prior shape used as a constraint represented exactly
the object to be matched in the image. We have not yet looked at the problem of
possible disparities between the overall shape of the building in the image and that of
the cartographic object. The presence of such variabilities is frequent however, and it is
due either to local shape errors on the map or to partial changes that have been made to
the constructions. In order to process the map-to-image matching with such artifacts,
new shape constraint energies must be formulated.



Chapter 6

Shape constraint authorizing
parallel variations

6.1 Introduction

It is possible that cartographic objects may contain local shape incoherencies with re-
spect to the reality of the image. In the previous chapter we have illustrated the presence
of these errors which prevent a totally satisfactory matching with the building repre-
sented in the satellite image. These inconsistencies are also due to local and partial
changes that have appeared at the level of the building in the image. In both cases,
the parts of the active contour, wrongly constrained by the prior shape, do not reach
the boundaries of the object seen in the image because of the rigid way in which the
shape constraint, which is only invariant from a global transformation, was incorpo-
rated. The problem of local deviations with respect to a prior shape has essentially
been dealt with from a statistical viewpoint thanks to the contribution of learning sam-
ples [113, 28, 66, 104, 92, 102, 30]. We are proposing another, non-heuristic, solution
which consists of authorizing certain discrepancies of the active contour with respect to
the reference shape. The class of authorized deviations is the class of movements con-
strained by the parallelism with respect to the prior shape segments and corresponds to
the local map-to-image inconsistencies most frequently found in cartographic data. To
allow this type of deformation, we propose a new shape constraint energy. It is the sum
of a linear energy comparing the normals of the active contour and of the prior shape,
and a quadratic energy imposing generic rectilinearity and orthogonality constraints on
the active contour. Preliminary but nevertheless encouraging experimental results are
presented.

6.2 Shape constraint energy authorizing parallel variations

6.2.1 Model

The way of introducing the notion of parallelism into the shape constraint energy func-
tional consists of imposing the alignment of the normals of the active contour and of

133
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the reference shape. In terms of level sets, the normals are ∇φ (x) and ∇ψ (x)12. The
new energy term formulated on the basis of equation (4.54) is then:

JShape (φ, ψ) = λpara

∫

Ω
|∇φ (x) −∇ψ (x)|2 (H (φ (x)) −H (ψ (x)))2 dx (6.1)

The evolution equation associated with a functional J = Jimage + JShape requires
the calculation of the gradient JShape with respect to φ. The detail of the calculations
is given in appendix E, and results in:

φt (x, t) = −∂Jimage
∂φ

+4λparaδα (ψ (x, t)) (〈∇φ (x) ,∇ψ (x)〉 − 1) [Ha (φ (x, t)) −Ha (ψ (x, t))]

+2λpara (∆φ (x) − ∆ψ (x)) [Ha (φ (x, t)) −Ha (ψ (x, t))]2 (6.2)

The last two terms of equation (6.2) are the result of the insertion of the new energy
term. The first one tends towards zero when the normal to the active contour has the
same orientation and direction as that of the prior shape. However, this term has a
very local effect since it is weighted by the Dirac distribution which depends here on ψ.
So, when the active contour will be far from the reference shape (beyond some pixels)
this term will not have any influence. The second term is not local, and it imposes a
constraint on the curvature of the active contour with respect to that of the prior shape.
It is this term that will mainly contribute to imposing the parallelism constraint. The
proposed parallelism constraint applies to the level lines of the prior shape ψ, however
these are curved far from the geometric singularities (corners) of the level 0 of the prior
shape. This will result in the active contour being rounded off when it moves away from
the reference shape.

6.3 Insertion of generic prior knowledge by quadratic mod-

els

In order to resolve the unwelcome rounding effect at the level of the “corner” type
geometric singularities, we will introduce a corrective energy that aims to favor the
formation of corners at 90◦ and rectilinear segments. We thus introduce a generic shape
constraint in addition to the specific one represented by the prior shape. The quadratic
energies described in section 4.2.3 have been adopted to correct the rounding effect of
the active contour.

1We assume that the condition |∇φ| = 1 is always verified, which is true in practice if we reinitialize
the φ function at each iteration of the evolution equation. The condition|∇ψ0| = 1 is always verified
since the prior shape is not updated. So |∇ψ0| = |∇ψ| = 1 since the level sets ψ0 and ψ only differ by
an isometric transformation which, by definition, does not affect the distance function.

2The local deformations forced by the parallelism are likely to be inhibited by the invariance by the
direct plane similarity (scale) expressed in equation (4.54). Consequently, we exclude any invariance
from global transformation in this chapter. If we use the notation of the previous chapters we then have
ψ = ψ0 ◦ Tsim = ψ0 where Tsim is the identity.
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6.3.1 Corrective quadratic energy

6.3.1.1 Model

We propose to add the following corrective quadratic energy to (6.1):

Jcorrection (C) =

∮ ∮
dsds′ (sin 2θ)2 Ψ

(∣∣C (s) −C
(
s′
)∣∣) (6.3)

where θ is the angle between the tangents to the contour 3 C at the arc length points
s and s′. Ψ is a decreasing function asymptotically tending towards 0 and defines the
interaction potential between C (s) and C (s′). It should be noted that the integration
domain of Jcorrection is this time the contour itself and not Ω. This type of energy
will make it possible to favor the formation of rectilinear parts and corners within the
active contour. The imposition of orthogonality constraints has already been proposed
by H. Oriot in [83] in the framework of building segmentation by snakes. We took our
inspiration from this idea to propose the formulation given in equation (6.3). However,
contrary to the works of H. Oriot which do not use prior shapes, we propose to formu-
late a quadratic and not a linear energy criterion; furthermore we represent the active
contour implicitly.

By noting that sin (2θ) = 2 sin (θ) cos (θ), the correction energy can be written ac-
cording to:

Jcorrection (C) = 4

∮ ∮
dsds′

{
cos2 (θ) − cos4 (θ)

}
Ψ
(∣∣C (s) −C

(
s′
)∣∣) (6.4)

This energy is minimal for θ = 0, π2 , π,
3π
2 :

✽ If θ = 0. This implies that the tangents are aligned in the interaction neighborhood
defined by the profile Ψ. The rectilinearity of the objects extracted by the active
contour will this be strengthened. This property is desired since the buildings
very often exhibit rectilinear roof edges (highly polygonal object).

✽ If θ = π
2 modulo π. This case represents the objective aimed for by the formulation

of the corrective energy: the corners at 90◦ are favored to counteract the rounding
effect.

✽ If θ = π. In this case the tangents are anti-parallel. The interaction neighborhood
defined by Ψ has a spatial extent of the order of some pixels before tending to-
wards 0. In the case of buildings, anti-parallel tangents occur when the distance
|C (s) −C (s′)| is great and where the function Ψ is already quasi null. So, the
effect of opposing tangents is negligible in our case. This case would occur if the
object to be matched has fine or labyrinthine structures, which is the case of roads
imaged on a small scale, but not that of buildings at very high resolution.

Before deducing the quadratic force from the derivation of Jcorrection with respect to
C, equation (6.4) will have to be rewritten in a form that is independent from the

3In this document we will consider that C is a counter-clockwise oriented contour.
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parameterization of the contour. To do this, let us consider an arbitrary parameter p
whose relationship with the arclength s is:

dC

ds
=
dC

dp

dp

ds
(6.5)

which gives
ds

dp
=

∣∣∣∣
dC

dp

∣∣∣∣ (6.6)

In the rest of this chapter, we adopt the following notations:

C ≡ C (p)

C′ ≡ C
(
p′
)

R
(
p, p′

)
=
∣∣C−C′

∣∣

R
(
p, p′

)
≡ R

R̃ ≡
(
C−C′

)
R−1

The derivation with respect to the parameterization of the contour is symbolized by a
point: Ċ = dC

dp . The tangent vectors at points p and p′ then become: Ċ and Ċ′. By
using these notations, the quadratic energy to be minimized (6.4) becomes:

Jcorrection (C) ∼
∮ ∮

dpdp′
{〈

Ċ, Ċ′
〉2 ∣∣∣Ċ

∣∣∣
−1 ∣∣∣Ċ′

∣∣∣
−1

−
〈
Ċ, Ċ′

〉4 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−3
}

Ψ(R)

(6.7)

6.3.1.2 Energy gradient

With a view to finding the differential equation governing the evolution of the active
contour with quadratic correction, the variation of Jcorrection with respect to C must be
calculated:

∆Jcorrection = Jcorrection

(
C + δC̃

)
− Jcorrection (C) (6.8)

where ∆Jcorrection is the energy variation Jcorrection generated by the infinitesimal de-
viation of the contour δC̃. The calculation of ∆Jcorrectionis long and fastidious and is
summarized in appendix E. By assuming that the curve is parameterized again by the
arclength, the energy variation is finally:

Jcorrection

(
C + δC̃

)
− Jcorrection (C) =

∮ ∮
dsds′Ψ(R)

〈
α̃
(
s, s′

)
, δC̃

〉

+

∮ ∮
dsds′Ψ′ (R)

〈
β̃
(
s, s′

)
, δC̃

〉
(6.9)

where

α̃
(
s, s′

)
= 2

〈
Ċ, Ċ′

〉2
(

1 − 3
〈
Ċ, Ċ′

〉2
)

C̈

+4

(
1 − 6

〈
Ċ, Ċ′

〉2
)〈

Ċ′, C̈
〉(〈

Ċ, Ċ′
〉

Ċ− Ċ′
)

(6.10)
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and

β̃
(
s, s′

)
= 2

(
1 −

〈
Ċ, Ċ′

〉2
)〈

Ċ, Ċ′
〉2

R̃ + 4
〈
Ċ, R̃

〉〈
Ċ, Ċ′

〉(
2
〈
Ċ, Ċ′

〉2
− 1

)
Ċ′

+2
〈
Ċ, R̃

〉〈
Ċ, Ċ′

〉2
(

1 − 3
〈
Ċ, Ċ′

〉2
)

Ċ (6.11)

By noting that C̈ = κn where n is the unit normal to C, and κ is the contour’s signed
curvature, the quadratic force Fquad(s) calculated at the arclength point s is:

Fquad(s) =

〈
∂Jcorrection

∂C
,n

〉
=

∮
ds′Ψ(R)

〈
α̃
(
s, s′

)
,n
〉

+

∮
ds′Ψ′ (R)

〈
β̃
(
s, s′

)
,n
〉

(6.12)
where

〈
α̃
(
s, s′

)
,n
〉

= 2κ

{〈
Ċ, Ċ′

〉2
(

1 − 3
〈
Ċ, Ċ′

〉2
)
− 2

〈
Ċ′,n

〉2
(

1 − 6
〈
Ċ, Ċ′

〉2
)}

(6.13)〈
β̃
(
s, s′

)
,n
〉

= 2

(
1 −

〈
Ċ, Ċ′

〉2
)〈

Ċ, Ċ′
〉2 〈

R̃,n
〉

+4
〈
Ċ, R̃

〉〈
Ċ, Ċ′

〉(
2
〈
Ċ, Ċ′

〉2
− 1

)〈
Ċ′,n

〉
(6.14)

The shape constraint model authorizing parallel movements with respect to the prior
shape with quadratic correction is finally governed by the equation:

φt (x, t) = −∂Jimage
∂φ

+4λparaδα (ψ (x, t)) (〈∇φ (x) ,∇ψ (x)〉 − 1) [Ha (φ (x, t)) −Ha (ψ (x, t))]

+2λpara (∆φ (x) − ∆ψ (x)) [Ha (φ (x, t)) −Ha (ψ (x, t))]2 − λquadFquad,ext(x) |∇φ (x)|
(6.15)

where Fquad,ext(x) is the force extended over the image domain per equation (6.18).

6.3.2 Algorithm

The force Fquad(s) is calculated for each point of contour C(s), it is then extended to
every point in the domain defined by the narrow band surrounding the zero level of the
levels set φ. The evolution algorithm of the active contour is then:

1. Construction of φ (x, t = 0) in a narrow band; construction of ψ (x, t = 0) on the
image domain Ω.

2. Extraction of the contour C.

3. Calculation of the tangent and of the curvature for each point of the contour.
When the point has non-integer coordinates, the geometric quantities are linearly
interpolated between the two closest neighbors surrounding the point.
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4. Calculation of the force Fquad(s) for each point of the contour.

5. Extension of the force: Fquad(s) → Fquad,ext(x) according to equation (6.18).

6. Evolution of the active contour using (6.15).

7. Re-initialization of the distance function of level set φ.

8. Loop steps 2 to 7 until convergence is achieved.

6.3.2.1 Calculation of the quadratic force

The force Fquad(s) is an integral on a closed contour which we approximate using the
Newton-Cotes trapeze method. If we write Fquad(s) in the form:

Fquad(s) =

∮
ds′f

(
s, s′

)

The trapezoidal approximation will be:

F̂quad(s) =

L−1∑

s′=0

f (s, s′) + f (s, s′ + 1)

2

∣∣C
(
s′
)
−C

(
s′ + 1

)∣∣ (6.16)

which we can also write in the form:

F̂quad(s) =

L−1∑

s′=0

f (s, s′)

2

(∣∣C
(
s′ − 1

)
−C

(
s′
)∣∣+

∣∣C
(
s′
)
−C

(
s′ + 1

)∣∣) (6.17)

where: L is the length of the contour which has the cyclic conditions: f (s, 0) = f (s, L);
C (0) = C (L). The numerical integration formula given in equation (6.16) implicitly
imposes that the points C (s) of the contour should be ordered to make it possible to
calculate the quantity |C (s′) −C (s′ + 1)|. When the active contour has been extracted
by detection of the zeros of the level set φ, the contour tracing algorithm proposed by
Pavlidis in [93] is used to order the points of C.

6.3.2.2 Extension of the force

Extension of the force consists of filling Fquad,ext(x) at each location x of the narrow

band with the value F̂quad(s) of the contour’s point closest to x. The extended value of
the force is thus constant along the normals to the level lines of φ. The force extension
techniques are referenced in [110]. The most popular way consists of resolving the
equation with partial derivatives proposed by the authors of [1]:

∂Fquad,ext(x)

∂t
+ sign (φ)

〈 ∇φ
|∇φ| ,∇Fquad,ext(x)

〉
= 0 (6.18)

The details relative to the extension of Fquad,ext(x) are given in [101].



CHAPTER 6. SHAPE CONSTRAINT AUTHORIZING PARALLEL... 139

6.3.3 Implementation difficulties

The programming and implantation of the evolution equation (6.15) has raised many
numerical instability problems. In particular, the precise evaluation of the geometric
quantities such as the tangents or the curvature has been capital for attenuating the
instabilities. The measures listed below in decreasing order of importance have been
implemented to limit the instability problems:

1. Precise calculation of the geometric quantities

(a) Calculation of the curvature using the formula proposed by the authors of
[135] in the framework of fluid mechanics. The formulation proposed is robust
with respect to the geometric singularities. The curvature is only calculated
thanks to the level set φ.

(b) Precise calculation of the tangents. The normals to the points of the contour
are estimated, the associated tangents are deduced from this by a counter-
clockwise rotation of π/2. We estimate the normal from φ as the mean of the
normals in four directions [110, pp. 70]. Derivatives are estimated using the
finite differences scheme. In order to increase the precision of the derivatives,
we calculate them using an Essentially Non-Oscillatory (ENO) technique
which consists of making a local approximation of φ by a polynomial of order
n. The gradient of φ estimated in this way is more robust in the vicinity of
the singularities [116].

2. Re-initialization of the levels set. The fast narrow band reconstruction tech-
nique described in section 4.3.4.1 has been found to be too coarse to be used with
the quadratic models. Indeed, the so-called fast narrow band technique moves
the contour (zero level of the level set) to a sub-pixel scale, which is a source of
instabilities. We have opted for another re-initialization technique preserving the
surface included in the contour, and which limits the movement of the front [116].

3. Estimation of ∇φ. The calculation of the gradient of the level set representing
the active contour is used many times when calculating the quadratic energy:
calculation of the tangents , re-initialization of φ, extension of the quadratic force.
Given that we are seeking to create geometric singularities (corners) where the
calculation of ∇φ is delicate and sensitive to the calculation imprecision, we have
used an ENO method with a polynomial of the order three to obtain a robust
evaluation of this gradient.

4. Choice of the interaction function Ψ. We have conducted experiments with
the interaction profile Ψ of the equation (4.60). This type of profile is not neces-
sarily suited to our application since it is dedicated to the repulsion of anti-parallel
tangents in a spatial vicinity smaller than dmin. Furthermore, the decrease of the
function in equation (4.60) is likely to cause Gibbs disturbances in the spatial do-
main. The choice of a modified Bessel function of the second kind Ψ(x) = K0(x/a)
(a ∈ R

∗+) whose shape is shown in figure (6.1) has given better results with at-
tenuated numerical instabilities. Kn(x) is the solution of the Bessel modified
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differential equation, and its integral definition is:

Kn(x) =

√
π

(n− 1/2)!

(
1

2
x

)n ∫ ∞

1
e−zx

(
z2 − 1

)n−1/2
dz (6.19)

For n = 0, we have:

K0(x) =

∫ ∞

0
cos (x sinh t) dt (6.20)

The derivative of K0 with respect to x is:

dK0(x)

dx
= −K1(x)

Figure 6.1: Modified Bessel functions of the second kind.

The function K0 decreases asymptotically, but diverges when x −→ 0. This sin-
gularity does not however prevent the integral of equation (6.12) from converging.
However, this singularity must be taken into account for the numerical calculation
of the integral expressed in equation (6.16). Indeed, the divergence of Ψ(x) at 0
means that the term f (s, s′ = s) in (6.17) cannot be calculated. We make an
approximation D̂ of the term:

D =
f (s, s)

2
(|C (s− 1) −C (s)| + |C (s) −C (s+ 1)|)

by oversampling the segments [C (s− 1)C (s+ 1)] and [C (s)C (s+ 1)] with a
fixed pitch h (figure 6.2). The values of f at the oversampled places of the segments
are calculated from the linear interpolations of the geometric quantities, D̂ is
calculated using the trapezes method.
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5. Extraction of the contour. The extraction of the contour by linear interpo-
lation may be found to be inadequate because of a localization of the contour’s
points that is too coarse which, finally, biases the calculation of the geometri-
cal quantities. We have opted for an ENO method making an approximation of
the level set by a polynomial of degree two [112]. The roots of the polynomial
designate the points of contour C.

6. Regularization due to the curvature. A generic regularization term of the
curvature has been used to lessen the remaining instabilities.

h

h

Cs′ = Cs

C0

s′,s′+1

h’

C1

s′,s′+1

Cs′+L−1

Cs′+L−2

Cs′+1

Cs′+2

Figure 6.2: Diagram describing the sampling mode with a Bessel function for profile Ψ

6.4 Experiments and analysis of the results

6.4.1 Results without quadratic correction

We propose to conduct experiments with the model of equation (6.2) without quadratic
correction with synthetic images. The purpose of these experiments is to evaluate the
efficiency of the energy proposed and to measure the impact of the corner rounding
effect. The synthetic image shown in figure 6.3 presents a U-shaped object locally
altered by an erasure. For the experiments in this section, the initial contour is square
and encompasses the object of interest (figure 6.3). The prior shape used is also U-
shaped but with local differences with respect to the object of interest (figure 6.4). To
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facilitate the comprehension of the results presented in figures 6.6-6.7, we display in
blue the polygon that represents the prior shape on the image.

Figure 6.3: Synthetic image with the initial contour shown in red.

(a) (b)

Figure 6.4: (a) Prior shape and its associated level set (b).

The experiment in figure 6.5 shows the result obtained with the conventional shape
constraint expressed in equation (4.54) and the Chan and Vese attachment to data
model.
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Figure 6.5: Result with the conventional shape constraint.

It can be seen that with a conventional shape constraint, the final contour is a trade-
off between the image and the reference shape modulo a direct plane similarity. No local
deviation with respect to the reference is permitted. The experiments in figures 6.6-6.7
illustrate the results with the new constraint energy and were carried out with different
values of λpara in order to assess its impact on the shape constraint. As shown in figures
6.6-6.7, the shape constraint with the new energy term makes it possible to move away
from the prior shape, in order to segment the object in the image more precisely.

(a) (b)

Figure 6.6: Segmentation with shape constraint authorizing parallel variations:
(a)λpara = 5; (b) λpara = 10
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(a) (b)

Figure 6.7: Segmentation with shape constraint authorizing parallel variations: (a)
λpara = 15; (b) λpara = 30

The central bar of the U is now well extracted, even if the edges are far from the
prior shape. It can be seen that naturally, the greater the weight of λpara the more
the model is capable of overcoming the alterations of the image (erasure of the object
represented in the image in this case). However, this new energy introduces undesirable
effects such as the rounding of the contour at the level of the outer corners; the dual
distortion effect can also be seen on the inner corners of the reference shape. In the
case of the outer corners, the level lines are curves outside the implicitly represented
shape. Thus, the long-range shape constraint makes the contour respect this non-null
curvature and induces the rounding of the active contour.

6.4.2 Results with quadratic correction

The experiments carried out with the quadratic force were conducted as follows:

1. The initial active contour is similar to the prior shape (represented in blue on the
images) and moves according to the model in equation (6.2) without quadratic
correction. The attachment to data model is that of Chan and Vese.

2. After n0 iterations, the quadratic correction force is activated.

There are two reasons for such an experimental protocol: i) this makes it possible to
reduce the calculation time. The quadratic force is a double integration to be carried
out for each point of the contour, which drastically increases the complexity of the cal-
culation. ii) The quadratic force seems to neutralize the contour’s progression. This
effect is not yet understood. One of the reasons could be the term proportional to the
curvature of equation (6.13) which tends to reduce the length of the active contour.

Figure 6.8 compares the result obtained without and with quadratic correction with
a perfect synthetic object. In figure 6.8.a we can note the effect of the rounding of
the edges observed in the previous section. These roundings are attenuated with the
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insertion of the regularization quadratic force (figure 6.10.b). It can be seen in particular
that the active contour is rectilinear on the upper parts of the two branches of the U-
shaped object, the inner parts are also correctly segmented.

(a) (b)

Figure 6.8: Segmentation with the Chan and Vese attachment to data model and the
shape constraint authorizing parallel variations: (a) without quadratic correction and
λpara = 20 at instant n0; (b) with quadratic correction, λpara = 20, λquad = 8 and
a = 0.5.

Figure 6.9: Representation of the quadratic force at instant n0. The blue zones corre-
spond to a positive force (dilation effect), and the green zones represent a negative force
(compression effect).

Figure 6.10 compares the result obtained without and with quadratic correction
with an altered synthetic object. We note the same attenuation of the rounding effects.
However, we note that the erasure is less well corrected. Figure 6.11 makes it possible
to understand this result: the part of the active contour situated in the vicinity of the
alteration receives a negative force which will tend to push back this part towards the
inside. So, the attachment to data term and the quadratic force lead the contour to
contract and overcome the force derived from the shape constraint. One solution for
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resolving this problem would be to increase the weight of the shape constraint λpara,
however the contour would then not be able to move significantly away from the prior
shape.

(a) (b)

Figure 6.10: Segmentation with the Chan and Vese model and the shape constraint
authorizing the parallel variations: (a) without quadratic correction andλpara = 50 at
instant n0; (b) with quadratic correction, λpara = 50, λquad = 7 and a = 0.5.

Figure 6.11: Representation of the quadratic force at instant n0. The blue zones cor-
respond to a positive force (dilation effect), and the green zones represent a negative
force (compression effect).

In general, it was difficult to set the respective weights of the constraint and of the
quadratic term (λpara, λquad) with respect to the attachment to data force. The example
in figure 6.12 with a real image illustrates this difficulty. Since the building in the image
is only slightly discriminated from the rest of the scene, we had to reduce the weight
of the constraint (λpara, λquad). In this experiment, the prior shape is the result of the
matching of the cartographic polygon taken from the map with the conventional shape
constraint used in the previous chapter. We note that the result with the real image is
not satisfactory. Oscillations can be seen along the contour which seems to be sensitive
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to the artifacts in the image. We had already noted this sensitivity with the synthetic
image.

(a)

Figure 6.12: Experiment with a real image, the prior shape is the result of the match-
ing with the conventional shape constraint. The segmentation is carried out with the
Chan and Vese model, the shape constraint authorizing the parallel variations and with
quadratic correction λpara = 4, λquad = 0.5 and a = 0.5.

6.5 Conclusion

We have presented a new shape constraint energy model. It is more flexible and allows
local variations of the active contour with respect to the prior shape. The proposed
model includes a linear energy limiting the difference between the contour and the
prior shape to belong to the class of parallel variations. A second quadratic energy
imposes the rectilinearity of the contour and favors the formation of corners. These
characteristics are suited to highly polygonal objects such as the buildings represented
in remote sensing images. Experiments have given encouraging results with synthetic
images. However, the application of the model to real images has remained unfruitful
to date. Many aspects relative to the quadratic energy are still not understood, in
particular the setting of the weighting of the quadratic force with respect to the shape
constraint and to the image, the shape of the interaction profile as well as the size of
the interaction neighborhood. All of these currently unanswered questions influence the
numerical stability of the model.



Chapter 7

Map-to-image change analysis

7.1 Introduction

The active contours based fine matching enabled us to reduce variabilities between the
cartographic object and its representation in the image. The variabilities we proposed to
correct in the previous chapters are characterized either by a similarity transformation,
or a normal displacement of the segments composing the cartographic object. These
variabilities are signs of relatively minor differences between the map and the image,
and may or may not derive from real changes between two data. In the present chapter,
we propose a methodology to analyze changes between a map of buildings and multi-
source remote sensing data. The approach we propose is based on merging processing
of altimetric, multispectral and panchromatic data and is split into two stages. The
first merges change indices intended solely to validate the unequivocal disappearance of
a building. These indices are calculated from simple methods using the multispectral
and altimetric image. In most cases where a change cannot be identified unequivocally,
a second, more complex phase is carried out to characterize the degree of resemblance
between the cartographic object and its representation in the panchromatic satellite
image. This processing takes advantage of the fine matching by active contours and
allows for the formulation of a probability of non-change for each element of the map.
Experimental results illustrate the effectiveness of the proposed method, especially the
contribution of fine matching in increasing the level of confidence conferred on the non-
change decision. Finally, we shall examine the sensitivity of the proposed approach with
respect to local shape errors contained in the map through statistical analysis of the
results.

7.2 Methodology

The change detection method we propose implies a global registration of the map with
remote sensing data and the Digital Surface Model generated (DSM). In our case, this
registration is performed using the geocoding information of the data (figure 7.2). We
then propose two levels of change detection:

1. The first works by merging low-level indices calculated from auxiliary data (DSM
and multispectral image) likely to be acquired at different times but necessarily
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more recent than production of the map (figure 7.1, phase A). The result of this
first stage is to confirm only unequivocal changes of buildings but does not allow
us to decide on non-changes. The buildings not detected as having changed are
considered to be ”indeterminate” and require the second phase more sophisticated
processing.

2. If the first phase final result cannot confirm a change, we firstly aim at attenuat-
ing the low amplitude geometric exogenous variabilities between the cartographic
object and its representation in the panchromatic satellite image. We do this
using the active contours introduced in the previous chapters (figure 7.1, phase
B). We then propose new change indices that are more elaborate than those in
step 1. The first index is a measurement in a Hough space of the resemblance of
segments taken from the image and of those from the refined cartographic object.
The second evaluates the geometric variation between the initial cartographic ob-
ject and its repositioning after active contours based matching. These indicators
are merged in the form of an energy allowing a probability of non-change to be
expressed in the Gibbs probabilistic framework (figure 7.1, phase C). This result
is an indicator of change that can be used to facilitate and accelerate an operator-
driven map updating procedure.

The methodology proposed is summarized in 7.1.
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Figure 7.1: Proposed change detection methodology: (A) calculation and fusion of
change indices. (B) attenuation of map/image exogenous variabilities (C) analysis of
final changes. Legend: Qm and Qp are respectively the multispectral and panchromatic
satellite images.

7.3 Calculation and fusion of simple change indices

This section introduces two simple methods to calculate indices confirming unequivocal
changes of buildings from remote sensing auxiliary data. The first compares elements of
the map with altimetric data (DSM) and generates a change index derived from statisti-
cal tests and altitude thresholding. The second uses the multispectral satellite image. A
classification by maximum likelihood allows to detect the presence of vegetation and thus
also the absence of buildings. Both indices produced are then merged to take advantage
of the complementarity between the altimetric and multispectral representations.
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7.3.1 Index calculated from the altimetric data (DSM)

7.3.1.1 Limitations of the map-to-DSM comparison

A method for change detection between a map and a DSM is intrinsically limited. In-
deed, a DSM only provides altitude data, which is far from being exhaustive to fill in
the reality of a scene. Thus, it will be difficult to distinguish buildings from the canopy
with only a DSM generated from 3D reconstruction (conversely, LIDAR imagery anal-
ysis allows the difference with vegetation to be ascertained).

More specifically, the DSM we generated contains unfilled pixels inherent to the
stereo-correlation method that was used to build it. These unfilled pixels represent
30% to 40% of the image and, due to occlusions, are localized in the neighborhood of
buildings. Furthermore, these locally indeterminate zones may be enlarged using the
pre-processing of the disparity images explained in section 3.4.2. This lack of altitude
data is an additional limitation for change detection preventing decision-making. This
is the reason why we decided to design a simple map-to-DSM change detection method.
A more sophisticated approach would not necessarily be more effective due to the in-
complete nature of the data provided by the DSM.

Finally, map-to-DSM registration errors must also be taken into account. It would
appear to be difficult to apply local matching by active contours with the DSM as long as
the latter is noisy. Fine matching using the panchromatic satellite image to eliminate
map-to-DSM exogenous variabilities appears to be awkward as these data items are
exogenous: their geometries will be different as are their dates of acquisition.

7.3.1.2 Approach

The algorithm we propose relies on calculating global statistical criteria such as the
mean, median and variance from DSM altitude values contained within a cartographic
object or in its vicinity. The method set up is limited to two cases of unequivocal
changes that correspond to situations a and b of table 2.2.

1. Building completely demolished and replaced by a bare, flat, incline-free ground.

2. Building completely demolished and replaced by a bigger building with a flat,
non-inclined roof.

We limit our attention to non-inclined, flat roofs or ground as these flatness character-
istics are easy to verify using measurement of the variance in altitude of the DSM pixels
inside a building on the map (polygon).

The change detection method can be described as follows: for each cartographic
object superimposed on the DSM, we calculate the percentage of pixels filled in for the
DSM and included in the polygon. If this percentage is not high enough, no change
decision will be made and the case will be considered to be undecidable. Conversely,
altimetric flatness is verified in the object and in its vicinity. If flatness is proven, a
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final test will measure the variation in altitude (in the sense of the median) between
the polygon and its neighborhood. If this variation is less than the normal size of a
building, a case of change will be detected; otherwise the case will be considered to be
ambiguous. The final result of this change detection is a binary score sMNS equal to 1
when a change is validated. Undecidable and ambiguous cases are grouped together to
be represented by a score sMNS = 0.

While this method remains simple, it has to be reliable so as to make the least
possible number of errors. We shall evaluate the method’s success in comparison with
its various parameters. These parameters are three in number:

1. thresfilled percentage of DSM pixels filled for altitude below which change detec-
tion is not implemented.

2. thresflat altimetric variance threshold (in meters) below which a zone of the DSM
is considered to be flat and non-inclined.

3. thresbuild altimetric threshold (in meters) above which a pixel of the DSM is con-
sidered to belong to the construction.

The algorithm for the method presented then becomes:

1. For each polygon of the GIS superimposed on the DSM:

(a) If the percentage of unfilled pixels inside the polygon or in its vicinity

<thresfilled, then change detection will not be implemented. The result is
undecidable.

(b) Otherwise if the polygon and its neighborhood have a standard deviation
<thresflat AND the neighborhood has a rate of unfilled pixels <thresfilled
then:

i. If the difference in altitude between the polygon and its neighborhood
<thresbuild , then the building will be considered to have changed.

(c) Otherwise the case will be considered to be ambiguous.

2. End.

We perform calculations both on the vicinity of a polygon and on its inside to evaluate
relative differences in altitude. An absolute measurement infers knowledge of altitude
of the ground for the scene, which requires the a DTM that in turn allows the DSM
to be normalized. Without the DTM, an absolute detection criterion would fail if the
relief of the land at the scene was not strictly flat (mountainous or hilly regions).

As we have stated, the method needs to cater for possible imperfections in map-
DSM registration. The proximity of an object in the DSM is consequently defined as
being the crown resulting from subtraction of a dilatation of the cartographic polygon
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by a 15 × 15 pixels structuring element with that of 3 × 3 pixels. The neighborhood is
thus not too close to the edge of the polygon, thus preventing from considering pixels
belonging to the building that could distort calculations of statistical criteria for change
detection.

7.3.1.3 Experimental results

The change detection illustrated in figure 7.3 was conducted on 975 buildings with the
following parameters: thresfilled= 10 %; thresflat= 1 m; thresbuild= 3 m.

Figure 7.2: Registration of the building map (shown in yellow) with the DSM using
geocoding information. The red arrow points to a change: building replaced by a
terreplein.
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Figure 7.3: Result of change detection between the map and the DSM. Legend: red
(change), yellow (ambiguous), blue (undecidable). Parameters: thresfilled = 10 %,
thresflat = 1 m, thresbuild = 3 m.

As in any method, choosing the values for parameters remains a delicate matter.
However, they have physical values that cannot be chosen at random. A flatness thresh-
old thresflat higher than three meters is devoid of meaning. Setting too high a threshold
for building detection will increase the risk of false alarms, as any building whose alti-
tude is lower than the threshold will be wrongly classified as having changed. Finally,
making decisions with too low a percentage of pixels being determined (filled with alti-
tude information) will incur a greater risk of errors generated by the method.

✽ Variational analysis of parameters.
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We conducted an analysis of the method’s success in relation to the variation in its
three parameters (this analysis was conducted with GIS cartographic data from 1996 as
illustrated figure 7.2). Systematically, two parameters were fixed, with just one varying.
We evaluated the method’s success by visual examination of the map and an aerial view
that had been used to produce the DSM. The results are summarized in figures 7.4 to
7.6.

Figure 7.4: The method’s success in relation to thresfilled. The rate of buildings cor-
rectly detected as having changed is shown in red. The blue curve represents the rate
of buildings detected as having changed with respect to the total number of buildings
in the map. thresflat = 1m and thresbuild = 3m.
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Figure 7.5: The method’s success in relation to thresflat. The rate of buildings correctly
detected as having changed is shown in red. The blue curve represents the rate of
buildings detected as having changed in relation to the total number of buildings on the
map. thresfilled = 50% and thresbuild = 3m.

Figure 7.6: The method’s success in relation to thresbuild. The rate of buildings correctly
detected as having changed is shown in red. The blue curve represents the rate of
buildings detected as having changed in relation to the total number of buildings on the
map. thresfilled = 65% and thresflat = 1.5m.
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We can see that the more thresfilled increases, the more the method is successful
(figure 7.4). The more thresflat increases, the less successful the method becomes. It
should be noted that the method seems to be more sensitive with respect to this pa-
rameter than with others. Beyond 1 m - 1.5 m for thresflat, the method’s success drops
off critically (figure 7.5). Finally, as the thresbuild increases, so the rate of false alarms
also rises, impairing the method’s success (figure 7.6).

Examination of the values in the graphs shows the relatively few buildings for which
a change decision is made. This is consistent with our initial assumption of restricting
the method to the limited cases of change detection mentioned in table 2.2. One prob-
lem with the method involves having to systematically consider the vicinity of a polygon
to be able to conduct the test for presence of the building comparing the difference in
altitude of the neighborhood and of the polygon with thresbuild. If the neighborhood
cannot be calculated due to too high a rate of unfilled pixels (whereas the pixels in-
side the polygon are fairly well filled in), the case will not be processed. Normalizing
the DSM with a DTM would provide a solution to dispense with the need to calculate
the related altitude criterion and its intrinsic problem. We could then use an absolute
criterion that tests only the median altitude of the pixels included in the polygon with
respect to a threshold.

To conclude this section, we shall look into the factors influencing the proposed
map-to-DSM change detection method and thus see whether it can be generalized to
sites other than Beijing. One first major factor is the relief of the scene. If the relief is
too rugged, ground flatness conditions will never be fulfilled and, as a result, there will
be little decision-making. The method is therefore not suited to hilly or mountainous
countryside unless we have first normalized the DSM using a DTM. As the Beijing
terrain is extremely flat, we were able to dispense with this normalization stage. A
second factor related to the architectural culture of the city concerns the shape of the
buildings. The method can only detect changes of type b with flat-roofed buildings (table
2.2). A city with double slope roof and contiguous buildings will not satisfactorily lend
itself to this change detection approach.

7.3.2 Index calculated from a multispectral image

The multispectral images we have in our possession have a band in the near infrared
that allows us to characterize the vegetation. Assuming that there is no overlap between
the vegetation and constructions, we shall then be able to confirm the disappearance of
a building at locations on the map that are covered over with vegetation in the image.
As for the previously explained method, we shall not be able to confirm a non-change
since absence of vegetation does not imply the presence of a building (which may have
been replaced by a road for example).

Calculation of the change index between the cartographic object and its represen-
tation in the multispectral image must answer two questions:

1. How to characterize the vegetation of the scene?
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2. How to make a reliable change decision from detected vegetation?

Characterization of vegetation. We use an index that has conventionally been
employed in remote sensing since 1969, the NDV I (Normalized Difference Vegetation
Index ). This involves to substract the infrared band from the red one, then normalizing
this term by summing both bands:

NDV I =
IR−R

IR+R

This index varies between -1 and 1. Vegetation has high absorption in the red and
strong reflectance in the infrared. Thus, a positive value for NDVI confirms the pres-
ence of vegetation. The closer the value is to 1, the stronger this assumption will be.
A negative value confirms absence of vegetation. Figure 7.7 illustrates the values for
this index in accordance with eleven classes. On figure 7.7 we can see that vegetation
is pretty well characterized, with nevertheless relatively low NDV I values (on the il-
lustrated examples, the NDV I does not exceed 0.4). There are several explanations
for this: i) the seasonal effect has strong impact on the NDV I value that measures the
vegetation’s vitality. The Quickbird image studied was acquired in March, just before
Spring. Thus, the aerial biomass was relatively underdeveloped. ii) the density of dust
or pollution (which is high in Beijing) also impacts the amplitude of NDV I.

Decision-making with the NDVI. As with the sMNS , we wish to formulate a binary
criterion sNDV I whose value 0 means indetermination while 1 corresponds to a high den-
sity of vegetation within the cartographic polygon considered, i.e. to a change indicator.
We use a supervised classification by maximum likelihood to determine sNDV I . This
type of method has the advantage of avoiding the pitfalls of empirical approaches based
on thresholding of the NDVI value to characterize vegetation. However, the method
is supervised and requires a learning process. In our case, this learning process can be
automated thanks to the “vegetation” layer of a GIS digital map (assuming that few
changes have affected the vegetation between when the map was made and acquisition
of the image).

Let us consider n independent measurements of the NDV I inside the j th carto-
graphic polygon. We shall note these measurements yi:

yi∈{1,...,n} = NDV I(xi∈{1,...,n})

where x is the pixel position of the ith pixel of the NDVI image belonging to the j th

polygon of the map.

Let p(yi|θ) be the conditional and normalized probability density for observing the
measurement yi for the given set of parameters θ. Estimation of parameters θ is achieved
by maximization of the likelihood function:

L(yi|θ) =

n∏

i=1

p(yi|θ) (7.1)
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(a) IR band (b) Real colors (c) NDVI

NDVI 0.20.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0< 0.0

Figure 7.7: Infra-red band, real colors (RGB), and NDV I.

where L is the likelihood function measuring the probability of observing the special
set of data yi knowing θ. In our case, we shall consider the two classes {Ck}k∈{0,1}
with C0 and C1 denoting non-vegetation and vegetation respectively. According to
our initial hypothesis, there is no overlap between constructions and vegetation, thus
class C1 is associated with change in buildings, while C0 corresponds to indetermination.

We also assume that p(yi|θ) obeys a normal distribution with mean m and variance
σ2. In this special case, each class is fully characterized by these two statistical quantities
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that have to be measured by a learning process: θk = (mk, σ
2
k)k=0,1. For the cases of

experiments illustrated in this chapter, the training areas were determined manually.
The problem of binary classification of a cartographic polygon thus comes down to
choosing the class Ck whose likelihood function is maximum from the measured data:

L (yi |θk )k=0,1 =
1

(
2πσ2

k

)n/2 e
−

Pn
i=1(yi−mk)

2

2σ2
k (7.2)

The change indicator related to the NDVI for the cartographic polygon j considered
will then be:

sNDV I(j) = arg max
k,k=0,1

L(yi|θk) (7.3)

7.3.3 Change indicators fusion

The calculations of change indices based on the DSM and vegetation show many sim-
ilarities: they are simple methods that can only disprove the presence of a building
of the map in binary fashion. They are also methods that use non-redundant data
and with results whose complementarity can be used for decision-making. We merge
the map-to-DSM and map-to-NDVI change indices in accordance with the following
strategy:

1. The DSM and the NDVI image are generated from data acquired at different dates.
Nevertheless, it does not seem wise to use the acquisition time difference between
the data to balance their influence in the final merged decision. Indeed, it would be
erroneous to weaken or strengthen a confirmed change decision in relation to the
date of acquisition as a proven change lasts over time. It is preferable to determine
a method’s contribution with respect to the degree of confidence assigned to it.
For our application, we do not have prior knowledge allowing to state that one
or other is less reliable, so we grant them equal levels of confidence when both
methods confirm a change.

2. When one of the two methods refers to an indeterminate result while the other
confirms a change, we choose not to penalize the one having detected the change
in the fusion of results. The two methods based on the comparison with the
DSM and NDVI image are simple and cover limited instances of change. Thus,
an indetermination does not imply a strong assumption of non-change. It is often
due to the inability of the method to make a decision.

3. When both methods refer to an indeterminate result, the fusion of results is also
indeterminate.

To summarize, the fusion of change indices is simply formalized in the following form
for the cartographic element j considered:

sfusion,MNS−NDV I(j) = max (sMNS(j), sNDV I(j))
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7.4 Map-to-image change analysis

Whereas the previous section only covered unequivocal disappearances of buildings sym-
bolized in the map, the method for change analysis between the map and the panchro-
matic satellite image is also intended to take into account cases of non-change. This
method assumes a local and individual matching of each building with the image is
first performed using the active contours technique (chapter 5). This pre-processing
aimed at reducing map/image exogenous variabilities enhances the consistency of the
cartographic object with its homologous representation in the image if no change has oc-
curred. The map-to-image change analysis method is then applied on each matched/refined
cartographic building. For each cartographic object considered, the proposed method
is based on two kinds of information:

1. Measurement of consistency between segment primitives extracted from
the image and those taken from the map. Consistency is measured by a
voting in the Hough space that estimates the translation that best matches the
two representations. We shall see that the maximum value of the Hough accumu-
lator is an indicator of resemblance between the cartographic object and the one
in the image. This will enable us to deduce whether a change or a non-change
has occurred. The segments extracted from the image are the result of rectilinear
chaining of high gradient pixels of the sub-image framing the considered carto-
graphic building. These segments of the image are those used by the edge-based
active contours (see section 4.2.1.3). The segments of the cartographic object re-
fined by the active contours technique are the result of the vectorization of the
final contour.

2. Geometrical variation from map-to-image fine matching. Too high a geo-
metrical variation between the original cartographic object and its refined version
by active contours is also a sign of change. This variation can be measured using
the level sets φfinal and ψ0 which represent respectively the final active contour
(result of fine matching) and the initial cartographic object.

We shall formulate these both types information as data related terms to define a Gibbs
energy. This will enable us in fine to calculate a probability pNC(j) of non-change for
the cartographic object j.

7.4.1 Matching map and image segments by Hough voting

7.4.1.1 Principle

Let S and S ′ be two sets of segments. S is the set of segments of a considered carto-
graphic building. This object was refined by active contours matching. S ′ is the set of
segments taken from a sub-image surrounding the cartographic object.

We propose to use a Hough space to accumulate the evidence of resemblance between
S and S′ [52]. This type of bottom-up approach is robust and gets rid of the contri-
bution from image segments that do not belong to the building we are interested in.
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The method’s principle is to consider each pair of map/image segments individually and
estimate the translation allowing for them to be superimposed. This translation is pro-
jected in a Hough accumulator that thus allows to determine the most likely translation
µHough matching S and S ′. Normalization of the maximum of the Hough accumula-
tor by the perimeter of the cartographic object provides a resemblance score sHough
between S and S ′ varying between 0 and 1. If sHough ≈ 1 and µHough ≈ 0 then the
cartographic object’s consistency with the image is proven. Indeed, the majority vote
is significant and the estimation of the translation is consistent with the fact that the
refined cartographic object is matched on its representation in the image. If sHough � 1
or µHough 6= 0 then a lack of resemblance will be detected, corresponding to a change.
This method, based on the image gradient, will be sensitive to shadows of buildings. It
is likely that the pairing will occur on the shadow cast by the building rather than its
actual edges. We therefore first filter the segments of shadow in the image before the
estimation of the translation between each pair of map/image segments.

7.4.1.2 Algorithm

The algorithm for evaluation of sHough and µHough is as follows:

1. Let uombre be the unit vector known a priori giving the orientation and direction
of the shadow in the image. This vector has the same orientation and the same
direction as the Sun’s rays. It can be calculated through the knowledge of the
image acquisition parameters and the date of acquisition of the remote sensing
image. In our case, we measure it manually. The measured vector is near-constant
over the entire image.

2. Let S and S ′ be two sets of segments with sizes n and m respectively.

S = {s1, s2, ..., sn} ; S′ =
{
s′1, s

′
2, ..., s

′
m

}
(7.4)

3. For each segment si ∈ S:

(a) For each segment s′j ∈ S′:

i. If the mean of radiometric intensity along the profile s′j + uombre is less
than that of s′j − uombre plus a threshold, then:

A. If the segments si and s′j are near collinear (
〈si,s′j〉
|si||s′j|

≤ cosαs, with αs

a given threshold), we estimate the minimum µij,min and maximum
µij,max translation allowing each of the ends of the two segments to
be superimposed (figure 7.8).

B. In a 2-D accumulator (µx, µy) whose axes represent the space of
possible translations in directions Ox and Oy, we add the segment

[µij,min, µij,max] with a weight equal to min
(
|si| ,

∣∣∣s′j
∣∣∣
)
, where |si|

represents the length of the segment si. To make the method more
robust with respect to local variations in the segments of the two
representations (uncertainties due to the segment extraction method
and errors present in one or other of the representations), the segment
is enlarged by l pixels to form a band in the accumulator (figure 7.9).
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(b) End

4. The µHough translation is estimated at the location of the accumulator maximum
value. This maximum is normalized by the perimeter P of the cartographic poly-
gon (P =

∑n
i=1 |si|) to obtain sHough.

Figure 7.8: Estimation of the maximumµ1 and minimum µ2 translation between a map
segment [AB] and an image segment [A’B’].

Figure 7.9: 2D Hough accumulator (µx, µy). Accumulation between minimum and
maximum translation is enlarged in a band of l pixels.

7.4.1.3 Energy associated with the Hough voting

With the aim of inserting the Hough voting decision within the Gibbs probabilistic
framework, we formulate an energy EHough measuring consistency between a carto-
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graphic object and the image. The proposed energy is as follows:

EHough =
1

P

∮ (
1 − α

(
CµHough

(p)
))
dp (7.5)

where P is the perimeter of the cartographic object C parameterized by p. CµHough
is

the contour C translated by the µHough estimate. The quantity α (x) is such that:

α (x) =

{
1 if I(x) ∈ S ′

Hough

0 otherwise
(7.6)

where I(x) is the satellite image, and S ′
Hough is the set of segments extracted from the

image having contributed to the majority poll in the Hough space, i.e. having con-
tributed to the estimation of µHough. The energy of the equation (7.5) will be minimal
when all the pixels of the image found under the plot of the translated cartographic
object have contributed to the Hough vote. Otherwise, few pixels of the image will
have contributed to the poll, which is an indication of change. The energy will then be
maximal. Normalization by the perimeter P allows the energy of the equation (7.5) to
be invariant with respect to the size of the considered cartographic object. The energy
of the equation (7.5) can be expressed more simply:

EHough = 1 − sHough (7.7)

where sHough is the normalized Hough score defined in the previous section.

Finally, let us recall that condition EHough = 0 is not enough to characterize a non-
change. Indeed, this condition has to be associated with an estimate µHough with low
amplitude. To account for this property, we use the energy associated with a spring of
stiffness k that will penalize the estimation of a too high translation:

EµHough
= k |µHough|2 (7.8)

7.4.2 Measurement of geometric variation due to active contours match-
ing

When the initial map-to-image registration is of poor quality, the invariance from affine
transformation by active contours allows this effect to be corrected by rotation, trans-
lation and scaling. This correction plays a role in reducing exogenous variabilities in-
dependent of an effective change and should not intervene in the change detection.
Nevertheless, if geometrical variation is too significant, it may not be ascribable to the
poor quality of the initial superimposition, but rather to a change (figure 7.11). We
propose to formulate an energy criterion Egeom measuring the geometrical variation
between the initial cartographic object and its transform by Tsim,final which is the
similarity estimated by the active contours fine matching:

Egeom (φ, ψ0) =
1

Aψfinal +Aψ0

∫

Ω
(H (ψfinal(x)) −H (ψ0 (µperspx)))2 dx (7.9)

where ψ0 is the level set representing the initial cartographic object; ψfinal is the level set
representing the cartographic object transformed by Tsim,final: ψfinal = ψ0 (Tsim,finalx);
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Aψfinal =
∫
ΩH (ψfinal (x)) dx and Aψ0 =

∫
ΩH (ψ0 (x)) dx. The energy term of the

equation (7.9) is inspired from that used for the prior shape constraint of the equation
(4.54). However, two differences should be noted. Firstly, the energy Egeom is made
independent of the size of the compared objects thanks to normalization by the sum of
areas included in the cartographic object (Aψ0) and in the final active contour (Aφfinal).
Finally, this energy is made invariant by µpersp translation only. This invariance is
intended to avoid penalizing translations between the map and the active contour that
are collinear with the perspective distortion direction V. Remember that the satellite
image is not rectified and there is thus a geometrical variation between the building’s
footprint (onto which the cartographic object is likely to be superimposed) and the roof
segmented by the active contour. This geometrical distortion is intrinsic to the image
and must not be interpreted as a change. In the Quickbird satellite image, distortion
can be modeled by a translation whose direction is constant over the entire image.
The orientation and direction of distortion is given by the unit vector V we measured
manually. The vector µpersp is then defined as follows:

µpersp = wperµfinal (7.10)

with µfinal the estimation of translation between the final active contour and the prior
shape constraint. The prior shape is similar to the initial cartographic object and
µfinal is estimated by the simplex algorithm (see section 5.2). The weight wper favors
invariance by µfinal only if the latter is collinear with V:

wper =

{ 〈
µfinal

|µfinal|
,V
〉2
µfinal if

〈
µfinal

|µfinal|
,V
〉
> 0

0 otherwise
(7.11)

Local and parallel variations of the active contour (see chapter 6) with respect to the
prior cartographic shape are also indicative of map/image inconsistencies. In this case,
it is, however, difficult to discern whether these map/image local variations (at the scale
of the cartographic object) are due to an effective change represented in the image or
to an error present in the map. Because this problem is ill-posed, we decided not to
compare the final active contour having allowed the fine matching with the cartographic
object (whether transformed or not).

7.4.3 Probability of non-change

We propose to merge the Hough voting information with the geometrical variation of
the active contours for each building j symbolized in the map. The total energyENC(j)
measuring the non-change is then:

ENC(j) = λHoughEHough(j) + λµHough
EµHough

(j) + λgeomEgeom(j) (7.12)

where λHough, λgeom are positive real constants. Using the formalism of Gibbs distri-
butions to define a non-change probability density pNC(j) associated with ENC(j), we
can write:

pNC(j) =
1

Z
e−ENC(j) (7.13)

where Z is the partition constant. By defining pNC(j) + pC(j) = 1 (where pC(j) is the
change probability), the constant Z will then take value 1. The probability pNC(j) is
an indicator of non-change when it is greater than 0.5, otherwise a change is detected.
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7.5 Experimental results

In section 7.5.2 we show some experimental results for various cases of changes and
non-changes in order to measure the method’s effectiveness and to illustrate difficulties
that cannot be handled. In section 7.5.3, we propose to statistically analyze the results
generated on a greater number of cases and with maps of varying quality.

7.5.1 Experimental protocol

All the experiments conducted in this section were performed in the following conditions:

✽ Data: maps from 1996 and 2002 were used. When a map bears the wording “per-
fect”, this means that errors in the map were corrected manually. In this specific
case, the cartographic object is consistent with its representation in the image; we
then simulate a matching error that can be modeled by a similarity transform of
parameters ξ0 = (s0, θ0, µx,0, µy,0). The (panchromatic and multispectral) Quick-
bird satellite images dating from 2002 were used in these experiments

✽ Procedure: When the preliminary test based on the DSM-NDVI data confirms
a change, fine matching by active contours and the Hough voting are not carried
out. When a change could not be validated by the method based on the DSM-
NDVI, we illustrate the initial state of the cartographic object superimposed on
the image as well as the final state after matching (illustrations only concern sec-
tion 7.5.2).

✽ Initialization of active contours: the prior shape as well as the initial active
contour are similar to the cartographic object. The cartographic object is regis-
tered on the more recent satellite image using geocoding information.

✽ Hough voting: the size of the accumulator used in experiments was:

(µx = −30...30 pixels, µy = −30...30 pixels). The width l of the segments added
to the accumulator was l = 2 pixels.

✽ Vectorization: in order to be able to take part in the Hough vote, the final
active contour having permitted fine matching must be discretized in the form
of segments. This active contour was originally a list of points taken from zeros
detection of level set representing it. These points are firstly ordered in a list
{C(i)}, then chained to form a sequence of segments. The chaining algorithm
involves forming segments [C(j),C(j + k)], as long as the distance to the segment
of points {C(i)} located between C(j) and C(j+ k) is less than a threshold εvect.
In our application, the fineness of vectorization is decisive for an effective match-
ing between the refined cartographic object and the segments extracted from the
image. We have thus chosen a restrictive threshold εvect = 0.3.



CHAPTER 7. MAP-TO-IMAGE CHANGE ANALYSIS 167

✽ Non-change energy parameters: change detection parameters used are: λHough =
λµHough

= 1, λgeom = 2 and k = 0.01. The value ofλgeom reflects the prior knowl-
edge available on the quality of map/image initial registration. A high weight
means a high confidence in quality, and thus a weak variation in Egeom will be
penalized by a significant increase in total energy of non-change to finally reduce
the probability pNC . The stiffness of the spring k can be set in accordance with
the uncertainty associated with estimation of µHough. Remember that the seg-
ments of the Hough accumulator are broadened by l pixels, which deteriorates the
quality of the translation estimation. We choose a low value for k so as not to
penalize the final change decision with respect to these inaccuracies.

✽ (No)-change decision:

; We consider a change to be proven if sfusion,MNS−NDV I = 1 or pNC < 0.4.

; We consider detection of a non-change if sfusion,MNS−NDV I = 0

and pNC > 0.6.

; We consider decision-making impossible (indetermination) if

sfusion,MNS−NDV I = 0 and pNC > 0.4 and pNC < 0.6.

7.5.2 Study of some cases of change/non-change

7.5.2.1 Change detection

The figures below illustrate correct change detections conducted with the digital map
of 1996. In figures 7.10.a and 7.10.b, the absence of buildings is validated by the change
detection based on the use of the multispectral image. These are unequivocal cases
of change where buildings have been completely demolished and replaced by ground
covered with vegetation (case a of table 2.2). In both cases, classification by maximum
likelihood identifies the areas of the image included in the cartographic polygon, as with
vegetation, which negates the presence of buildings: sfusion,MNS−NDV I = 1.

The two following cases of change were simulated (cartographic objects created man-
ually). Decision-making is impossible through pre-processing (sfusion,MNS−NDV I = 0)
and consequently results from the method comparing only the map and the panchro-
matic satellite image. Figure 7.11 illustrates the contribution that taking Egeom into
account in the decision-making model makes. In the illustrated case, the final Hough
score is extremely high as the new building on the image has the same shape as the car-
tographic object, which tends to confirm (wrongly) a non-change. However, the spatial
variation is too great to be ascribed to exogenous variabilities, Egeom is thus high and
the building is detected as having changed (pNC = 0.3).
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(a) sfusion,MNS−NDV I = 1: sMNS = 0 and
sNDV I = 1

(b) sfusion,MNS−NDV I = 1: sMNS = 0 and
sNDV I = 1

Figure 7.10: Detection of unequivocal changes. Changes were detected by comparison
with the NDVI image. The figures illustrate cartographic objects superimposed on a
more recent satellite image.

(a) Initial map/image superimposition
without active contours matching

(b) After active contours matching

Figure 7.11: Change detection due to strong geometrical variation: Egeom = 0.54 and
pNC = 0.30. Change is simulated.
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Finally, figure 7.12 illustrates another type of simulated and correctly detected
change where one building is replaced by another. In this case, matching by active
contours fails since the cartographic building no longer exists in the image. As the
initial building has disappeared, few segment primitives on the image back up the hy-
pothesis of the building being present under the plot of the cartographic object modified
by the active contour. Thus, the Hough vote designates another location where the seg-
ments of the image are more consistent with the cartographic representation. While this
remote location (µHough = (−6,−26)) is a better candidate, the voting score remains
low sHough = 0.27 since no similar building is found in the image. The combination
of a low Hough score with a translation reckoned to be significant makes pNC tend
drastically towards 0.

(a) Initial map-to-image superimposition
without active contours matching

(b) Failed matching

Figure 7.12: Change detection due to a high µHough translation. sHough = 0.27,
µHough = (−6,−26) and pNC = 0.00. Change is simulated.

7.5.2.2 Detection of non-change

Perfect map

We propose to conduct non-change tests with a perfect map dating from 1996. In this
map, the cartographic objects have been corrected to be similar to their representation
on the image. A high probability of non-change is then guaranteed if the map-to-
image matching is effective. Figures 7.13 to 7.16 illustrate an effective reduction of
map/image variabilities that allows consistency between these two representations to
be enhanced. The Hough final score is thus increased considerably compared with that
for the initial state (table 2.2). This results in correct non-change detections of buildings.
In figure 7.13, a rotation by 0.1 rad is applied to the cartographic object, simulating
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a map-to-image superimposition error. Fine matching by active contours is effective
and increases the final Hough vote score (sHough = 0.76). The probability pNC = 0.63
confirms a non-change with nevertheless a moderately high value. This is due to a non-
negligible geometrical variation Egeom = 0.1 that brings down the probability value.
What figure 7.14 shows, illustrates the same phenomenon: a relatively high final Hough
score (sHough = 0.76) with a low estimated translation (µHough = (1, 0)) confirm a
non-change. Nevertheless, the geometrical variation incurs the value for probability of
non-change being brought down: pNC = 0.63. With the experiment of figure 7.15, the

(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.13: Detection of non-change with a perfect cartographic object transformed
by similarity of parameters ξ0 = (s0 = 1, θ0 = 0.1, µx,0 = 1, µy,0 = 1). Non-change is
confirmed with sHough = 0.76, µHough = (1, 0), Egeom = 0.1 and pNC = 0.63.

non-change presumption is higher (pNC = 0.76) because of a more significant Hough
score and a weaker geometrical variation.
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(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.14: Detection of non-change with a perfect cartographic object transformed by
similarity of parameters ξ0 = (s0 = 1.05, θ0 = 0.075, µx,0 = 4, µy,0 = −1). Non-change
is confirmed with sHough = 0.72, µHough = (1, 0), Egeom = 0.08 and pNC = 0.63.

(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.15: Detection of non-change with a perfect cartographic object transformed by
similarity of parameters ξ0 = (s0 = 1.0, θ0 = −0.02, µx,0 = −2, µy,0 = 1). Non-change is
confirmed with sHough = 0.81, µHough = (0, 0), Egeom = 0.04 and pNC = 0.76.
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Finally, the result of figure 7.16 shows the need not to penalize collinear translations
with the direction V of perspective distortion. Figure 7.16.a shows a cartographic object
close to the footprint of a moderately high building in the image. Distortion is weak
enough for the active contour to be capable of segmenting the roof. The translation
vector between the initial state and final matching is near collinear with V. Thus,
the geometrical variation is not penalizing (Egeom = 0.01). The Hough score is high
(sHough = 0.84) with low translation µHough = (−1, 0), which explains the high value
of non-change probability: pNC = 0.83 (which is also due to the perfect nature of the
map).

(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.16: Detection of non-change with a perfect cartographic object transformed
by similarity of parameters ξ0 = (s0 = 1.0, θ0 = 0.0, µx,0 = 5, µy,0 = 5). Non-change is
confirmed withsHough = 0.84, µHough = (−1, 0), Egeom = 0.01 and pNC = 0.83.

Real map

We shall now a real map made in 1996, without manual correction of potential
errors. The errors with respect to the image can either be modeled by a global (at
the scale of the cartographic object) or local transformation. In the case of local shape
errors of cartographic objects, the matching by active contours then provides a trade-
off between the erroneous prior knowledge derived from the map and the reality of the
image. Figures 7.17 and 7.18 show correct results of non-change detection in the case of
matching errors that can be modeled by global transformations. Fine matching by active
contours then allows for an almost perfect superimposition between the cartographic
object and the building in the image. The consistency between the two representations
is enhanced and, as a result, the Hough score is improved after the fine matching. The
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probability pNC is lower in the case of figure 7.17 due to a more significant geometric
variation (pNC = 0.68 in figure 7.17 and pNC = 0.83 in figure 7.18). Figures 7.19 to 7.21

(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.17: Detection of non-change with a matching error that can be modeled by a
global transformation. Non-change is confirmed with sHough = 0.86, µHough = (0,−1),
Egeom = 0.12 and pNC = 0.68.

illustrate results of experiments performed with cartographic objects containing local
shape errors of low amplitude. We can see that for each of these experiments, the result
of fine matching improves data consistency, although local errors persist and cannot be
lessened. The presence of these errors reduces the Hough voting score. Indeed, some
parts of the refined cartographic object do not coincide with the gradients of the image
and thus cannot receive the segments contribution for the estimation of µHough. In
the present case, local errors are in a minority and are of low amplitude. They do not
impair the Hough voting to the extent of making the change decision indeterminate
or incorrect (pNC = 0.66 in figure 7.19, pNC = 0.71 in figure 7.20 and 7.21). These
examples illustrate the robustness of the proposed approach with respect to minor local
shape errors present in the map. This robustness is manifest both in the matching
process and during the Hough poll.
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(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.18: Detection of non-change with a matching error that can be modeled by a
global transformation. Non-change is confirmed with sHough = 0.88, µHough = (0, 0),
Egeom = 0.03 and pNC = 0.83.

(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.19: Detection of non-change with local shape errors. Non-change is confirmed
with sHough = 0.62, µHough = (1, 0), Egeom = 0.02 and pNC = 0.66.
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(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.20: Detection of non-change with local shape errors. Non-change is confirmed
with sHough = 0.73, µHough = (1, 0), Egeom = 0.03 and pNC = 0.71.

(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.21: Detection of non-change with local errors of shape. Non-change is con-
firmed with sHough = 0.75, µHough = (1, 0), Egeom = 0.05 and pNC = 0.71.
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7.5.2.3 Ambiguity and false alarm with a map marred by local errors

When local shape errors in the map are more severe, final decision-making becomes
either ambiguous (see figure 7.22 with a probability close to 0.5, pNC = 0.55), or
false (see figure 7.23 where pNC = 0.39 whereas no change has occurred). In case
more significant shape errors exist in the map, map/image inconsistencies will remain
after the active contours matching and will be too numerous to allow a significant
Hough score. Hough scores for the experiments of figures 7.22 and 7.23 are equivalent
(sHough = 0.45 and sHough = 0.47) and not as good as those obtained with minor shape
errors (see figures 7.19-7.21). While in the experiment of figure 7.22, the final decision
is indeterminate, in the second case, an erroneous detection of change is produced due
to a more significant geometrical variation (Egeom = 0.19).

(a) Initial map-to-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.22: Ambiguous detection (indeterminate case). sHough = 0.45, µHough = (0, 0),
Egeom = 0.02 and pNC = 0.55.
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(a) Initial map-image superimposition
without active contours matching

(b) After active contours matching

Figure 7.23: Erroneous change detection due to local shape errors on the map. sHough =
0.47, µHough = (−1,−1), Egeom = 0.19 and pNC = 0.39.

These two cases illustrate the limits to the proposed model and its inability to
overcome too significant local shape errors. This is inherent to the fine matching process
that does not allow significant local variations of the active contour with respect to the
shape derived previously from the map. The works exposed in chapter 6 are an attempt
to alleviate this problem and should thus allow a high Hough score to be obtained
despite local errors, as long as they can be modeled by parallel variations with respect
to the reference shape.

7.5.2.4 Summary of results

Table 7.1 summarizes the quantities calculated for the detection of change/non-change
in the experiments shown.
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Before matching After matching

Experiment sfusion sHough sHough µHough Egeom pNC

figures 7.10.a-b 1 / / / / /

Change figure 7.11 0 0.22 0.91 (0,−1) 0.54 0.30

figure 7.12 0 0.12 0.27 (−6,−26) 0.13 0.00

figure 7.13 0 0.34 0.76 (1, 0) 0.1 0.63

figure 7.14 0 0.30 0.72 (1, 0) 0.08 0.63

figure 7.15 0 0.54 0.81 (0, 0) 0.04 0.76

figure 7.16 0 0.69 0.84 (−1, 0) 0.01 0.83

Non-change figure 7.17 0 0.74 0.86 (0,−1) 0.12 0.68

figure 7.18 0 0.78 0.88 (0, 0) 0.03 0.83

figure 7.19 0 0.33 0.62 (1, 0) 0.02 0.66

figure 7.20 0 0.35 0.73 (1, 0) 0.03 0.71

figure 7.21 0 0.52 0.75 (1, 0) 0.05 0.71

Indeterminate figure 7.22 0 0.35 0.45 (0, 0) 0.02 0.55

False alarm figure 7.23 0 0.41 0.47 (−1,−1) 0.19 0.39

Table 7.1: Quantification of change/non-change scores. pNC is the probability of non-
change. sHough is the normalized Hough score.

We observe that the decrease of exogenous variabilities thanks to the active contours
matching is effective. Indeed, the sHough score is always improved after the deformable
models’ processing. In the case of non-change, the improvement varies between 10%
and 40%.

7.5.3 Statistical analysis

In this section, we analyze the success of the proposed method over a greater number of
cases of changes/non-changes from available cartographic data. A first set of tests was
conducted with a good quality map. What we understand by “good quality” concerns
a low rate of local shape errors for the cartographic objects, as well as only slight effects
of generalization and simplification. A second set of tests was performed with a medium
quality map. In this map, severe local shape errors exist. They are either due to poor
delineation of the buildings seen in the remote sensing images that were used to generate
the map, or to significant simplification/generalization effects (see figure 7.24).
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(a) Generalization effect (b) Generalization, delineation errors and
presence of partial changes

Figure 7.24: Illustration of delineation errors and of generalization effect in the map of
1996. The cartographic object is superimposed on the satellite image of 2002.

To perform active contours matching, we chose the edge-based data attachment
model (GVF, see section 4.3.2.2). Indeed, this is the model capable of processing the
largest number of cases due to its insensitivity to the homogeneity of roofs and the
generalization effect of the map. We use the spatio-temporal shape constraint with
λmin = 1, λmax = 3 and d0 = 2 (see section 5.4).

7.5.3.1 Results with a good quality map

The map used was produced by the Beijing Institute of Surveying and Mapping (BISM)
from the Quickbird satellite image of 2002 used in the experiments. This led to enhanced
map/image consistency although effects of simplification, generalization and error were
present. In addition, cases of change must not be detected with such a map. We
conducted a first set of tests with 40 buildings aimed at quantifying the method’s per-
formance with respect to non-changes. Secondly, we translated the map by 30 meters
in the eastern direction. The map and the image then no longer matched, so we could
detect changes only (out of 37 cases). The results were then brought together and
classified in accordance with the following nomenclature:

1. Correct non-change detection (true positive)

2. Correct change detection (true negative)

3. Erroneous change detection (the method considers the building to be changed
whereas in reality it remains unchanged): false negative
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4. Erroneous non-change detection (false alarm: the method considers the building
to be unchanged, whereas it has disappeared from the image): false positive

5. Indeterminate case

The results derived from the 2002 map are shown in table 7.2. We observe that the
rate of indetermination relating to the method is reasonably high. Thus, 87% of cases
are assigned a decision of change/non-change. Among all cases considered, 5.2% were
wrongly interpreted as being changes. These cases of missed non-change detections were
small in number and can be explained by the presence of local shape errors in the map.
As we saw in section 7.5.2.3, the presence of severe errors weakens the Hough voting
score to the extent of making the decision indeterminate or erroneous. These errors
are responsible for missed detections and indeterminate cases. The remainder of cases
represents 81.8% of correct detections of changes and non-changes.

Correct non-change de-
tection: 42.8%

Erroneous non-change
detection: 0%

Erroneous change detec-
tion: 5.2%

Correct change detec-
tion: 39%

Indeterminate cases: 13%

Table 7.2: Quantification of change detection results with the 2002 map. Results are
expressed as a percentage over a total of 77 cases.

7.5.3.2 Results with a medium quality map

The medium quality map we considered dates from 1996. As the time difference between
the map and the satellite image (2002) was fairly significant, we did not resort to
simulation of changes as for the previous tests. The results obtained from 105 cases are
shown in table 7.3. Compared with the results derived from the 2002 map, we can see a
slight increase in indeterminate cases (14.3%). However, the biggest increase recorded
was the rate of missed detections of non-change that reached 17%. This high rate is
consistent with the experimental conditions: the used map included more severe errors
than that from 2002. Awkward cases of non-change were not detected and instead of
switching to the category of indeterminate cases, they were wrongly interpreted as being
changes. In addition to the map errors, analyzed cases from this second set of tests was
a more delicate matter: the shadow cast by high buildings could completely mask the
building of interest, thus making it undetectable; the canopy could totally cover some
smaller buildings. As with the case of the 2002 map, erroneous non-change detections
remained negligible. They arose when segments of the image were consistent with the
geometry of the building in the map, which is no longer present in the image. Such
cases occurred but were extremely rare. Among all the considered cases, the rate of
correct change/non-change detections came to 66.7%, which amounts to a rate of 77.8%
among cases where there was decision-making.
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Correct non-change de-
tection: 50.5%

Erroneous non-change
detection: 2%

Erroneous change detec-
tion: 17%

Correct change detec-
tion: 16.2%

Indeterminate cases: 14.3%

Table 7.3: Quantification of change detection results with the 1996 map. Results are
expressed as a percentage over a total of 105 cases.

7.6 Conclusion

We introduced a methodology for change detection between a map and remote sensing
data. This approach was broken down into two stages and took advantage both of
data fusion and reducing exogenous map/image variabilities using the active contours
technique. The first phase involved calculating and merging change indices respectively
based on comparison of the map with a Digital Surface Model (DSM) and a multi-
spectral image. The methods implemented were simple and quick but only permitted
detection of an unequivocal change in the urban construction fabric.

When this was incapable of detecting the absence of a considered cartographic build-
ing, a second phase compared it with its representation in a panchromatic satellite im-
age. Map-to-image superimposition errors were first reduced by fine matching that was
performed using active contours. A subsequent comparison between the panchromatic
image and the refined cartographic object was made using two measurements: one mea-
surement by Hough voting (that quantified consistency between the segments of the
object and those extracted from the image) and another measurement of geometrical
deformation between the cartographic object before and after fine matching. Combining
these two measurements with a Gibbs energy, a probability density for non-change was
formulated and evaluated for each building of the map.

Experimental results illustrated the method’s efficiency on cases where local errors
in the shape of the cartographic objects were minor. A statistical analysis demon-
strated that in these circumstances, 82% of cases of change/non-change were correctly
processed. We were thus able to observe that the active contours fine matching by could
significantly increase map/image consistency to improve the level of confidence ascribed
to the non-change decision. The presented results also highlighted limitations in the
proposed approach: the presence of severe errors in the map meant the failure of the
fine matching process and did not allow for a significant Hough voting. Using statisti-
cal analysis, we showed that in this case, the rate of missed detections of non-change
increased significantly (+12%).

In conclusion, the proposed approach allowed the detection of “obvious” building
changes or to measure the similarity between the cartographic object and its represen-
tation in the image. A low level of similarity characterizes a difference without us being
able to determine whether it derived from a real change or an error in the cartographic
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plot.



Chapter 8

Conclusion

8.1 Summary

The goal of this thesis was to develop a method for analyzing changes between a dig-
ital urban map of buildings and multi-source high-resolution remote sensing data. We
have focused particularly on resolving the problem of exogenous variabilities between
the cartographic objects and their representations in the image. These variabilities
are due either to map-to-image registration imprecision, or to errors when plotting the
cartographic object, or to the maps simplification and generalization effects. These ex-
ogenous differences are independent from an effective change and must be attenuated
in order to guarantee a reliable change detection. The correction of these map/image
inconsistencies is made difficult because of the great number of artifacts present in the
images and which is specific to our application focused on urban environments.

The insertion of a shape constraint derived from the map in the active contour mod-
els has shown its effectiveness to overcome some of these artifacts. This prior knowledge
extracted from the map is also specific to the considered scene and enables to free our-
selves from the geographic place under study. We have experimentally demonstrated
that in the presence of shape constraints, the active contours were sensitive to an ini-
tialization far from the target object. This has led us to propose two solutions aiming to
drive the active contour more surely towards the solution and avoid the problem of local
minima. The first one consists in merging the altitude information from a digital surface
model (DSM) with the one from a panchromatic satellite image. The complementarity
of these two representations has proved to be effective. The second solution consists
in spatially and dynamically relaxing the shape constraint during the active contour’s
convergence process. An approximate and non-regular solution is first reached while
the constraint is spatially relaxed. The later and spatially uniform restoration of the
constraint enables to regularize the contour, thus avoiding the urban artifacts. We have
also proposed new - linear and quadratic - shape constraint energies authorizing a class
of deformations of the active contour with respect to the prior shape. These models
enable the contour to undergo parallel variations with respect to the segments of the
polygonal cartographic object and aims to correct the object’s local shape errors. Al-
though encouraging results are obtained with synthetic images, this latter technique is
not yet mature and requires a deeper understanding of the models and of their imple-

183



CHAPTER 8. CONCLUSION 184

mentations in order to make them efficient on real images.

Lastly, we have proposed a method for analyzing changes between the map and dif-
ferent remote sensing data. Change indexes, calculated simply from the DSM and from
a multispectral satellite image, are merged to carry out the detection of unequivocal
changes of buildings. In most cases where it has not been possible to identify a change in
an evident way, a second more complex phase is carried out to characterize the degree of
resemblance between the cartographic object and its representation in a panchromatic
satellite image. This processing takes advantage of the fine matching by active contours
and enables to formulate a non-change probability for each element of the map. This
probability is derived from a Gibbs energy. It is calculated from the geometric deforma-
tion due to the fine matching and a Hough voting designed to measure the resemblance
of the image segments and the refined cartographic object. A quantitative analysis has
shown that the fine matching improves the robustness of the non-change decision. Tests
carried out on a greater number of buildings have demonstrated statistically that the
method’s performances are satisfactory when the map only contains a small number of
local shape errors.

This thesis work highlights the following points:

✽ The spatio-temporal variation of the shape constraint weight has shown its ef-
ficiency for overcoming local minima due either to a uniform and high shape
constraint, or to alterations of the image. It enables to move the critical choice of
a constant shape constraint weight to a family of parameterized functions. The
result of the segmentation is then less sensitive to the value of those parameters
than to that of a constant value. However, our formulation of the spatio-temporal
constraint is based on empirical observations and lacks theoretical foundations.
Nevertheless, it may show the way for a more rigorous formulation leading to the
determination of the spatio-temporal function according to the information de-
rived from the image and from the prior shape and not by the definition of ad hoc
profiles whose parameters setting represents a limitation.

✽ The most innovative contribution of this work is certainly the one concerning
the formulation of new energies aiming to reduce the local shape errors of the
map. Nevertheless, numerous aspects relative to the numerical stability and the
influence of the quadratic energy are still poorly understood. The results of this
approach, which is not yet mature, are however encouraging.

✽ The simplex optimization algorithm has shown its usefulness in two situations:
the calibration of the camera for the generation of the DSM and the similarity pa-
rameters estimation making the active contours’ shape constraint invariant from
rotation, translation and scaling. In both cases, this method has been found to
be efficient and robust. Furthermore, the simplex enables to avoid the lineariza-
tion (calibration) or the derivation (gradient descent) of the cost function to be
minimized. So, its use can be transposed to all types of functional, assuming
that the number of parameters to be estimated is not too great. Lastly, we have
demonstrated that the simplex, contrary to intuition, converges more rapidly than
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the gradient descent. This fact can be explained by the simultaneous estimation
of the parameters and thanks to the reduction of the calculation complexity by
means of the narrow band technique.

✽ The use that we make of active contours is rather paradoxical: whereas these
tools are known for their ability to deform themselves, we have imposed a shape
constraint on them inhibiting this flexibility property. So, the matching by active
contours would be similar to a rigid matching which could have been completed, for
example, by the presented Hough voting technique. However, despite a sufficiently
strong shape constraint to compensate for the urban artifacts, the active contours
keep a very local flexibility which finally makes them better performing than the
rigid matching techniques.

✽ The change indexes proposed in this thesis, based on bottom-up approaches, are
relatively easy to calculate. The Hough score used to measure the similarity
between the cartographic object and the image is robust and complementary to
the top-down approach of active contours.

✽ Lastly, we have been able to verify that the active contours are flexible and pow-
erful segmentation tools, capable of integrating generic and specific geometric
constraints and of accomplishing data fusion.

8.2 Discussion of the limitations

8.2.1 Limits of the shape constraint model

The most constrictive limitation of the proposed approach is certainly the inability of
the active contours to free themselves from the prior shape derived from the map in or-
der to correct the local shape errors that it contains. The shape constraint models used
are invariant from direct plane similarity and thus enable to correct global inaccuracies
of rotation, translation and scaling modulo local variations errors of very low amplitude
depending on the weight allocated to the constraint with respect to the image informa-
tion. In this study we have shown that the invariance by similarity was not capable of
resolving the problem of local errors, which has led us to propose a more flexible way
of imposing the shape constraint with the possibility of local and parallel deformations
of the contour with respect to the prior shape. This flexibility is nevertheless restricted
to a class of deformations: any attempt to incorporate a greater degree of flexibility
into the model must be constrained and must obey certain rules failing which the active
contour will be sensitive to the image artifacts.

Our choice of conferring a degree of freedom on the active contour that is restricted
and controlled by the parallelism reflects our prior knowledge of the local shape errors
that are most often found in the map. However, this knowledge is clearly insufficient
for modeling all of the map-to-image exogenous variabilities. Indeed, these variabilities
are either due to plotting imprecision or to the map simplification and generalization
effects. In most cases, these variabilities obey the photo-interpreter’s subjectivity more
than they obey well-defined rules, and they therefore seem to be impossible to model
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with non-heuristic methods. So, the active contour models proposed in this thesis will
never be in a position to totally eradicate the cartographic objects local errors.

8.2.2 Limits of the change analysis

The cartographic local shape errors, when they are of low amplitude, do not have a great
impact on the proposed change analysis method. We have nevertheless shown quanti-
tatively that the presence of severe errors significantly increases the rate of erroneous
change detections. This is the direct consequence of the active contours’ inability to free
themselves from local errors of great amplitude. So, in the case of notable cartographic
errors, the comparison between the “refined” cartographic object and the image’s seg-
ments by Hough voting produces a mediocre similarity score without being able to state
whether this lack of resemblance is due to a change or to errors in the map.

8.2.3 Limits of the active contours

The utilization of constrained active contours requires the setting of weights determin-
ing the influence of the attachment to data and of the shape constraint. This setting is
empirical which represents a limitation in the totally automatic nature of the method.
We have nevertheless noted that a single setting makes it possible to obtain satisfactory
results whatever the place analyzed on the image.

The choice of attachment to data model, however, appears to be more delicate. In
this study we have shown that the region-based models had better performances, but
only when applied to buildings with a homogeneous roof. The edge-based active con-
tours are more sensitive to initialization but can be applied to all types of building.
Being able to choose automatically between one or the other of the models would rep-
resent a gain in robustness and efficiency. This issue remains open, nevertheless, since
determining in advance whether a building is homogeneous or not is a difficult task
insofar as the initial map-to-image registration is imprecise.

The active contours are known for their sensitivity to initialization and their long
convergence times. The first limitation obliged us to process only the low to medium
height buildings in the image. The second one represents an obstacle to the operational
character of the approach proposed in this thesis. Although the procedures had been
optimized, the processing of a building varies from a few seconds to a few minutes; the
calculation times obtained using the quadratic models are prohibitive.

8.3 Perspectives

Before closing this document, we would like to list some possible ways for future works:

✽ We have just seen that the robustness of the map-to-image changes analysis de-
pends on the ability of the active contours to successfully overcome the local shape
errors in the cartographic data. We have also noted that an exhaustive correction
of the errors is illusory. However, the total elimination of the errors is not essential
for increasing the robustness of the change analysis. Indeed, the reduction of the
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error’s amplitude would already be sufficient for reducing the rate of erroneous
detections of change. So, the work undertaken on the subject of quadratic energies
should be pursued. Alternatively, it would be interesting to see to what extent
the incorporation of a statistical model of the shape constraint (based on learning
from errors) could improve the technique.

✽ The non-change energy criteria formulated in our approach are global on the scale
of the cartographic object. Indeed the Hough score is the result of the total
contribution of the segment that took part in the poll; the geometric variation
energy is an integral calculation on the image domain, and is therefore global. It
would be judicious to carry out a more localized change/non-change analysis in
order to validate the parts of the refined cartographic object which are coherent
with the image. The incoherent parts, which are either due to errors in the map
or to effective partial changes, would then be submitted to the photo-interpreter’s
examination.

✽ It should be noted that the shadow information, characteristic of buildings, has
not been used for change detection. This should be considered in order to increase
the robustness of the final change/non-change decision.

✽ With a view to improving the robustness of the active contours, it is conceivable
to use the multispectral satellite image before the panchromatic image (with a
resolution four times lower than that of the multispectral image). This would
represent a multi-scale processing likely to reduce the calculation time. The color
information can be used directly in the Bayesian model according to the works
of M. Rousson [102]. Although color appears to be a characteristic that only
moderately discriminates the building from the rest of the scene, this is an aspect
that deserves investigation.

✽ Lastly, the Hough voting technique can be used to place the cartographic object
on the roof of tall buildings (great perspective effect) before applying the finer
and more precise matching of the active contours. The approach based on Hough
voting is non-local and fast, and would enable to generalize the proposed method to
all types of buildings. It would nevertheless have to be extended to the invariance
from rotation and scaling to take into account the initial map-to-image registration
imprecision.

We hope that this thesis work will have made a modest contribution to the (semi-
)automated analysis of urban scenes for supporting and helping photo-interpreters in
their map updating task. Beyond any immediate application, we hope that this work
will be of benefit to the society and to the sustainable development of urban areas which
are in the process of bringing together nearly half of the world’s population.



Appendix A

Data presentation and
pre-processing

In this section we propose to describe the cartographic and remote sensing data used
for this PhD study. These data represent the whole city of Beijing at different dates.
The remote sensing images are optical and are of two types. The first one concerns
stereoscopic pairs of aerial images from which we will generate a Digital Surface Model
(DSM) of the scene. The other type of remote sensing data concerns very high reso-
lution satellite imagery. We will present the characteristics of the images acquired by
the Quickbird satellite which have the best resolution at the present time in the civil
sector. Lastly, the cartographic data used are available in digital form and are taken
from a geographic information system (GIS). We will only describe the data relative to
constructions.

A.1 Data presentation

A.1.1 Remote sensing data

A.1.1.1 Aerial images

We have three images of Beijing covering the zone of the future village for the 2008
Olympic Games (figure A.1). The images are analog and represent a scene at a scale
of 1:10000. They were then scanned by the Beijing Institute of Survey and Mapping
(BISM) at a pitch of 21 microns. The resulting digital images therefore have a resolution
of 21 cm per pixel. The other characteristics of these images are as follows:

✽ acquisition date: autumn 1999

✽ acquired by an analog ”RC 30 Leica Systems Camera”

✽ conical geometry optical sensor

✽ multispectral images (3 bands: RGB)

✽ image dimensions: 11,000 by 11,000 pixels (i.e. a zone covered of 2.3 × 2.3 km2)
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✽ the optical system ensuring photo acquisition has negligible distortion

✽ no GPS or gyroscopic geo-referencing system for determining the image acquisition
parameters.

Figure A.1: Aerial image shown at 5% of its original size. The future Olympic village
will be situated in the north-east of the image.

Several remarks must be made further to the description of these characteristics.
The first one concerns the large size of the images. With a view to using them with the
3D reconstruction software to generate a DSM, they will have to be subsampled with
the risk of being confronted with prohibitive calculation times (a DSM generated by
the software results from the correlation of two stereographic images). Time is not the
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only argument concerning the choice of subsampling. Indeed it will enable to reduce
the noise inherent to the scanning of the photograph and the level of detail which is a
source of error when generating a DSM with a high level of detail.

The reconstruction software imposes another constraint concerning the aerial images.
They must be single-band images. We have chosen to convert the original three-band
(RGB) images by calculating the mean of the three bands for each pixel considered. The
resulting single-band image is thus as close as possible to the panchromatic spectrum.
This conversion is carried out before the subsampling of the images.

A.1.1.2 Satellite images

We have two raw Quickbird images (DigitalGlobe “basic bundle” product) acquired in
2002 and 2003 which have the following characteristics:

✽ Acquisition date: March 2002 / September 2003.

✽ Radiometric corrections only.

✽ Panchromatic image at 0.6 m/pixel.

✽ Multispectral four-band image (three conventional red, green, blue channels with
a fourth band in the near infrared) with 2.8 meter pitch on the ground.

✽ Latitude/longitude of the rectangular zone covered:

; North-west corner: Latitude: 40.0667◦ (2002) / 40.0808◦ (2003); Longitude:
116.2608◦ (2002) / 116.259 (2003)

; South-east corner: Latitude: 39.9475◦ (2002) / 39.919◦ (2003); Longitude:
116.4247◦ (2002) / 116.455◦ (2003)

✽ Each spectral channel is coded on 16 bits.

✽ The raw image does not contain any geocoded information.

✽ Angle with respect to the nadir: 5◦ (2002) / 9◦ (2003).

A.1.2 Cartographic data

We have three sets of cartographic data made in 1996, 2001 and 2002 by the BISM. The
2001 and 2002 data were obtained by photo-interpretation of Ikonos (1m/pixel) and
Quickbird images respectively, the 1996 data were obtained by photo-interpretation of
pairs of aerial photographs. These GIS type data have the following characteristics:

✽ Scale: 1:10000.

✽ A map is divided into 4 km (north-south) × 5 km (east-west) tiles.

✽ Organized in layers: road, constructions, rivers, lakes, green spaces (figure A.2).
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✽ Data that are only two-dimensional and geocoded in the cartographic system
specific to Beijing with a precision of less than or equal to one meter.

✽ Vector format (at the level of the constructions):

; each building is represented by a simple polygon (no intersection of edges)
resulting from the outlining of the object by an operator. It is possible
that one or more polygons may be included in another polygon to represent
courtyards or superstructures.

; The polygons do not intersect each other partially.

; The outlining of the building by the operator varies according to the perspec-
tive effect (visible facades). In the case where the building is not very high
(negligible perspective distortion for the considered scale), the contour of the
roof is entered and inserted in the map. When the perspective effect is great
(the roof and the building’s footprint do not match), the roof is outlined and
then translated to the footprint.

; The GIS data can be handled in the form of DXF-type ASCII files (format
created by the developers of AUTOCAD).

; The file relative to a tile contains a list of polygons. Each polygon contains
a sub-list of points designating the polygon’s vertices. This list is cyclic (the
last point in the list is identical to the first one), each point is expressed in
the Beijing coordinates system.

✽ Simplification when creating the data:

; Generalization. It is difficult to outline each building when they are in
clusters, are numerous and of a small size. The solution adopted by the BISM
consists of outlining the block made up from the buildings. The blocks are
separated by the main roads. Figure 2.4 illustrates this generalization effect.

; Individual simplification. Certain buildings have a complex shape that
is not worth transcribing precisely in the map for the scale considered. The
shape is therefore simplified in a more or less arbitrary way by the operator.

A.2 Pre-processing of the remote sensing data

A.2.1 Subsampling of the aerial images

The subsampling of an image is a basic application in image processing. There are
many methods that can be used to do this (nearest neighbor, bilinear, bicubic, etc.). A
subsampling operation can be formalized by an ideal low-pass filtering [14] :

Î (i, j) =
∑

k,l∈Z

sinc (νcei− k) sinc
(
νlej − l

)
I (k, l) (A.1)
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Figure A.2: Beijing city: extract from the GIS data at a 1:10000 scale. The constructions
are in pink, the road network in purple, the rivers and canals in blue, the lakes in green.

where: νce and ν le are the sampling frequencies on image I per the columns and lines
respectively.

This type of filtering is carried out in the spatial domain by a convolution with a
cardinal sine on an infinite scale. In practice, there are several methods for rendering
the spatial windowing finite. The most brutal way consists of multiplying the signal by
a rectangular window, thus generating Gibbs effects (this being due to this window’s
infinite slope at its edges). Multiple windows with finite derivatives are then proposed
(Blackman, Hanning, Hamming, Kaiser, etc.). [50] is the reference article concerning
these apodization windows.

In our case, particular attention will be paid to the preservation of the buildings’
contours since they are preserved by the correlation technique developed in the 3D re-
construction software [85, 86]. In most cases, a building’s contour is materialized by
a difference of luminance in the image. It is a step or ramp type transition charac-
terized by high frequencies in the spectral domain. In [14], Philippe Blanc has carried
out a comparative study of the low-pass filters associated with the different types of
sampling. It came out that the so-called apodized Shannon interpolation subsampling
is the technique that enables to best keep an image’s high frequencies. Consequently,
it is this method that we have chosen for the under-dimensioning of the Beijing aerial
photographs. The interpolation by apodized Shannon kernel is a convolution of the
image by a cardinal sine windowed by the apodization functions discussed in [50]. We
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have chosen to subsample the images by a factor of three in order to obtain a resolution
of 0.63 meters per pixel which is the best resolution achieved to date for observation
satellites in the civil sector (Quickbird 2). This subsampling factor also makes it possi-
ble to reduce the complexity of the images and consequently the error rate when they
are correlated. It has been possible to reduce the noise introduced by the scanner char-
acterized by high frequencies by low-pass filtering of the subsampling. The apodized
Shannon convolution was carried out on a domain of 97 × 97 pixels with a Blackman
window.

A.2.2 Rectification of the satellite images

The satellite images were rectified from the terrain altimetric variations at a later stage
by a DTM. This processing, carried out by the BISM, enables the geocoding of the data
in the Beijing cartographic system. Rectification is a critical phase because its precision
will impact the quality of the updated map. Indeed, we will consider that the satellite
images are the recent reference data from which we will update the map. Fifty Ground
Control Points were used by the BISM to assess the geocoding quality of the Quickbird
images. The overall achieved precision is 0.65 pixel, i.e. 0.4 m.
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Simplex algorithm

The simplex method consists in finding a set of optimum parameters that minimize a
cost function. This is a 0-order technique not requiring the calculation of the cost func-
tion’s gradient. In this method, which we owe to Nelder and Mead [76], we look for the
values of the cost function on a polyhedron with N+1 vertices in an N -dimension space
(a triangle in a plane, a tetrahedron in space, etc.). The first vertex is the evaluation
of the cost function with the initial parameters, the other vertices are constructed by
varying these parameters.

At each iteration, we calculate a new simplex which will enable to efficiently come
closer to the minimum. To do this, we start by classifying the vertices of the current
simplex according to the values of the cost function at these vertices. Let m be the
best point, p the worst, a the penultimate immediately better than p. To build a new
simplex, the general direction must correspond to getting afar from p. We will choose
the direction defined by the straight line {p, c}, c being the center of the face opposite
to p (its coordinates are the mean of the other points coordinates). On this straight
line, we try the point e symmetrical to p with respect to c:

e = c + (c− p) = 2c − p

If e is better than m, we can try to go even farther in that direction:

e′ = c + γ (c − p) , γ > 1

If e′ is better than e, the new simplex will be obtained by replacing p with e′ (expansion
of the simplex, figure B.2). Otherwise, we will replace p with e (reflection of the simplex
see figure B.1)
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m

 e

c
p

Figure B.1: Initial simplex and reflection.

m

c
p

 e

Figure B.2: Expansion

If e is not better than m we try e′′ and e′′′ situated on the straight line {c,p} on
either side of c according to:

e′′ = c +
1

2
(c − p)

e′′′ = c − 1

2
(c − p)

Otherwise, if the best of these points is better than a, we will choose it to replace p
(contraction of the simplex, figure B.3)
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m

c
p

 e’’

 e’’’

Figure B.3: Possible contractions

Otherwise, it means that the point m is really close to the minimum: we then shrink
the simplex keeping m and replacing all the points si by the middles of the segments
[si,m].

m

p

Figure B.4: Shrinking

The method is very simple and converges with great robustness. The iterations stop
when the dimension of the simplex is sufficiently small.



Appendix C

Direct and inverse localization
modeling

C.1 Inverse modeling

This modeling consists in determining the position in the image of a point initially
expressed in three-dimensional coordinates in a reference frame R. Whether R is a
geo-centered reference frame, or associated with a cartographic projection, this will not
affect the writing of the inverse modeling equations. We only assume that R is an
ortho-normed direct reference.

1. Let (Xsol, Ysol, Zsol) be the coordinates of a point in the scene expressed in the ref-
erence frame R. The coordinates of the viewing vector in R are (Xsol−Xcam, Ysol−
Ycam, Zsol − Zcam) . The coordinates indexed “cam” are those of the position of
the camera’s optical center in R.

2. This same vector expressed in the camera reference is



U
V
W


 = M




Xsol −Xcam

Ysol − Ycam
Zsol − Zcam




where M is the rotation matrix that makes the transfer from reference R to the
camera reference. The expression of M is given by:

M =




cosαz − sinαz 0
sinαz cosαz 0

0 0 1






cosαy 0 − sinαy
0 1 0

sinαy 0 cosαy






1 0 0
0 cosαx − sinαx
0 sinαx cosαx




(C.1)
where (αx, αy, αz) are the rotation angles of the camera reference with respect to
the (0X), (0Y) and (0Z) axes of the reference frame R.

3. The coordinates expressed in the camera reference, centered on the Principal Point
of Symmetry (PPS), without distortion, of the corresponding point are:

(
− U
W f

− V
W f

)
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where f is the optical system’s focal length.

4. By ignoring the distortion, and re-centering in the camera reference (direct and
ortho-normed), these coordinates become:

{
x = XPPS − U

W f

y = YPPS − V
W f

The transition of the coordinates expressed in the camera reference to the image’s pixel
coordinates uses the affinity parameters:

{
line = Tlig + a00x+ a01y

column = Tcol + a10x+ a11y

Figure C.1: Diagram illustrating inverse modeling. The terrain and camera references
are direct.

C.2 Direct modeling

Direct modeling enables to calculate from a point in the image its three-dimensional
position in R at a given altitude h above an ellipsoid.
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1. Let (l, c) be the line/column coordinates of the pixel to be localized. The coordi-
nates (x, y) of this same point in the camera reference are given by:





x =
(l−Tlig)a11−(c−Tcol)a01

a00a11−a01a10

y =
−(l−Tlig)a10+(c−Tcol)a00

a00a11−a01a10

where: (Tlig, Tcol) are the affinity parameters in translation; (aij) are the rota-
tion/scaling affinity parameters .

2. The coordinates (x′, y′) in this same reference but centered on the PPS are

{
x′ = x−XPPS

y′ = y − YPPS

3. By ignoring the distortion, we can then express the viewing direction V in the
camera reference: 



x′

f
y′

f

−1




4. This same direction expressed in R is

V ′ = M−1V

where M is the rotation matrix of equation (C.1).

The 3D point of height h in R is determined by the intersection of the viewing direction
with the ellipsoid of revolution with radii (a + h, b + h) (a : major radius, b : minor
radius). The ellipsoid of revolution’s equation modeling the surface of the Earth and
expressed in R is equivalent to:

x2

(a+ h)2
+

y2

(a+ h)2
+

z2

(b+ h)2
= 1 (C.2)

The intersection point I between the viewing direction V ′ and the ellipsoid verifies:

I = C + uV ′

where C is the position of the camera’s optical center expressed in R ; u is a scalar.
Finding the intersection I is therefore equivalent to determining the scalar u. The
previous equation can also be written in the form:





xI = xC + uV ′
x

yI = yC + uV ′
y

zI = zC + uV ′
z

(C.3)

Injecting the equations of system (C.3) into the equation of the ellipsoid (C.2) enables
to find the roots of the second degree polynomial:

αu2 + βu+ γ = 0
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with: 



α = (a+ h)2 V 2
z + (b+ h)2

(
V

′2
x + V

′2
y

)

β = 2
{

(a+ h)2 zcV
′2
z + (b+ h)2

(
xcV

′

x + ycV
′
y

)}

γ = (a+ h)2 z2
c + (b+ h)2

(
x2
c + y2

c

)
− (a+ h)2 (b+ h)2

(C.4)

The two roots of the second degree polynomial correspond to the two intersections of
the viewing direction with the ellipsoid. We are looking for the closest intersection to
the camera’s optical center, i.e. the one corresponding to the smallest root. Since the
quantity α is strictly positive, the smallest root is:

u0 =
−β −

√
β2 − 4αγ

2α

Intersection I of altitude h is therefore




xI = xC + u0V
′
x

yI = yC + u0V
′
y

zI = zC + u0V
′
z

(C.5)

Figure C.2: Diagram illustrating the direct modeling. The terrain and camera references
are direct.



Appendix D

Fast calculation of the mean and
of the variance inside and outside
an active contour represented by
a levels set

As proposed by M. Rousson in [102], it is useless to integrally calculate the mean and
the variance of the pixels in the image inside and outside the active contour at each
iteration. Indeed, this operation must be performed once at time t = 0. For the later
estimation of the statistical quantities, it is sufficient to identity the pixels in the image
that enter and leave the region delimited by C (t) in order to correct the values of the
mean and of the variance obtained beforehand. Let Ωout,in be the set of pixels excluded
from the contour at time t and included in the contour at t + 1. The cardinal of this
set is nout,in. Let Ωin,out be the dual of Ωout,in with cardinal nin,out. By definition, the
mean inside the contour at time t+ 1 is:

cin (t+ 1) =
1

nin (t+ 1)

∫

Ωin(t+1)
I (x) dx

This function is expressed according to cin (t) in the following way:

cin (t+ 1) =
1

nin (t) + nout,in − nin,out

{
nin (t) cin (t) +

∫

Ωout,in

I (x) dx −
∫

Ωin,out

I (x) dx

}

(D.1)
Likewise, we find the following expression of the mean on the outside:

cout (t+ 1) =
1

nout (t) − nout,in + nin,out

{
nout (t) cout (t) −

∫

Ωout,in

I (x) dx +

∫

Ωin,out

I (x) dx

}

(D.2)
By remarking that the variance of a random variable X is:

σ2 (X) = E
(
X2
)
−E (X)2
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we then have

σ2
in (t+ 1) =

1

nin (t+ 1)

∫

Ωin(t+1)
I2 (x) dx− c2in (t+ 1)

which we express according to σ2
in (t)and to cin (t) thanks to (D.1):

σ2
in (t+ 1) =

1

nin (t) + nout,in − nin,out

{
nin (t)

[
c2in (t) + σ2

in (t)
]
+

∫

Ωout,in

I2 (x) dx

−
∫

Ωin,out

I2 (x) dx

}
− c2in (t+ 1) (D.3)

The dual expression σ2
out (t+ 1) is analog:

σ2
out (t+ 1) =

1

nout (t) − nout,in + nin,out

{
nout (t)

[
c2out (t) + σ2

out (t)
]
−
∫

Ωout,in

I2 (x) dx

+

∫

Ωin,out

I2 (x) dx

}
− c2out (t+ 1) (D.4)

The advantage of this type of technique is that it only operates on the Ωin,out and Ωout,in

spaces whose cardinals are very low compared with those of Ωin and Ωout. The reduction
in calculation time is significant since the calculation complexity becomes proportional
to the length of the active contour. In [102], M.Rousson experimentally demonstrates
the saving made in the computational time.



Appendix E

Calculation of the shape
constraint and quadratic energy
variations

E.1 Evolution equation derived from the shape constraint

functional by difference of normals

Let us consider the shape constraint energy term based on the difference between the
unit normal of the active contour implicitly represented by the level set φ and that of a
reference shape represented by ψ:

JShape (φ, ψ) =

∫

Ω
|∇φ (x) −∇ψ (x)|2 (H (φ (x)) −H (ψ (x)))2 dx (E.1)

The evolution equation consists of finding the values of φ that minimize the functional
JShape (φ, ψ, t). To achieve this, we adopt the classic local minimization by gradient
descent scheme:

∂JShape (φ, ψ, t)

∂φ
= −φt (x, t) (E.2)

The expression of
∂JShape(φ,ψ,t)

∂φ is deduced from the Gâteaux derivative of JShape (φ, ψ, t)

with respect to φ in direction φ̃:
(
∂JShape (φ, ψ, t)

∂φ

)

φ=φ̃

=
〈
JShape (φ, ψ, t) , φ̃

〉
=

∫

Ω

∂JShape (φ, ψ, t)

∂φ
φ̃ (x, t) dx (E.3)

The Gâteaux derivative of the functional is expressed in the form:

(
∂JShape (φ, ψ, t)

∂φ

)

φ=φ̃

= lim
ε→0

1

ε

(
JShape

(
φ (x, t) + εφ̃ (x, t) , ψ, t

)
− JShape (φ (x, t) , ψ, t)

)

(E.4)
Let us detail the calculation of the equation (E.4):

JShape

(
φ (x, t) + εφ̃ (x, t) , ψ, t

)
=
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∫

Ω

〈
∇φ (x) + ε∇φ̃ (x, t) −∇ψ (x) ,∇φ (x) + ε∇φ̃ (x, t) −∇ψ (x)

〉
.

(
H
(
φ (x) + εφ̃ (x, t)

)
−H (ψ (x))

)2
dx (E.5)

noting that:

δa (φ (x, t)) = lim
ε→0

Ha

(
φ (x, t) + εφ̃ (x, t)

)
−Ha (φ (x, t))

εφ̃ (x, t)
(E.6)

and by developing equation (E.5), we have:

JShape

(
φ (x, t) + εφ̃ (x, t) , ψ, t

)
=

JShape (φ (x, t))

+2ε

∫

Ω
φ̃ (x, t) δa (φ (x, t)) (H (φ (x)) −H (ψ (x))) 〈∇φ (x) −∇ψ (x) ,∇φ (x) −∇ψ (x)〉 dx

+2ε

∫

Ω
(H (φ (x)) −H (ψ (x)))2

〈
∇φ (x) −∇ψ (x) ,∇φ̃ (x, t)

〉
(E.7)

By integrating by parts the latter term of equation (E.7), we obtain:

JShape

(
φ (x, t) + εφ̃ (x, t) , ψ, t

)
− JShape (φ (x, t)) =

+2ε

∫

Ω
φ̃ (x, t) δa (φ (x, t)) (H (φ (x)) −H (ψ (x))) .

(
|∇φ (x)|2 + |∇ψ (x)|2 − 2 〈∇φ (x) ,∇ψ (x)〉

)
dx

+2ε
{[

(H (φ (x)) −H (ψ (x)))2 (φx (x, t) + φy (x, t) − ψx (x, t) − ψy (x, t)) φ̃ (x, t)
]
Ω

+

∫

Ω
φ̃ (x, t) [2 (H (φ (x)) −H (ψ (x))) ((δa (φ (x, t)) + δa (ψ (x, t))) 〈∇φ (x) ,∇ψ (x)〉

+δa (φ (x, t)) |∇φ (x)|2 − δa (ψ (x, t)) |∇ψ (x)|2

+(H (φ (x)) −H (ψ (x)))2 (∆ψ (x) − ∆φ (x))
]
dx
}

(E.8)

The term
[
(H (φ (x)) −H (ψ (x)))2 (φx (x, t) + φy (x, t) − ψx (x, t) − ψy (x, t)) φ̃ (x, t)

]
Ω

is null since it is always possible to find a rectangular space Ω that can include the
shapes represented by φ and ψ. So, far from the level 0 of the level sets, we have
H (φ (x)) = 0 = H (ψ (x)). The difference of energies becomes:

JShape

(
φ (x, t) + εφ̃ (x, t) , ψ, t

)
− JShape (φ (x, t)) =

2ε

∫

Ω
φ̃ (x, t)

{
(H (φ (x)) −H (ψ (x)))

(
δa (φ (x, t))

(
|∇ψ (x)|2 − |∇φ (x)|2

)

−2δa (ψ (x, t)) |∇ψ (x)|2 + 2δa (ψ (x, t)) 〈∇φ (x) ,∇ψ (x)〉
)
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+ (H (φ (x)) −H (ψ (x)))2 (∆ψ (x) − ∆φ (x))
}
dx (E.9)

The energy gradient then comes directly, and noting that the normals are unit (|∇ψ (x)|2 =
1 = |∇φ (x)|2):

∂JShape (φ, ψ, t)

∂φ
= 4 (H (φ (x)) −H (ψ (x))) {δa (ψ (x, t)) (〈∇φ (x) ,∇ψ (x)〉 − 1)}

+2 (H (φ (x)) −H (ψ (x)))2 (∆ψ (x) − ∆φ (x)) (E.10)

The evolution equation is deduced by change of sign according to equation (E.2).

E.2 Derivative of the quadratic correction energy

The energy introduced into equation (6.7) can be split according to:

Jcorrection (C) = J1 (C) − J2 (C) (E.11)

with

J1 (C) =

∮ ∮
dpdp′

〈
Ċ, Ċ′

〉2 ∣∣∣Ċ
∣∣∣
−1 ∣∣∣Ċ′

∣∣∣
−1

Ψ(R) (E.12)

and

J2 (C) =

∮ ∮
dpdp′

〈
Ċ, Ċ′

〉4 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−3

Ψ(R) (E.13)

E.2.0.1 Energy J1 (C)

J1

(
C + δC̃

)
=

∮ ∮
dpdp′

〈
Ċ+δ

˙̃
C, Ċ′ + δ ˙̃C′

〉2 ∣∣∣Ċ+δ
˙̃
C
∣∣∣
−1 ∣∣∣Ċ′ + δ ˙̃C′

∣∣∣
−1

Ψ
(
R̃
)

(E.14)

The quantityΨ
(
R̃
)

is rewritten according to:

Ψ
(
R̃
)
≈ Ψ(R) +

〈
R̃, δC̃ − δC̃′

〉
Ψ′ (R) (E.15)

and
∣∣∣Ċ+δ

˙̃
C
∣∣∣
−1

is:

∣∣∣Ċ+δ
˙̃
C
∣∣∣
−1

≈
∣∣∣Ċ
∣∣∣
−1
(

1 −
〈
Ċ, δ

˙̃
C
〉 ∣∣∣Ċ

∣∣∣
−2
)

(E.16)

By developing the square of the scalar product, while replacing Ψ
(
R̃
)

with (E.15), and
∣∣∣Ċ+δ

˙̃
C
∣∣∣
−1

with (E.16) and ignoring the infinitesimal variations of the order two, we

have:

J1

(
C + δC̃

)
= J1 (C) + 2

∮ ∮
dpdp′Ψ′ (R)

〈
Ċ, Ċ′

〉2 〈
R̃, δC̃

〉 ∣∣∣Ċ
∣∣∣
−1 ∣∣∣Ċ′

∣∣∣
−1

−2

∮ ∮
dpdp′Ψ(R)

〈
Ċ, Ċ′

〉2 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−1 〈

Ċ, δ ˙̃C
〉
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+4

∮ ∮
dpdp′Ψ(R)

〈
Ċ, Ċ′

〉 ∣∣∣Ċ
∣∣∣
−1 ∣∣∣Ċ′

∣∣∣
−1 〈

Ċ′, δ
˙̃
C
〉

(E.17)

By integrating the last term by parts, we have1:

J1

(
C + δC̃

)
− J1 (C) = 2

∮ ∮
dpdp′Ψ′ (R)

〈
Ċ, Ċ′

〉2 ∣∣∣Ċ
∣∣∣
−1 ∣∣∣Ċ′

∣∣∣
−1 〈

R̃, δC̃
〉

+2

∮ ∮
dpdp′

[
Ψ(R)

(
2
〈
Ċ, Ċ′

〉〈
C̈, Ċ′

〉 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−1

− 3
∣∣∣Ċ
∣∣∣
−5 ∣∣∣Ċ′

∣∣∣
−1 〈

Ċ, Ċ′
〉2 〈

C̈, Ċ
〉)

+Ψ′ (R)
〈
Ċ, R̃

〉〈
Ċ, Ċ′

〉2 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−1
] 〈

Ċ, δC̃
〉

+2

∮ ∮
dpdp′Ψ(R)

〈
Ċ, Ċ′

〉2 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−1 〈

C̈, δC̃
〉

−4

∮ ∮
dpdp′

[
Ψ(R)

(〈
Ċ′, C̈

〉 ∣∣∣Ċ
∣∣∣
−1 ∣∣∣Ċ′

∣∣∣
−1

−
〈
Ċ, Ċ′

〉〈
C̈, Ċ

〉 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−1
)

+Ψ′ (R)
〈
Ċ, R̃

〉〈
Ċ, Ċ′

〉 ∣∣∣Ċ
∣∣∣
−1 ∣∣∣Ċ′

∣∣∣
−1
]〈

Ċ′, δC̃
〉

(E.18)

E.2.0.2 Energy J2 (C)

J2

(
C + δC̃

)
=

∮ ∮
dpdp′

〈
Ċ+δ

˙̃
C, Ċ′ + δ ˙̃C′

〉4 ∣∣∣Ċ + δ
˙̃
C
∣∣∣
−3 ∣∣∣Ċ′ + δ ˙̃C′

∣∣∣
−3

Ψ
(
R̃
)

(E.19)
with ∣∣∣Ċ+δ

˙̃
C
∣∣∣
−3

≈
∣∣∣Ċ
∣∣∣
−3
(

1 − 3
〈
Ċ, δ

˙̃
C
〉 ∣∣∣Ċ

∣∣∣
−2
)

By developing the scalar product by injecting the result of (E.15) and ignoring the terms
of order two, we have:

J2

(
C + δC̃

)
− J2 (C) = 2

∮ ∮
dpdp′Ψ′ (R)

〈
Ċ, Ċ′

〉4 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−3 〈

R̃, δC̃
〉

−6

∮ ∮
dpdp′Ψ(R)

〈
Ċ, Ċ′

〉4 ∣∣∣Ċ
∣∣∣
−5 ∣∣∣Ċ′

∣∣∣
−3 〈

Ċ, δ
˙̃
C
〉

+8

∮ ∮
dpdp′Ψ(R)

〈
Ċ, Ċ′

〉3 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−3 〈

Ċ′, δ
˙̃
C
〉

(E.20)

By integrating by parts, we have:

J2

(
C + δC̃

)
− J2 (C) = 2

∮ ∮
dpdp′Ψ′ (R)

〈
Ċ, Ċ′

〉4 ∣∣∣Ċ
∣∣∣
−3 ∣∣∣Ċ′

∣∣∣
−3 〈

R̃, δC̃
〉

+2

∮ ∮
dpdp′

[
Ψ(R)

(
12
〈
Ċ, Ċ′

〉3 〈
C̈, Ċ′

〉 ∣∣∣Ċ
∣∣∣
−5 ∣∣∣Ċ′

∣∣∣
−3

− 15
∣∣∣Ċ
∣∣∣
−7 ∣∣∣Ċ′

∣∣∣
−3 〈

Ċ, Ċ′
〉4 〈

C̈, Ċ
〉)

+3Ψ′ (R)
〈
Ċ, R̃

〉〈
Ċ, Ċ′

〉4 ∣∣∣Ċ
∣∣∣
−5 ∣∣∣Ċ′

∣∣∣
−3
]〈

Ċ, δC̃
〉

1This result is obtained by injecting: ∂Ψ
∂p

= Ψ′ (R)
D

R̃, Ċ
E
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+6

∮ ∮
dpdp′Ψ(R)

〈
Ċ, Ċ′

〉4 ∣∣∣Ċ
∣∣∣
−5 ∣∣∣Ċ′

∣∣∣
−3 〈

C̈, δC̃
〉

−4

∮ ∮
dpdp′

[
Ψ(R)

(
6
〈
Ċ, Ċ′

〉2 〈
Ċ′, C̈

〉 ∣∣∣Ċ
∣∣∣
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E.2.1 Total variation of the energy Jcorrection (C)

By grouping the results of (E.18) and (E.21), we have:
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〉 ∣∣∣Ċ
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Ċ, Ċ′
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∣∣∣
−1
(

1 −
〈
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∣∣∣
−2 ∣∣∣Ċ′
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Ċ, Ċ′

〉2 ∣∣∣Ċ
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By noting that
〈
C̈, Ċ

〉
= 0, certain terms cancel each other out. By assuming that p

is the arclength, this last equation can be simplified and is equivalent to (6.9).



Appendix F

3D representation of an urban
scene

F.1 Objective and methodology

The results of the chapter 3 showed that we were able to generate an orthorectified
Digital Surface Model (DSM) of an urban scene. This altitude information can be
transferred to the 2D building digital map in order to add a third dimension. This
chapter shows a middle level 3D representation of the buildings which was coded in
VRML (Virtual Reality Modeling Language). This work was achieved by Andéol Ayzac,
intern at the LIAMA from April to August 2004.

F.2 Modeling principle

Buildings are modeled by parallelepipeds whose polygonal bases are derived from the
map. The height assigned to each building is the mean altitude value derived from
the DSM within the cartographic polygon. Such modeling is clearly inadequate for the
sole goal of a realistic representation (virtual visit of a city). Nevertheless, it is fully
automatic and sufficient to model noise or atmospheric pollution.

In order to make the represented scene more realistic than a heap of “extruded
boxes”, we wrapped an orthoimage (jointly generated with the DSM) and some façades
textures. The façade texture is a collection of identical patterns which density (per
pixel) is a parameter of the program. The patterns are either pictures of façades taken
in Beijing, or synthetic images. There exists approximatively ten classes of patterns
randomly placed on the buildings. A last option of the program enables to model the
terrain variations if a Digital Terrain Model (DTM) is available. The DTM is modeled
by B-splines which smoothing effect is not a limitation as urban relief is seldom hilly.

F.3 Results over Beijing city

Figure F.1 illustrates the 3D representation of the stadium built for the Asian Games
held in Beijing in 1990.
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Figure F.1: 3D visualization of Beijing city - with textures and no DTM.
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