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Introduction

Scientific Goal and Applications

The need to segment, from an image, entities that have the form of a ‘network’, i.e. branches
joining together at junctions, arises in a variety of domains. Examples include the segmen-
tation of road and river networks in remote sensing imagery, and of vascular networks in
medical imagery. However, extracting automatically the network region in the image is a
difficult task, because images are usually complex, containing much noise and confounding
elements having similar local properties to the entity of interest. For this reason, techniques
that include no prior knowledge about the region containing the network cannot succeed.
In order to solve this problem, such prior knowledge must be injected somehow, either
through the intervention of a user, or by incorporating it into a model. Human experts pos-
sess very specific prior knowledge about the shape of regions corresponding to networks,
and in most applications, this level of knowledge is necessary rather than merely sufficient.
Unfortunately, current methods, based on manual extraction, are time and labor intensive.
On the other hand, the most generic prior knowledge alone, for example concerning boun-
dary smoothness, is not enough. The need to include more specific prior knowledge of a
class of shapes raises a difficult methodological issue, however. The set of network-like re-
gions is complicated to model, because they may have arbitrary topology. More concretely,
it consists of a large (in principle infinite) number of connected components, corresponding
to the different possible topologies of a network (number of connected components in the
network, number of loops in each connected component), or equivalently to the set of pla-
nar graphs (for 2D data). To this is added a geometric superstructure corresponding to an
embedding of the graph in the plane, and to its ‘fattening’ into a region. The construction
of a model that favors regions lying in this set as opposed to those outside it is a non-trivial
problem.

The incorporation into models of prior knowledge about a region to be segmented from
an image has a long history. The earliest and still most widely used models incorporate local
knowledge about the boundary, essentially smoothness: active contours (Kass et al., 1988)
are one example, the Ising model (Ising, 1925; Geman and Geman, 1984) another. This
degree of prior knowledge is almost never enough to segment an entity of interest automa-
tically, even in relatively simple images. More recent work has focused on the inclusion of
more specific prior knowledge into the active contours, as we will see in subsection 1.1.3.

1



2 Introduction

This work involves shape priors saying that the region sought must be ‘close’ to an exemplar
region or regions. This type of model is useful for many applications, when a topologically
correct reference shape is given. An intermediate level of prior knowledge is to model fam-
ilies of shapes. To model network regions, Rochery et al. (2006) introduced ‘higher-order
active contours’ (HOACs). HOACs incorporate not only local, differential knowledge about
the boundary, but also nonlocal, long-range interactions between tuples of contour points.
Via such interactions, they favor regions with particular geometric characteristics without
constraining the topology via use of a reference region.

Detecting roads from remotely sensed imagery is critical for many applications, for
example cartographic data updating, intelligent navigation, environmental monitoring, di-
saster management, and so on. Recently, the commercial availability of very high resolution
(VHR) optical satellite images (QuickBird, Ikonos, and in the near future Pléiades), with
sub-metric resolutions, provides new opportunities for the extraction of information from
remotely sensed imagery. Figure 1(a) shows one example of our input QuickBird panchro-
matic images (∼0.61m/pixel). At this resolution, qualitatively new categories of informa-
tion are available, and the accuracy of previously extracted categories of information can be
quantitatively improved. For example, road networks can be extracted as two-dimensional
regions rather than as one-dimensional structures, and the geometric accuracy of the ex-
tracted road network can be greatly improved. As a result, road extraction from VHR im-
ages has become an increasingly important research topic in remote sensing.

Higher resolution brings with it new challenges however. The appearance of details
invisible in lower resolution images can easily disrupt the recognition process. Figure 1(b)
shows a full resolution zoom on Figure 1(a), illustrating the complexity existing in VHR
images; and Figure 1(c) shows a full resolution zoom on a 1/8 resolution image, illustrating
that even after three levels of smoothing and down-sampling, the data is still rather complex.
The difficulties lie in the following factors. First, much ‘noise’ exists in the road region due
to cars, road markings, shadows, etc., while the background is very diverse, containing
many features that are locally similar to roads. Second, rather than being simple lines as
in images at low resolutions, i.e. more than 5m/pixel, roads appear as elongated, more or
less homogeneous surfaces with different widths and curvatures. It is a hard task to retrieve
road surfaces. Last but not least, in a dense urban environment, the contrast between roads
and background is relatively poor, as opposed to a rural or semi-urban area. All the above
factors result in the relative failure of existing road extraction approaches. The development
of a reliable automatic algorithm for road extraction in dense urban areas from VHR images
is thus a necessity if the increasing demand is to be met.

In this thesis, we propose new variational models for network modeling. In particular,
first, to overcome a serious limitation of the previous model introduced by Rochery (2005),
we develop two new HOAC shape prior energy terms, both of which allow separate control
of road straightness and width, and thus better modeling of elongated structures. Second, we
combine together all three different types of prior geometric knowledge. They are: generic
boundary smoothness constraints; intermediate prior knowledge for modeling a family of
shapes; and specific shape prior knowledge of the road network derived from Geographical
Information System (GIS) data created at an earlier date. Even if errors exist in the GIS data,
we can perform GIS updating. In addition, we take advantage of multiresolution analysis
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(a)

(b) (c)

Figure 1. Input data. (a): a QuickBird image (size: 2560×2560); (b): a full resolution zoom
on the image; (c): a full resolution zoom on 1/8 resolution image, i.e. scaling coefficients
after performing a wavelet transform three times.
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(MRA) to alleviate data complexity. We test and evaluate our models on the problem of
road network extraction in a dense urban area from VHR QuickBird images of Beijing.

Organization of the Thesis Manuscript

This thesis is organized as follows:

Chapter 1

In the first part, we review existing variational approaches for segmentation based on curve
evolution. We classify the various models into two main classes of evolution: edge-based
and region-based approaches. Moreover, special attention is paid to active contours incor-
porating prior shape constraints. In the second part, we describe representative approaches
to road extraction from remotely sensed imagery, organized according to the different tech-
niques used. The advantages and drawbacks of each type of model are discussed.

Chapter 2

We describe the theoretical foundations of the thesis. First, we briefly introduce the diffe-
rent energy terms of HOACs and its corresponding phase field equivalent (Rochery et al.,
2005b; Rochery, 2005; Rochery et al., 2006). We show the equivalence between phase field
modeling and standard active contours. Due to the incorporation of long-range interactions
between a pair of contour points, HOACs are a powerful tool for modeling networks. We
define our data energy term, and then formulate our primary model adapting ‘phase field
HOACs’ to the problem of urban road extraction from VHR images. However, one of the
problems we face is that there are a number of parameters in the HOACs that need to be
estimated in a more systematic way. For this purpose, we calculate each energy term on an
ansatz of a straight long bar. Based on this calculation, we explore stability conditions and
possible behaviors of the model, and describe how to choose the model parameters properly.

Chapter 3

In order to overcome the great complexity of the information existing in VHR images, we
focus on an MRA of the primary model. We first introduce a multiresolution statistical data
model. The use of several resolutions allows the combination of coarse resolution data, in
which the detail that can disrupt recognition has been eliminated, with fine resolution data to
increase precision. Subsequently, we propose a two-step robust multiresolution framework.
We segment at first a low resolution image, and obtain an approximate pre-segmentation
of the object of interest. This preliminary result is then incorporated into the segmentation
at full resolution, to force the final segmentation to lie close to the pre-segmentation, thus
diminishing the local minima of the total energy at full resolution.

Parts of this work have been published by Peng et al. (2007a, 2008b).
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Chapter 4

In the context of updating an outdated digital map, we propose a specific prior term to
incorporate the information available from a GIS map into our primary model. This map
dates from before the image was acquired, and thus represents a different road network:
the accuracy needs to be improved, and the network topology needs to be corrected. In
our model, we include all three different types of prior geometric knowledge characterized
by their level of generality. We show all three types of prior knowledge to be essential
for a successful segmentation at full resolution. In addition, in the case of extracting the
road network at full resolution with GIS data unavailable, we can use a result obtained at
a reduced resolution, where GIS information appears not to be necessary in the presence
of the other two types of prior knowledge, to replace GIS information in the specific prior
term. Thus, we can free ourselves from the need for GIS data. This results in another MRA
approach.

Parts of this work have been published by Peng et al. (2007b, 2008b).

Chapter 5

The previous chapters addressed the extraction of main road networks. Now we turn to the
issue of extracting the secondary road network. Compared to the main roads, the difficulties
with secondary roads lie on the one hand in the low discriminative power of the grey-level
distributions of road regions and background, and on the other hand, in the greater effect of
occlusions and other types of noise on narrower roads. This suggests that strong geometric
prior information is needed. The model developed previously for main road extraction
contains such prior knowledge, but it suffers from a limitation that is severe in the case of
secondary roads: the scale on which the road is expected to be straight is the same as the
width of the road, whereas in fact road width gives only an (approximate) upper bound on
the radius of curvature of the road. Therefore, the solution is to separate the interaction
function along one side of a road from the one across a road. To this end, we propose
respectively two nonlocal HOAC prior energies: a nonlinear term and a linear term. The
former increases the magnitude of the interactions along the road; and the latter provides
longer-range interactions along the road. In fact, both of them achieve similar effects. As
before, we analyze two new total prior models with respect to a straight long bar, and
establish the parametrical constraints. Through this analysis of the linear term, we show
that in addition, it enables the modeling of two widely separated widths simultaneously,
and opens up new possibilities in applications.

Parts of this work have been published by Peng et al. (2008a,c).

Chapters 3, 4 and 5 are each illustrated with experimental results which are analyzed
and compared with several other techniques in the literature.

To summarize, the contributions of this thesis are as follows:

1. to analyze stability conditions of the phase field HOAC model proposed by Rochery
(2005) (chapter 2),
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2. to propose a multiresolution statistical data term and a two-step multiresolution frame-
work (chapter 3),

3. to propose a GIS prior term and combine all the three types of different geometric
prior knowledge together (chapter 4),

4. to propose two nonlocal HOAC shape prior terms for modeling elongated structures,
and to conduct the stability analysis on each of the new total prior models (chapter 5),

5. to make progress towards an automatic road extraction system for VHR optical satel-
lite images (chapters 3-5).

Context of the PhD Study

This PhD was supervised jointly by LIAMA/NLPR (Institute of Automation, Chinese Aca-
demy of Sciences) and the Project-Team Ariana (INRIA/I3S). The PhD was funded by
grants from MAE, LIAMA, and Thales Alenia Space.
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But Scientifique et Applications

La nécessité de segmenter, à partir d’une image, des entités qui ont la forme d’un ‘réseau’,
c’est-à-dire des branches se joignant à des jonctions, apparaı̂t dans de nombreux domaines
applicatifs. Cela inclut, par exemple, l’extraction des réseaux routiers et fluviaux en télédétec-
tion, ou encore celle des réseaux vasculaires en imagerie médicale. Cependant, l’extraction
automatique des réseaux d’une image est une tâche difficile. Les images sont, en général,
complexes, très bruitées et certains éléments ayant localement des propriétés similaires à
l’entité d’intérêt peuvent être aisément confondus avec cette dernière. C’est pourquoi, les
techniques qui n’incluent aucune connaissance a priori sur la région du réseau ne peu-
vent pas aboutir. Afin de résoudre ce problème, une telle connaissance a priori doit être
injectée d’une manière ou d’une autre : soit par l’intervention d’un utilisateur, soit en
l’incorporant au sein d’un modèle. Les êtres humains possèdent une connaissance a priori
très spécifique au sujet de la forme des régions correspondant aux réseaux, et dans la plu-
part des applications, ce niveau de connaissance est nécessaire. Malheureusement, les
méthodes actuelles, basées sur l’extraction manuelle, sont très coûteuse en temps et en
main-d’oeuvre. Par ailleurs, une seule connaissance a priori générique, par exemple con-
cernant le degré de lissage d’une frontière, n’est pas suffisante. La nécessité d’inclure une
connaissance a priori plus spécifique décrivant une classe de formes soulève cependant une
question méthodologique difficile. Un ensemble de regions ressemblant à des réseaux est
compliqué à modéliser parce que ces réseaux peuvent présenter des topologies arbitraires.
Plus concrètement, il se compose d’un grand nombre (en principe infini) de composantes
interconnectées, correspondant aux différentes topologies possibles d’un réseau (nombre de
composantes interconnectées dans le réseau, nombre de boucles dans chaque composante
interconnectée), ou d’une manière équivalente à un ensemble de graphes planaires (pour des
données 2D). À ceci s’ajoute une superstructure géométrique correspondant au prolonge-
ment du graphe dans le plan, et à son ‘épaississement’ au sein d’une région. La construction
d’un modèle qui favorise des régions se situant dans cet ensemble, par opposition à celles
en dehors de lui est un problème non trivial.

L’incorporation au sein d’un modèle d’une connaissance a priori pour segmenter une
région d’une image a une longue histoire. Les modèles les plus anciens et encore les plus
largement utilisés incorporent une connaissance locale des frontières, essentiellement la

7
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douceur : les contours actifs (Kass et al., 1988) en sont un exemple, le modèle d’Ising (Ising,
1925; Geman and Geman, 1984) un autre. Ce degré de connaissance a priori n’est presque
jamais suffisant pour segmenter l’entité d’intérêt automatiquement, même avec des images
relativement simples. Des travaux plus récents se sont concentrés sur l’inclusion d’une con-
naissance a priori plus spécifique dans les contours actifs, comme nous le verrons dans la
partie 1.1.3. Ces travaux utilisent des termes de connaissance a priori indiquant que la forme
de la région recherchée doit être ‘proche’ de celle de la région de référence. Ce type de
modèle est utile pour beaucoup d’applications, quand une forme de référence topologique-
ment correcte est connue. Un niveau intermédiaire de connaissance a priori est de modéliser
des familles des formes. Afin de modéliser des zones de réseaux, Rochery et al. (2006) ont
introduit les ‘contours actifs d’ordre supérieur’ (CAOS). Les CAOS incorporent non seule-
ment une connaissance différentielle locale sur les frontières, mais également des interac-
tions nonlocales, à longue distance, entre des tuplets des points de contour. Par de telles
interactions, ils favorisent des régions ayant des caractéristiques géométriques particulières
sans contraindre la topologie du réseau à ressembler à celle d’une région de référence.

La détection des routes basée sur l’imagerie de télédétection est critique dans beaucoup
d’applications, par exemple, dans les cas de la mise à jour des données cartographiques, la
navigation intelligente, le contrôle de l’environnement, ou encore la gestion des catastro-
phes. La disponibilité commerciale des images satellitaires optiques à très haute résolution
(THR) (QuickBird, Ikonos, et dans un avenir proche Pléiades), avec des résolutions sub-
métriques, a fourni récemment de nouveaux moyens pour l’extraction d’information à par-
tir d’images de télédétection. La Figure 1(a) montre un exemple d’images panchroma-
tiques QuickBird utilisées comme données d’entrée (∼0.61m/pixel). À cette résolution, des
catégories d’information nouvelles du point de vue qualitatif sont disponibles, et la précision
des catégories précédemment extraites peut être quantitativement améliorée. Par exemple,
les réseaux routiers peuvent être extraits en tant que régions bidimensionnelles plutôt qu’en
tant que structures unidimensionnelles, et la précision géométrique du réseau routier extrait
peut ainsi être considérablement améliorée. Par conséquent, l’extraction de réseaux routiers
à partir d’images THR est devenue un sujet de recherche de plus en plus important dans le
domaine de la télédétection.

Néanmoins, une résolution plus haute apporte avec elle de nouveaux défis. L’apparition
des détails invisibles dans des images à plus basse résolution peut facilement perturber le
processus d’identification. La Figure 1(b) représente un agrandissement à pleine résolution
de la Figure 1(a), illustrant la complexité des images THR. La Figure 1(c) montre un gros
plan de l’image à la résolution 1/8, illustrant le fait que même après trois niveaux de lissage
et de sous-échantillonnage, les données sont encore relativement complexes. Les difficultés
résident dans les facteurs suivants : tout d’abord, beaucoup de ‘bruit’ existe sur la route
elle-même, dû aux voitures, marquages routiers, ombres, etc. De plus, le fond est très diver-
sifié, contenant beaucoup de traits qui sont localement similaires aux routes. Par ailleurs,
les routes apparaissent en tant que surfaces allongées, et plus ou moins homogènes, ayant
différentes largeurs et courbures, et non pas en tant que rubans fins tels que dans les images
basse résolution, c’est-à-dire de plus de 5m/pixel. L’extraction de surfaces routières est une
tâche complexe. Enfin, dans un environnement urbain dense, le contraste entre les routes
et le fond est relativement faible, par opposition à une région rurale ou semi-urbaine. Tous
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les facteurs ci-dessus concourent à l’échec relatif des approches existantes d’extraction de
routes. Le développement d’un algorithme automatique fiable pour l’extraction de routes en
zone urbaine dense à partir d’images THR devient ainsi une nécessité si l’on veut satisfaire
la demande croissante de tels algorithmes.

Dans cette thèse, nous proposons de nouveaux modèles variationnels pour la modélisa-
tion de réseau. En premier lieu, afin de surmonter une limitation sérieuse du modèle
précédemment introduit par Rochery (2005), nous proposons deux nouveaux termes d’énergie
de forme a priori de CAOS, qui permettent le contrôle séparé de la courbure et de la
largeur de la route, constituant ainsi une meilleure modélisation des structures allongées.
D’autre part, nous combinons ensemble trois types différents de connaissance géométrique
a priori : des contraintes génériques de douceur de frontière ; une connaissance a priori in-
termédiaire pour modéliser une famille des formes ; et une connaissance a priori de la forme
spécifique du réseau routier obtenue à l’aide des données issues d’un Système d’Information
Géographique (SIG). Même si des erreurs existent dans les données du SIG, nous pouvons
effectuer sa mise à jour. En outre, nous profitons de l’analyse multi-résolution (AMR) pour
réduire la complexité de données. Nous appliquons et évaluons nos modèles au problème
d’extraction des réseaux routiers en zone urbaine dense à partir d’images QuickBird THR
sur la ville de Pékin.

Organisation du Manuscrit de thèse

Cette thèse est organisée comme suit.

Chapitre 1

Dans la première partie de ce chapitre, nous passons en revue les approches variationnelles
existantes de segmentation basées sur l’évolution de courbe. Nous classifions les divers
modèles en deux classes principales d’évolution : les approches basées sur les frontières et
celles basées sur les régions. De plus, une attention particulière est prêtée aux contours ac-
tifs incorporant des contraintes a priori de forme. Dans la deuxième partie, nous décrivons
des approches représentatives d’extraction de routes à partir d’images de télédétection, or-
ganisées selon les différentes techniques utilisées. Les avantages et les inconvénients de
chaque type de modèle sont discutés.

Chapitre 2

Nous posons les fondements théoriques du travail de la thèse. Nous présentons tout d’abord
les différents termes de la fonctionnelle d’énergie et leurs transposés dans une modélisation
par champs de phase (Rochery et al., 2005b; Rochery, 2005; Rochery et al., 2006). Nous
montrons l’équivalence entre le modèle par champs de phase et les contours actifs stan-
dards. L’incorporation additionnelle d’un terme de CAOS permet de prendre en compte
une interaction à longue portée entre paires de points du contour, fournissant ainsi un outil
robuste pour la modélisation des réseaux. Nous définissons également le terme d’attache
aux données et formulons ainsi notre modèle primaire, adaptant les CAOS par champs de
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phase au problème d’extraction de route urbaine à partir d’images THR. Cependant, l’un
des problèmes auxquels nous sommes confrontés est que les paramètres du modèle CAOS
doivent être estimés d’une manière plus systématique. À cette fin, nous calculons chaque
terme d’énergie sur un ansatz d’une longue barre droite. À partir de ce calcul, nous ex-
plorons les conditions de stabilité et les comportements possibles du modèle, et décrivons
ainsi comment choisir correctement les paramètres du modèle.

Chapitre 3

Afin de surmonter la grande complexité d’information existant dans les images THR, nous
nous concentrons, dans ce chapitre, sur une AMR du modèle primaire. Nous introduisons
d’abord une modèlisation statistique multi-résolution des données. L’utilisation de plusieurs
résolutions permet la combinaison des données de résolution brute, dans lesquelles le détail
qui pourrait perturber l’identification a été éliminé, avec des données de résolution fine,
pour augmenter la précision. Nous proposons alors un cadre robuste multi-résolution en
deux étapes. Nous segmentons tout d’abord une image à basse résolution, et obtenons
une pre-segmentation approximative de l’objet d’intérêt. Ce résultat préliminaire est alors
incorporé à la segmentation à pleine résolution, afin de forcer la segmentation finale à se
trouver proche de la pre-segmentation, diminuant ainsi les minima locaux de l’énergie totale
à pleine résolution.

Des parties de ce travail ont été publiées par Peng et al. (2007a, 2008b).

Chapitre 4

Dans le cadre de la mise à jour d’une ancienne carte numérique, nous proposons un terme
a priori spécifique pour incorporer les informations disponibles d’une carte de SIG à notre
modèle primaire. Cette carte est antérieure à l’acquisition de l’image, et représente ainsi un
réseau routier différent : la précision doit être améliorée, et la topologie de réseau doit
être corrigée. Dans notre modèle, nous incluons trois types différents de connaissance
géométrique a priori, caractérisés par leur niveau de généralité. Nous montrons que les
trois types de connaissance a priori sont essentiels pour une segmentation réussie à pleine
résolution. En outre, dans le cas de l’extraction du réseau routier à pleine résolution avec
des données SIG indisponibles, nous pouvons utiliser un résultat obtenu à une résolution
réduite, où l’information de SIG semble ne pas être nécessaire en présence des deux autres
types de connaissance a priori, pour remplacer l’information de SIG dans la terme a priori
spécifique. Ainsi, nous pouvons nous libérer du besoin de données de SIG. Ce qui nous
donne une autre approche d’AMR.

Des parties de ce travail ont été publiées par Peng et al. (2007b, 2008b).

Chapitre 5

Les chapitres précédents ont traité de l’extraction de réseaux routiers principaux. Nous nous
tournons maintenant vers la question de l’extraction du réseau routier secondaire. Com-
parées au cas des routes principales, les difficultés liées aux routes secondaires se situent
d’une part dans la faible discrimination entre la répartition en niveaux de gris des routes et
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celle du fond, et d’autre part dans l’effet plus important des occlusions et des autres types
de bruits sur les routes étroites. Ceci suggère qu’une information a priori géométrique forte
est nécessaire. Le modèle développé précédemment pour l’extraction des routes principales
contient une telle connaissance a priori, mais il souffre d’une limitation qui est critique
dans le cas des routes secondaires : l’échelle à laquelle la route est supposée rectiligne est
identique à la largeur de la route, alors qu’en réalité la largeur de route donne seulement une
borne supérieure (approximative) sur le rayon de courbure de la route. Par conséquent, la so-
lution est de séparer la fonction d’interaction suivant la direction de la route de celle traver-
sant la route. À cet effet, nous proposons deux énergies nonlocales a priori de CAOS : un
terme non-linéaire et un terme linéaire. Le terme non-linéaire augmente l’intensité des inter-
actions le long de la route, tandis que le terme linéaire fournit des interactions à plus grande
portée. En fait, les deux termes produisent des effets similaires. Comme précedemment,
nous analysons deux nouveaux modèles a priori par rapport à une longue barre droite, et en
établissons les contraintes de paramétrage. Par cette analyse du terme linéaire, nous mon-
trons, en outre, qu’il permet simultanément la modélisation de deux largeurs clairement
éloignées, et ouvre ainsi de nouvelles possibilités d’applications.

Des parties de ce travail ont été publiées par Peng et al. (2008a,c).

Les chapitres 3, 4 et 5 sont, chacun, illustrés par des résultats expérimentaux qui sont
analysés et comparés à des résultats obtenus par plusieurs autres techniques issues de la
littérature.

Pour résumer, les contributions de cette thèse sont les suivantes :

1. Analyser les conditions de stabilité du modèle de CAOS de champs de phase proposé
par Rochery (2005) (chapitre 2),

2. Proposer un terme statistique multi-résolution des données et un cadre multi-résolution
en deux étapes (chapitre 3),

3. Proposer un terme a priori de SIG et combiner ensemble les trois types différents de
connaissance géométrique a priori (chapitre 4),

4. Proposer deux termes nonlocaux de CAOS de forme a priori, pour modéliser des
structures allongées, et réaliser l’analyse de stabilité sur chacun des nouveaux modèles
a priori résultants (chapitre 5),

5. Progresser vers un système automatique d’extraction de routes pour des images satel-
litaires optiques à THR (chapitres 3-5).

Conclusion

Le but de cette thèse était de développer de nouveaux modèles variationnels pour la seg-
mentation, à partir d’une image d’entités qui prennent la forme d’un ‘réseau’, c’est-à-
dire des branches se joignant ensemble à des jonctions. Plus particulièrement, nous nous
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sommes concentrés sur l’incorporation de différents types de géométrie a priori des régions
de réseau, en profitant d’une analyse multi-résolution de l’image. Nous avons appliqué les
différents modèles que nous avons proposés à la segmentation des réseaux routiers en se
basant sur des images panchromatiques QuickBird à THR (∼0.61m/pixel) en zone urbaine
dense. Ceci a constitué une problématique ardue, étant donné la complexité existante dans
les données, ainsi que la complexité de modélisation des régions de réseau à la topologie
arbitraire.

Nous avons d’abord commencé par un modèle primaire formulé en champs de phase.
Il se décompose en un modèle a priori standard de CAOS et un modèle probabiliste de
ressemblance de régions. Grâce aux interactions à longue portée entre les pixels du CAOS,
ce modèle nous a permis d’inclure la connaissance a priori sophistiquée de la géométrie
de région. Les champs de phase ont également apporté beaucoup d’avantages par rapport
à d’autres méthodes conventionnelles de modélisation de région. Pour surmonter les diffi-
cultés issues de la complexité du contenu de l’image à haute résolution, nous avons intro-
duit un modèle statistique multi-résolution des données et un modèle a priori de contraintes
multi-résolution. Ces deux modèles ont permis l’intégration efficace de l’information des
images à différentes résolutions. L’analyse multi-résolution peut considérablement aug-
menter la robustesse de l’algorithme. Par la suite, dans le cadre de l’actualisation de données
cartographiques, nous avons inclus un terme de forme a priori spécifique de la région, dérivé
d’une carte de SIG, et nous l’avons combiné avec les autres termes a priori plus génériques.
L’information issue du SIG, bien qu’ancienne, peut fournir des informations partiellement
correctes de la scène considérée, et ainsi éliminer des fausses détections sur le fond de
l’image. Nous avons montré que notre modèle pouvait améliorer la précision des objets in-
changés, extraire les objets nouvellement apparus, et enlever les objets disparus de la carte.

Pour faciliter l’extraction des structures allongées et plus étroites, nous avons proposé
deux nouveaux modèles a priori de CAOS. Ces deux modèles ont un effet similaire sur
la modélisation de forme, c’est-à-dire qu’ils permettent de contrôler indépendamment la
courbure et la largeur de la route, conjointement avec la terme standard de CAOS. Par
conséquent, l’incorporation de ces deux termes a permis la génération de plus longues
branches en forme de bras ainsi qu’une meilleure prolongation de celles-ci. De plus, le
terme linéaire a plusieurs avantages par rapport au terme non-linéaire : il est plus efficace
d’un point de vue calculatoire, et il peut modéliser des largeurs multiples simultanément.
Dans chaque modèle a priori de CAOS, il y a un ensemble de paramètres de contrôle. Il a
été d’une grande importance d’établir les contraintes internes entre ces paramètres, afin d’en
fixer la valeur de certains en fonction des autres. Pour ces modèles a priori, utilisant une
représentation de champs de phase, nous avons calculé leurs conditions de stabilité, et avons
décrit les contraintes associées. Nous avons montré que les relations entre les paramètres
de contrôle et le comportement de l’énergie suivaient certains cas particuliers de la théorie
des catastrophes.

Nous avons testé et évalué les modèles proposés sur des images QuickBird de la ville
de Pékin, et nous les avons comparés à de nombreuses autres techniques publiées dans
la littérature. Les résultats expérimentaux et les comparaisons effectuées démontrent la
supériorité des modèles que nous avons proposés.



Chapter 1

State-of-the-Art

In this chapter, we present a brief state-of-the-art for active contours and road extraction.
Both fields have been widely studied for a long time. A significant number of approaches
exist in the literature. Here we highlight only the most representative techniques of each of
them. At the end of each section, we give a brief summary.

1.1 Active Contours

Active contours provide a framework for segmenting an object from an image. In principle,
one has to define an appropriate energy functional associated to the current contour. During
the minimization of such an energy functional, the boundary contour is evolved dynamically
from some initialization in the direction of the negative of the energy gradient. Active
contours can be divided into edge-based and region-based approaches. In this section, we
first review the typical techniques of these two main categories. Thereafter, we focus on a
special case: active contours with shape constraints.

1.1.1 Edge-Based Active Contours

Originally, active contours were edge-based methods. The models are driven towards the
edges of an image. The evolution equation is computed from an energy functional that only
relies on some local measurements around the boundary of the object to be segmented. The
boundary is usually described by the local image gradient, or the field of the gradient vectors
in the image domain. Edge-based active contours can be classified as parametric active
contours or geometric active contours, according to whether the energy is parameterization-
independent or not. More concretely, the functional of parametric active contours is not
intrinsic, since one could obtain different solutions by changing the parameterization while
preserving the same initial curve. The evolution of the parametric contour is normally
implemented by a set of ordinary differential equations acting on the sample contour points.
On the other hand, geometric active contours overcome the above drawback by constructing

13
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an energy functional independent on the parameterization of the contour. This formulation
also enables performance of more efficient level set schemes.

Parametric Active Contours

Starting from the vision theory of Marr (1982), typical low-level vision tasks have been
considered as an autonomous bottom-up process. The three independent levels represent
the processing of visual information, but up to the 2.5D sketch, no higher-level information
has yet been brought to bear: the computations proceed by utilizing only what is available
in the image itself. This rigidly sequential approach, which manages vision tasks as diffe-
rent independent steps, propagates mistakes made at a low level without opportunity for
correction. However, due to the effect of many complex factors, such as noise, projection,
etc., many low-level visual tasks are inherently ill-posed.

Kass et al. (1988) challenged this vision theory, and argued that in many image interpre-
tation tasks, the correct interpretation of low-level events can require high-level knowledge.
They sought to design energy functions whose local minima comprise the set of alterna-
tive solutions available to higher-level processes. The choice among these alternatives is
accomplished by adding suitable energy terms together. In this way, high-level mechanisms
can interact with the contour model by pushing image features toward an appropriate local
minimum.

Based on the above idea, Kass et al. (1988) proposed an active contour model called
snakes. Let I : Ω→ R+; they defined the following energy functional along a parameterized
contour C : [0, 1]→ Ω ⊂ R2:

E(C) = α
∫ 1

0
|C′(p)|2 dp + β

∫ 1

0
|C′′(p)|2 dp − λ

∫ 1

0
|∇I

(
C(p)

)
|2 dp . (1.1)

Snakes are dynamic curves defined in the image domain that can move under the influ-
ence of internal forces and external data forces. The first two terms are the internal energies
coming from within the curve itself. They define geometric prior knowledge of the contour:
rigidity and elasticity respectively. The last term is the external energy computed from the
data. This term attracts the contour toward large image gradients. α, β and λ are relative
weights describing the importance of each energy term. For minimizing the total energy, the
evolution equation is derived by a simple gradient descent algorithm, to update the active
contour until convergence.

The snake model has several advantages over conventional methods:

• Snakes provide a unified extraction procedure. They include image data, initial esti-
mation, contour boundary and shape constraints, which had been treated separately
in the past.

• After a proper initialization, snakes converge iteratively to an energy minimum state.

• Energy minimization from coarse to fine in scale space (Nielsen et al., 1997) can
greatly enlarge the capture region around features of interest, and decrease the com-
putational complexity.
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Although this basic model has had a profound influence on the image processing and com-
puter vision field, it suffers from several drawbacks:

• In general, the initial contour must be close enough to the true contour, which requires
careful initialization.

• Since the contour is represented explicitly by sampled points, the model cannot han-
dle topological changes. It is impossible to extract multiple objects.

• Points tend to bunch up on strong portions of an edge contour.

• Snakes are very sensitive to noise. In addition to the boundaries in an image, the noise
is able to attract the active contour, and make parts of the contour adhere to it.

Many people have developed improvements to this model. Amini et al. (1990) proposed
an algorithm for the active contour model using dynamic programming. This approach al-
lows the inclusion of hard constraints that cannot be violated in addition to soft constraints
inherent in the formulation of the functional. However, it improves the stability at the ex-
pense of an increase in computational complexity. Williams and Shah (1992) presented a
greedy algorithm which has performance comparable to dynamic programming and varia-
tional calculus approaches. The distance between any two contiguous points is compared
to the average distance between contiguous points. The difference is minimized for the in-
ternal terms so that points in the contour are more evenly spaced. It retains the properties of
stability and flexibility. To simplify the curve representation, Menet et al. (1990) proposed
the B-snakes model. The curve is represented by B-splines (Unser et al., 1993a,b), which
provide an attractive formalism for parametric curves. McInerney and Terzopoulos (2000)
tackled the issue of topological change for snakes at the expense of a computationally ex-
pensive and complex implementation.

Considering the internal forces of snakes, we can see that every curve tends to shrink and
vanish. To fix this inclination, Cohen (1991) introduced the balloon model. In such a model,
the force on the contour is modified by normalizing the associated potential force, and by
adding a constant pressure force. The contour behaves like a balloon which is inflated or
deflated by this additional internal force. The capture range of the contour is then enlarged,
and the initial curve need no longer be very close to the ideal boundary. The curve can
pass over weak edges and be stopped only if the edge is strong. In fact, the balloon force
is the same as an interior area constraint. Then, Cohen and Cohen (1993) discussed the 3D
generalization of the balloon model, and solved the snakes model using the finite-element
method. This yields faster convergence and better stability. Leroy et al. (1996) proposed a
multiresolution version of the balloon model. However, a problem with the balloon model
is that the prior knowledge about whether the initial contour is inside or outside the ideal
object boundary is required.

Another important improvement over snakes is the work of Xu and Prince (1998). They
presented a new external force, called gradient vector flow (GVF). GVF is computed as a
diffusion of the gradient vectors of an edge map derived from the image. Let us write f an
edge map derived from the image having the property that it is larger near the edges, and
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(u, v) the GVF field parameterized by (x, y). The diffusion of the gradient information is
realized by minimizing the energy functional:

E(u, v) =
∫
Ω

{
µ (u2

x + u2
y + v2

x + v2
y) + |∇ f |2 |(u, v)T − ∇ f |2

}
dx dy , (1.2)

where ux, uy, vx, vy are the spatial derivatives of the field. This formulation keeps the vector
field nearly equal to the gradient of the edge map when the norm |∇ f | is large, and forces
the field to be slowly varying in homogeneous regions. The constant µ is set according to
the amount of image noise. The GVF field can be found by updatingut = µ ∇

2u − (u − fx) |∇ f |2 ,
vt = µ ∇

2v − (v − fy) |∇ f |2 .
(1.3)

Thus, the external force of the evolution equation in the snakes model is replaced by the
GVF field. The GVF model allows for flexible initialization and encourages convergence to
boundary concavities.

Geometric Active Contours

Osher and Sethian (1988) presented an intrinsic representation for evolving curves, called
level sets. The curve C is represented implicitly via a Lipschitz function φ, by C = {x ∈
Ω | φ(x) = 0}. The evolution of the curve is given by the zero-level curve at time t of the
function φ(x, t). Level sets have been extensively used, because there are many advantages
to working with this representation:

• Level sets can naturally handle topology changes, cusps, and corners as φ evolves.
This is the main advantage of level sets.

• The level set formulation can be easily extended to interfaces of higher dimension.

• The computations are made on a fixed rectangular grid over the entire image domain,
so that numerical computation can be facilitated.

On the other hand, level sets also suffer from some drawbacks:

• Level sets bring greater computational complexity, which arises from using a one
higher dimension representation of the original interface.

• The level set function needs to be initialized at the beginning, and to be reinitialized
once every few iterative steps, as a distance function, which increases the calculation
cost.

The motion of curve C along its normal direction with speed F is equivalent to solving
the following partial differential equation (PDE):

∂φ

∂t
= F|∇φ| , (1.4a)

φ(0, x) = φ0(x) , (1.4b)
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where t ∈ R+, and the set {x | φ0(x) = 0} defines the initial contour. This equation only
specifies the speed F and the evolution of φ on the zero level set. As a consequence, the
speed F has to be well-defined off the curve, i.e. in the whole image domain, so that φ can
be calculated on R+ × Ω. Once this calculation is done, one just needs to extract the zero
level set of φ to obtain the curve. A particular case is motion by mean curvature, when

F = div
(
∇φ(x)
|∇φ(x)|

)
, (1.5)

is the curvature of the level-curve of φ passing through pixel x (Osher and Sethian, 1988).
Caselles et al. (1993) proposed a geometric active contour model based on the theory of

curve evolution and geometric flows. A general edge detector is defined by a positive and
regular monotonic decreasing function g, depending on the image gradient. The function g
can be chosen as

g(|∇I|) =
1

1 + |∇G ∗ I|2
, (1.6)

where G ∗ I is the convolution of the image I with the Gaussian G. Thus, g(0) = 1 and
lims→∞ g(s) = 0.

Then equation (1.4) can be modified as

∂φ

∂t
= g

(
|∇I|

)
|∇φ|

(
div

( ∇φ
|∇φ|

)
+ ν

)
, (1.7a)

φ(0, x) = φ0(x) , (1.7b)

where ν is a balloon force (Cohen, 1991), and φ0 is the initial level set function. Hence, the
geometric active contour model benefits from the flexibility of level sets in detecting objects
with arbitrary topology. Note that if g = 1 and ν = 0, equation (1.7) reduces to the simple
case controlled only by mean curvature.

The geometric approach described above constructs directly the evolution equation, or
equivalently the force on the curve. In practice, g is never zero on the edges, and therefore
the evolving curve may not be stopped on the desired boundary. To overcome this prob-
lem, as an extension of the previous geometric approach, Caselles et al. (1997) proposed
geodesic active contours. The geometric flow is obtained indirectly from the minimization
of an energy functional. Starting from the basic snakes (Kass et al., 1988), Caselles et al.
(1997) neglected the second-order internal term (i.e. β = 0), and replaced the minus image
gradient −|∇I| by the more general edge detector g(|∇I|)2, where g(|∇I|) has been defined in
equation (1.6). The resulting energy functional is

E(C) = α
∫ 1

0
|C′(p)|2 dp + λ

∫ 1

0
g(|∇I(C(p))|)2 dp . (1.8)

Equation (1.8) is still not intrinsic, because it depends on the parameterization p of the
curve. Caselles et al. (1997) defined a new parameterization of the curve and substituted p
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in equation (1.8). The energies can be then changed in any arbitrary form. The equivalent
functional to be minimized becomes

E(C) =
∫ 1

0
g(|∇I(C(p))|) |C′(p)| dp =

∫ L(C)

0
g(|∇I(C(s))|) ds . (1.9)

This means that the boundary is a geodesic curve in a Riemannian space with a metric
derived from the image intensity. Hence, this approach is named geodesic active contours.
Note that equation (1.9) has a bad property, i.e. it is always non-negative, so the global
minimum is always zero, which cannot be achieved unless the contour vanishes completely.
By means of a gradient descent algorithm, the curve evolution equation is

∂C

∂t
= g(|∇I|) κ

−→
N − (∇g(|∇I|) ·

−→
N)
−→
N , (1.10)

where κ is the Euclidean curvature, and
−→
N is the unit inward normal vector. Equation (1.10)

can easily be reformulated in terms of the level set function:

∂φ

∂t
= g(|∇I|) |∇φ| div

( ∇φ
|∇φ|

)
− ∇g(|∇I|) · ∇φ . (1.11)

This evolution equation of the geodesic curve via a geometric flow is very similar to the
one obtained in equation (1.7) by the geometric approach mentioned earlier. However, this
geodesic flow includes a new component in the curve velocity. This new term increases the
attraction of the evolving curve toward the object boundary, and is of special help when the
boundary has high variations, including gaps, in its gradient values. Similarly to geometric
active contours, the balloon force ν can also be incorporated into equation (1.11) to increase
the convergence speed. Similar flows were also proposed independently by Kichenassamy
et al. (1995). To combine the advantages of the geodesic active contour and the GVF exter-
nal force, Paragios et al. (2004) integrated them within a level set formulation, and proposed
a geometric boundary-based flow for boundary extraction and image segmentation.

1.1.2 Region-Based Active Contours

In spite of the great efforts dedicated to edge-based active contours, they are still limited to
relatively simple images. The main difficulty in this approach is that the model incorporates
purely local characteristics of the data. More specifically, it models only a tiny fraction of
the data: the data near the region boundary; and it fails to distinguish between the interior
and the exterior of regions, and thus information about pixel positions is lost except when
the pixels are close to a boundary. As a result, the initial contour has to be very near the
ideal boundary, and the model is very sensitive to noise. In order to introduce more global
information about the different regions to be segmented, region-based active contours were
proposed. Regions are characterized by global descriptors associated with each separate
region. The image domain is partitioned by progressively fitting statistical models to the
descriptors. Generally, a descriptor is a statistical feature of a region, such as the intensity,
color, histogram, texture, or motion in each of a set of regions. In the case of unsupervised
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segmentation, these descriptors can be recalculated each time the active contour evolves,
and thus they vary during the propagation of the active contour. Here, we present the two
main region-based segmentation models: the Mumford-Shah functional based model, and
the Bayesian approach based model.

Mumford-Shah Functional

In order to solve the segmentation problem, Mumford and Shah (1985, 1989) proposed to
compute the optimal approximation of an image as a combination of regions of piecewise
smooth intensities. In a variational framework, after concerning boundary smoothness, for
a given image I, the authors searched for a pair (u,C) such that u is a piecewise smooth
approximation of I and C ⊂ Ω is a 1D subset of edges. Thus, they defined the functional as

E(u,C) = λ
∫
Ω

|I(x) − u(x)|2 dx +
∫
Ω\C

|∇u(x)|2 dx + µ L(C) , (1.12)

where L(C) denotes the boundary length. The first term causes u to approximate the image
I; the second term makes u (and hence I) not varying very much on each disjoint region;
and the third term forces the boundaries C to have minimal length. The solution image
u obtained by minimizing the above functional is formed by smooth disjoint regions with
sharp boundaries C. Mumford and Shah (1989) also pointed out that a reduced version of
this model is simply the restriction of equation (1.12) to piecewise constant functions, i.e. u
is a constant on each disjoint region.

Chan and Vese (2001a) proposed a particular case of the Mumford-Shah model. They
considered binary segmentation, and reduced the best approximation u of the image I to
a function taking only two values, e.g. the average of I inside and outside the segmented
region, and with one edge C. Thus, the energy functional in the level set representation is
written as

E(cin, cout, φ) = µ
∫
Ω

|∇H(φ(x))| dx

+ λin

∫
Ω

|I(x) − cin(φ(x))|2 H(φ(x)) dx + λout

∫
Ω

|I(x) − cout(φ(x))|2
(
1 − H

(
φ(x)

))
dx ,

(1.13)

where H is the Heaviside function. The values of cin and cout, depending on the evolving
curve, are the averages of I inside and outside the active contour. The minimization of E at
each iteration is done in two steps. First, keeping φ fixed and minimizing E with respect to
cin and cout, these two constants can be expressed by

cin(φ(x)) =

∫
Ω

I(x) H
(
φ(x)

)
dx∫

Ω
H

(
φ(x)

)
dx

, (1.14a)

cout(φ(x)) =

∫
Ω

I(x)
(
1 − H

(
φ(x)

))
dx∫

Ω

(
1 − H

(
φ(x)

))
dx

. (1.14b)
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Second, keeping cin and cout fixed, and minimizing E with respect to φ, the level set
function is updated by
∂φ

∂t
=

{
µ div

(
∇φ(x)
|∇φ(x)|

)
− λin

(
I(x) − cin(φ(x))

)2
+ λout

(
I(x) − cout(φ(x))

)2}
δ(φ(x)) , (1.15)

where δ is the 1D Dirac measure. Compared to the previous edge-based approaches, the
initial curve of this model does not necessarily have to start around the objects to be detected
and instead can be placed anywhere in the image. Chan et al. (2000) applied a similar model
to vector-valued images, by considering each component of the image.

Chan and Vese (2001b); Vese and Chan (2002) generalized the active contour model
without edges two-phase segmentation (Chan and Vese, 2001a) to piecewise smooth optimal
approximation and/or multiphase segmentation. For the former extension, a general smooth
function is considered instead of a constant to model image intensity inside each region.
Thus, different regions of distinct intensities can be represented and detected with the correct
intensities. For the latter extension, the idea is to use a combination of level set functions to
represent the boundaries. In the piecewise constant case, only log2 n level set functions are
needed to represent n phases or segments with complex topologies, such as triple junctions.
While in the piecewise smooth case, using only two level set functions, producing up to
four phases, any general case can be considered and represented thanks to the Four-Color
Theorem (Appel and Haken, 1989). This brings a big advantage that knowing a priori how
many segments the image has is not necessary.

Region-Based ‘Bayesian’ Formulation

Paragios and Deriche (2002) presented a unified approach, namely the geodesic active re-
gion model to deal with frame partition problems. This model combines the edge-based
functional from the geodesic active contour model, and the region-based functional derived
from Maximum a Posteriori (MAP). The boundary term is similar to geodesic active con-
tour proposed by Caselles et al. (1997). The boundary is regular, of minimal length, and
attracted by the real region boundary. The region term aims at finding a contour C that
maximizes two posterior probabilities of image intensities inside C and outside C. To sim-
plify the problem, Paragios and Deriche (2002) made two assumptions: 1) all the contours
are equally possible, i.e. P(C) = 1/Z, where Z is the total number of possible contours; 2)
there is no correlation between the regions labeling, and all the pixels within each region are
identically and independently distributed. Taking these into account, based on the Bayes’
theorem, the a posteriori segmentation probability for a contour C given the observed image
I is determined by

P(C|I) =
∏
x∈Ωin

Pin(I(x))
∏

x∈Ωout

Pout(I(x)) . (1.16)

Maximization of the a posteriori segmentation probability is equivalent to minimizing its
negative logarithm. The geodesic active region objective function is defined as

E(C) = −
∫
Ωin

log
(
Pin(I(x))

)
dx −

∫
Ωout

log
(
Pout(I(x))

)
dx + µ L(C) . (1.17)



1.1. Active Contours 21

This functional is minimized using a gradient descent method. Using the level set represen-
tation, the curve evolution for a given point x is

∂φ

∂t
=

{
log

(Pout(I(x))
Pin(I(x))

)
+ µ κ(x)

}
|∇φ(x)| . (1.18)

For any given pixel x on the boundary, if the true state of x belongs to Ωout, then
Pout(I(x)) > Pin(I(x)), resulting in a positive force that aims at shrinking the curve to pass
through this pixel. On the other hand, if the true state of x belongs to Ωin, the region force
aims at expanding the curve to include this pixel.

In (Paragios and Deriche, 2002), the probability densities are supposed to follow a nor-
mal distribution 1:

P(I(x)) =
1

√
2πσ2

e−
(I(x)−c)2

2σ2 , (1.19)

where c is the average, and σ2 is the variance. These parameters are learned in advance
through a supervised way. In (Rousson, 2004), P also follows the normal distributions, but
the parameters are dynamically calculated during the contour evolution. Using the form of
the Heaviside function in the Chan-Vese model, the energy functional becomes

E(cin, cout, σ
2
in, σ

2
out, φ) =

∫
Ω

{(
I(x) − cin

(
φ(x)

))2

2σ2
in
(
φ(x)

) + log
(
(2π)1/2σin

(
φ(x)

))}
H

(
φ(x)

)
dx

+

∫
Ω

{(
I(x) − cout

(
φ(x)

))2

2σ2
out

(
φ(x)

) + log
(
(2π)1/2σout

(
φ(x)

))} (
1 − H

(
φ(x)

))
dx + µ L(C) , (1.20)

where cin and cout are updated following equation (1.14), and σ2
in and σ2

out are estimated by

σ2
in(φ(x)) =

∫
Ω

(
I(x) − cin(φ(x))

)2
H

(
φ(x)

)
dx∫

Ω
H

(
φ(x)

)
dx

, (1.21a)

σ2
out(φ(x)) =

∫
Ω

(
I(x) − cout(φ(x))

)2 (
1 − H

(
φ(x)

))
dx∫

Ω

(
1 − H

(
φ(x)

))
dx

. (1.21b)

The evolution equation derived from the gradient descent method is

∂φ

∂t
=

{
−

(
I(x) − cin(φ(x))

)2

2σ2
in(φ(x))

+

(
I(x) − cout(φ(x))

)2

2σ2
out(φ(x))

+
1
2

log
(σ2

out(φ(x))

σ2
in(φ(x))

)
+ µ κ(x)

}
δ(φ(x)) .

(1.22)

1Instead of modeling P(I(x)) as parametric distributions, non-parametric density estimation, like the Parzen
window method (Kim et al., 2002) can be also used, which we do not detail further.



22 Chapter 1. State-of-the-Art

For σ2
in = σ2

out = constant, equation (1.22) reduces to the evolution equation of the
Chan-Vese model in equation (1.15). In the early region competition approach proposed
by Zhu and Yuille (1996), they obtained a similar functional as equation (1.22), but there,
the energy functional was deduced from the minimum description length (MDL) method,
rather than MAP.

1.1.3 Active Contours with Shape Constraints

In the previous subsections, all the presented active contours, whether edge-based or region-
based, drive the curve evolution based on the information from the image, except perhaps
for having some regularization term to smooth boundary. In this case, little prior know-
ledge about the object exists in the model, and hence the data quality has a large impact
on the segmentation accuracy. Unfortunately, in many real applications, the image data is
often damaged by noise or partial occlusion; or the contrast between the object and the
background is poor. These factors may lead to unsuccessful segmentation. Recently, a large
amount of work on the inclusion of shape knowledge in active contour models has been pre-
sented. Having prior information about the expected shape of the object can significantly
increase the robustness of the segmentation algorithm. In general, in a variational frame-
work, a prior energy EP related to the shape knowledge is integrated together with a data
energy ED describing the image information. A constant weight is normally used to bal-
ance the contributions of these two terms. Note that Bailloeul (2005) converted the constant
weight into a space function, to relax the influence of the constraints near the zero level set
of the prior shape, while keeping a strong and uniform constraint far from the prior shape.
This makes the active contours resemble the prior shape globally, but with some variations
locally.

Chen et al. (2001, 2002) considered a non-probabilistic model that minimizes an energy
functional depending on the image gradient and the shape of interest. The basic idea is to
influence the geometric active contour with a vector field that depends on the shape prior.
The shape prior energy is formulated as

EP(C,T ) =
∫ 1

0
d2(T (C(p))) |C′(p)| dp , (1.23)

where d(x) = d(C∗, x) is the distance of the point x from the shape reference C∗. Here
T represents scale, rotation and translation transform. Therefore, this term evaluates the
similarity of the shape of the contour C to C∗, but making use of a single shape reference
(though with different size, orientation and translation), this model cannot handle a large
variation of shapes. To solve this limit, the authors suggested grouping the sampled curves
into k clusters for some k, and finding the average shape C∗i (i = 1, . . . , k) in each group.
However, this model is still sensitive to the initialization because of the inclusion of an
edge-based data term.

Leventon et al. (2000) extended geometric active contours (Caselles et al., 1997; Kichenas-
samy et al., 1995) by incorporating shape information into the evolution process. They
computed a statistical shape model over a training set of curves, in which principal compo-
nent analysis (PCA) is used to derive the principal deformation modes. The segmentation
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process is implemented in the level set framework, and the level set surface is driven solely
by a data term in the first step. At each step of the evolution, the MAP position and shape of
the object in the image are estimated, based on the prior shape information and the image
information. In the second step, a correction of the previous segmentation is performed
locally based on image gradients and curvatures, and globally towards the MAP estimate.
Thus, an additional shape influence term is introduced to the original evolution equation of
geometric active contours.

Rousson and Paragios (2002) also constructed a statistical shape model using a collec-
tion of samples. The differences with (Leventon et al., 2000) lie in two aspects. First, the
shape constraint is expressed by a shape energy functional. Thus, the complete evolution
equation can be derived directly from the overall energy. Second, since the learning shapes
are aligned with a reference shape selected arbitrarily from samples, the model can handle
shapes with a large variety of global transformations as well as scale variations. The shape
constraint energy is defined, in the level set representation, as

EP(φ,T, s) =
∫
Ω

{(
sφ(x) − φM(T (x))

)2

2σ2
M(T (x))

+ log
(
σM(T (x))

)}
H

(
φ(x)

)
dx , (1.24)

where φM(x) and σ2
M(x) denote a representative shape and a confidence map respectively;

T and s are a global transformation and a scale factor. The first term constrains the surface
to be likewise the prior, and weighs their difference by the confidence; and the second term
penalizes the shape with low confidence.

Cremers and Soatto (2003) pointed out the following drawbacks of the shape constraints
in (Rousson and Paragios, 2002) (equation (1.24)). First, the restriction of the energy in-
tegral to the positive part of the level set function induces a bias toward shrinking area of
the shapes. Second, all shape discrepancies outside the evolving shape are neglected. Such
priors are therefore not well-suited to encode multicomponent shapes. To address these
problems, they proposed a symmetric dissimilarity measure between the evolving contour
φ and the given reference shape ψ0:

EP(φ,T ) =
∫
Ω

(
φ(x) − ψ0(T (x))

)2 h
(
φ(x)

)
+ h

(
ψ0(T (x))

)
2

dx , (1.25)

where h is the normalized Heaviside function. This symmetrized dissimilarity measure
averages the squared deviation of shapes over both areas φ(x) and ψ0(T (x)). The authors
proved that the constructed dissimilarity measure is in fact a pseudo-distance. A limitation
of this approach is that the shape prior encodes a single shape. Moreover, pose optimization
may result in numerous instabilities. Chan and Zhu (2003) proposed another symmetric
constraint energy:

EP(φ,T ) =
∫
Ω

(
H

(
φ(x)

)
− H

(
ψ0(T (x))

))2
dx . (1.26)

This term is the area of the symmetric set difference. It does not enforce the evolving level
set to resemble the shape reference, instead it demands similarity of the regions within
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the respective contours. Riklin-Raviv et al. (2004) integrated perspective (a six-parameter
transformation) between a single prior image and the image to be segmented, by slicing the
signed distance function at various angles. Riklin-Raviv et al. (2007) further generalized
this algorithm to an eight-parameter projective model.

To resolve the issue of pose estimation, Cremers et al. (2006) evaluated the evolving
level set function not in global coordinates, but in coordinates of an intrinsic reference frame
attached to the evolving surface, thereby obtaining invariant shape distances. Such a closed-
form solution removes the need to iteratively update local estimates of pose parameters. For
the explicit contour representation, an analogous intrinsic alignment with respect to simi-
larity transformations was proposed in (Cremers et al., 2002). Rousson and Paragios (2007)
also addressed the construction of a similarity invariant shape constraint. The similarity is
considered not between the evolving level set and the reference shape as usual, but alter-
natively between the evolving level set and the image. The evolving level set remains in
the same pose as the prior. The evolution equations of pose parameters are only guided
by the image term, resulting in a much faster and robust estimation of the transformation
parameters.

So far, statistical shape priors in the above models are static in time. It is worth to men-
tion that Cremers (2006, 2007) took into account dynamical statistical models for implicitly
represented shapes, in the context of image sequence segmentation. The dynamical prior
is based on the fact that the probability of a contour depends on which contours have been
observed in previous frames. The respective shape models capture the temporal correlations
among silhouettes which characterize many deforming shapes in the presence of noise and
occlusion.

1.1.4 Summary

In this section, we have given a brief survey of active contours in segmentation. In general,
active contours can be classified into two different categories: edge-based and region-based.
Edge-based active contours consider some local measurements around the boundary of the
object to be segmented. This is responsible for many limitations of this approach. Between
the two types of edge-based active contours, geometric active contours have many advan-
tages over parametric active contours, such as computational simplicity and the ability to
change curve topology during evolution. Note that the precise relationship between the two
was derived by Xu et al. (2000). On the other hand, thanks to the introduction of global
information, region-based active contours tend to be more robust to noise. Correspond-
ingly, the energy functional tends to have less local minima, which makes them particular
well-suited for local optimization methods such as the level set framework. Cremers et al.
(2007) presented a comprehensive survey of the class of region-based level set segmentation
methods, and detailed how they can be derived from a general statistical framework. Rous-
son (2004) pointed out that the minimal partition limit of the Mumford-Shah functional is a
particular example of the region-based ‘Bayesian’ formulation. In addition, we have investi-
gated a special case: active contours with shape constraints, because it is where our interests
lie. Active contours with shape constraints have drawn great attention from the computer
vision community, due to their potential for increasing algorithm robustness. They can
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be classified into non-statistical approaches and statistical approaches. The difference is
whether the shape reference is learned from a training set or not. Many researchers have
also developed different ways to tackle the problem of pose estimation (Cremers et al., 2002,
2006; Rousson and Paragios, 2007).

1.2 Road Extraction

For the last few decades, road detection from remotely sensed imagery has been exten-
sively studied, due to the variety and importance of the potential applications of an au-
tomatic extraction method. A great number of approaches have been proposed (Fortier
et al., 1999; Mena, 2003). They consider different image resolutions (low, medium and
high resolutions), and different image complexities (rural area, semi-urban area, and urban
area). Furthermore, a wide range of sensors have been utilized: the image data includes
monochromatic imagery, infrared band, color imagery (RGB), multi- and hyper-spectral
imagery (HYDICE), synthetic aperture radar imagery (SAR), light detection and ranging
imagery (LIDAR), and so on.

Despite all these works, there is no widely recognized solution to the road extraction
problem. The development of reliable procedures is still a challenge. The difficulty stems
from two aspects:

• The large variety of objects in the data: the appearance of road networks differs ac-
cording to the road type, their surroundings and the construction layout of different
countries. Moreover, the same network appears differently according to the view
angle, the satellite sensor, spatial resolution, spectral wavebands, etc.

• The complexity of the imaged scene: it contains many different objects, such as roads,
buildings, trees, etc., with differences in shape, brightness, and texture.

To classify and analyze existing algorithms, several criteria can be chosen: 1) Some
methods are semi-automatic, in which interaction with a human operator is more or less
necessary. Others aim at being “automatic”, but until now, automatic methods for road
extraction seem to be far from mature. As far as we know, at least, model parameters
still need to be adjusted manually. 2) Previous work deals with different resolutions of the
image, or uses a multiresolution analysis (MRA) to combine road extraction at different
resolutions. 3) We can also characterize previous work into ‘bottom-up’ and ‘top-down’
strategies, which are elaborated in the following.

A bottom-up strategy attempts to answer the question: what is where? In a hierarchical
scheme, we first detect basic features in different locations, and then progressively add
constraints, such as the nature of the object, up to higher-level recognition. As opposed
to a bottom-up strategy, a top-down strategy is shifted to answer the question: where is
what? Using such a strategy, we first define what the object to search for should be, and
then try to find out its location in the image. In fact, since most methods make use of a
combined control strategy, in which the bottom-up process provides local information, and
the top-down process provides global knowledge of the properties of objects, the borderline
between the two strategies is not clear. Moreover, if one concentrates on models instead
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of algorithms as described above, the distinction disappears in principle, because the only
question left is: is the algorithm good to solve the model?

In the rest of this section, we first describe the common physical properties of roads.
We provide a quite detailed survey of work on road extraction and updating, and classify
them according to the applied extraction techniques.

1.2.1 Road Characteristics

In spite of the great variety in road shape and appearance, we can summarize several “uni-
versal” characteristics that might be used for the extraction process. The different cha-
racteristics are as follows (Fortier et al., 1999):

1. Geometric properties

• The width of a road is almost constant locally.

• The curvature of roads in urban areas has some changes globally, but it is small
locally.

• The steepness of roads has an upper bound. In urban areas, it is rather small
locally even near bridges; in mountainous regions, roads tend to be winding.
However, the steepness is not easily measurable unless stereoscopic pairs or
other 3D information are available.

2. Spectral properties

• For high resolution images, the surface of a main road is not smooth. There
are some objects, such as zebra crossings, over-bridges, vehicles, shadows, road
signs, etc.

• It is more complex in the case of small roads. Some parts of the road may be
sheltered completely by the trees and building shadows beside the road.

• Roads are mainly built using materials such as concrete or asphalt; consequently
unsheltered roads have a spectral signature corresponding to these materials.

• Other objects may have a spectral signature similar to roads. A sheltered road
has the spectral signature of the shelters.

3. Topological properties

• Roads are built to link certain places together and neighboring roads are con-
nected to form networks.

• Roads emerged recently are inevitably linked with the previous network, which
provides some hints for finding new roads.

4. Contextual properties

• The width of a road has an upper bound. This upper bound is highly dependent
on the importance of the roads. For instance, highways are much wider than
rural or semi-urban roads.
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• The density of road networks and junctions depends on the surrounding context.
It is higher in urban areas than in rural areas.

The above properties are more or less embodied in the techniques proposed in the lite-
rature for road extraction.

1.2.2 Active Contours

Active contours provide a convenient way of embedding geometric properties of the features
in the form of constraints to guide the recognition process. Hence, they have been widely
used for the extraction of man made structures.

Klang (1998) developed an automatic procedure for detecting changes between an exist-
ing road database and a new 10m resolution satellite image in a forestry area. First he used
the existing data to initialize an optimization process, using the ‘ziplock snakes’ approach
to correct road location. Then, he ran a line-following process using a statistical approach
to detect new roads, starting from the existing network. Fortier et al. (2001) improved this
approach by considering road junctions. Road junctions are generally reliable information
and since roads form networks, they are very relevant in this context. In the scheme of
road position correction, line junctions are added to re-localize road location from the road
database, in order to bring the initial snakes closer to the real contour. To generate hypothe-
ses for new roads, a road following algorithm is applied in the image, starting from line
junctions near the known road network.

Mayer et al. (1998); Laptev et al. (2000) proposed an approach for automatic road ex-
traction in aerial imagery. The approach takes advantage of the scale-space behavior of
roads in combination with geometrically constrained edge extraction by means of snakes.
Based on the scale-space behavior of roads, the procedure starts by extracting lines at coarse
scale, which are less precise but also less disturbed than features at fine scale. The lines are
used to initialize ‘ribbon snakes’ at fine scale, which describe the roads as bright, more or
less homogeneous elongated areas. Ribbons with constant width are accepted as salient
roads. The connections between adjacent ends of salient roads are checked if they corre-
spond to non-salient roads. For the sections of non-salient roads which include high noise,
additional constraints and a special strategy are exploited to close gaps that arise from shad-
ows and partially occluded areas. However, the proposed approach is mostly restricted to
rural areas.

Bonnefon et al. (2002) presented a complete process to update – by matching –, and
upgrade – via detection – geographic linear features in a Geographical Information System
(GIS). In its first step, linear objects on SPOT images are matched with GIS vectors using
a combination of dynamic programming and a deformable contour model. The dynamic
programming process first finds quickly the optimal path, but with some erratic sections
due to the lack of curvature constraints. Then the snakes smooth the erratic sections and
control the curvature. As the optimal path is very close to the objects, the process converges
fast without being attracted to surrounding local minima.

A modification of the classic concept of snakes was presented in (Agouris et al., 2001).
In this paper, a novel framework, comprising change detection and versioning (which means
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in the absence of changes, the pre-existing information may be improved in terms of accu-
racy), is introduced. Based on fuzzy logic, a criterion of quality is defined. The stan-
dard snake method is extended to function in a differential mode by introducing an energy
term to describe the discrepancy between the present extracted result and the prior informa-
tion. Change is detected if and only if the new image supports the notion that the object
has moved beyond the stochastic range of the older information. Otherwise, the object is
treated with versioning. The system has the ability to differentiate change detection from
the recording of numerous slightly different versions of objects that may remain unchanged.
This framework is applied to 5m resolution images in rural areas.

Péteri and Ranchin (2003) addressed the problem of extracting the road network from
Ikonos satellite images in dense urban areas. Based on a given topologically correct graph
of the network, roads are reconstructed as surface elements using two different types of
active contours. For extracting road portions with parallel sides, geometric knowledge is
introduced via a parallelism constraint on the contours representing the road borders. An
MRA is used to minimize geometric noise. Once road segment extraction is finished, the
junctions are extracted by simple active contours, which are initialized by extremity points
on parallel road borders. This method can provide precise road areas, but the retrieval of a
topologically correct graph is critical.

Youn and Bethel (2004) assumed that the road network and block pattern in a city have
a semi-regular grid pattern. Based on this, the image is segmented according to dominant
road directions. Then the road lines are detected with the ‘acupuncture method’. These de-
tected lines are used to construct initial approximations for the subsequent snake refinement.
Finally, the road corners are rectified by applying adaptive snakes.

1.2.3 Multiscale and Multiresolution Analysis

A multiscale approach offers an appropriate framework to fuse the information from diffe-
rent scales. This is particularly important for high resolution images, because the road
extraction task can be greatly facilitated with the aid of road detection results at reduced
resolution, which needs less effort at the cost of probable mistakes.

Baumgartner et al. (1997) presented a multiresolution approach for automatic extraction
of roads from aerial images. For different context regions, i.e. rural, forest, and urban areas,
the model describes relations between background objects and road objects. The approach
to road detection is based on the extraction of edges in a high resolution image and the
extraction of lines in a reduced resolution image. Using both resolution levels and explicit
prior knowledge about roads, hypotheses for road borders are generated. Quadrilaterals and
polygons are constructed to represent road-parts and intersections. Neighboring road-parts
are chained to form road-segments. Road-links are built by grouping road-segments and
closing gaps.

For high resolution images, such as airborne images, Benharrosh (1998) aimed to obtain
a multiresolution image with some parts at full resolution and others at coarser resolution.
They proposed three methods of adaptive filtering that smooth an image while preserving
cartographic structuring features or interesting regions of the image. The first one relies on
an anisotropic diffusion method introduced by Saint-Marc et al. (1991). The second is based
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on wavelet theory. And the third method is based on an analogy between the image and an
electrical network. These methods are applied to the generation of an adaptive quick-look
and adaptive compression.

Couloigner and Ranchin (2000) defined a hierarchical method to extract urban road
networks semi-automatically from 2m resolution space-borne images. This method is per-
formed in two steps. First, given two endpoints on both sides of the road, the two sides of
each road are located from the original image and the scaling coefficients of a wavelet trans-
form at different spatial resolutions. In the second step, the strip(s), if existing, is extracted
using the detected road borders and the wavelet coefficients at characteristic scales.

Prinet et al. (2000) addressed scale selection for curvilinear structure detection. This
approach is based on the study of the existence and stability properties of the crest-lines
that localize the center axis of the structures to be retrieved. The authors showed that the
crest-lines exist and are stable over a band of width scale values. The selection of different
scales according to different local resolution of the structure is followed by a fusion scheme
that enables the merging of crest-lines.

Zhang and Couloigner (2003) also made use of an analysis in the wavelet domain to
detect road features; they aimed at providing an automatic method. In their framework for
road network change detection, road sides, centerlines and junctions are extracted based
on the observation of wavelet-based road features. Along the road gradient direction, the
road centerline and the road borders correspond to respectively a local maximum and two
zeros of wavelet coefficients; a road junction is localized by a local maximum of wavelet
coefficients in a 7 × 7 neighborhood; the linked road branches are identified as the local
maximum pixels along the border of the above neighborhood. However, this wavelet-based
method is restricted to simple scenes such as countryside.

Note that the work of Mayer et al. (1998), Laptev et al. (2000) and Péteri and Ranchin
(2003), introduced in subsection 1.2.2 on active contours, also used a multiscale or multire-
solution strategy.

1.2.4 Dynamic Programming

Dynamic programming formulates an extraction problem as the minimization of a cost func-
tion defined on a graph. Given knowledge about the presence of roads in the form of end-
points, usually fixed manually, the algorithm is forced to track a connecting path between
them through the image which best fits the model. Since this method restricts the topology
of networks, dynamic programming is potentially semi-automatic. In this sense, a more
reliable handling of obstacles is possible.

Fischler et al. (1981) aimed to extract roads from low-resolution aerial images. Different
low level operators are classified into two types: Type I operators identify roads with a high
accuracy, but some roads may be missing; Type II operators extract all roads completely,
but may yield some false detections. By combining them, a cost array is defined. Between
two given endpoints, the best path, which gives the lowest cost, is chosen as the road using
the F∗ algorithm.

Merlet and Zerubia (1996) extended the F∗ algorithm of Fischler et al. (1981) to cliques
and to neighborhoods larger than one. By means of the cliques of more than two points,



30 Chapter 1. State-of-the-Art

contrast information is introduced into the calculation of the minimum cost path, and the
larger neighborhoods allow for the consideration of the curvature of the final path. All
the needed information are synthesized in a unique cost function. Thanks to the curvature
constraint, even if the initial endpoints are incorrect, or are located on different roads, a
correct path may still be obtained. The method is applied to detect roads and valleys from
low-resolution SPOT satellite images.

Barzohar and Cooper (1996) presented an automatic approach to find main roads in
aerial images. Geometric-stochastic models are built for representing road images, and
then MAP estimation is used for estimating the road boundaries in an image. First, the
image is partitioned into windows. They searched the small windows to obtain initial road
candidates by dynamic programming. Then, starting with the windows containing high
confidence estimates, they obtained optimal global estimates of the roads using dynamic
programming again. The algorithm produces two boundaries for each road.

Bonnefon et al. (2002) proposed a semi-automatic tracking method using the F∗ algo-
rithm. From a starting point, they used a small search window in which the algorithm tries
to find the optimal path. Costs for the F∗ algorithm depend on the difference of radiometry
values between the original SPOT image and the detection image computed from it. The last
point of the optimal path in the search window becomes the new starting point. The algo-
rithm identifies the detected linear features using texture information from high-resolution
images.

Dal Poz and do Vale (2003) presented a dynamic programming approach for road cen-
terline extraction from medium- and high-resolution images. This approach is a modifica-
tion of a pre-existing dynamic programming approach, proposed by Gruen and Li (1997),
for road extraction from low-resolution images. A constraint that the gradients at road edges
are antiparallel is incorporated into the cost function. This allows the approach to treat the
road as a ribbon feature.

Bucha et al. (2006) also used dynamic programming to extract road centerlines, but
the weights of the edges in the graph are provided by a force field, drawn such that at
each pixel, a two-dimensional vector defines interactions between pixels. In such an image
representation, the vector is oriented to the center of the region composed of pixels having
the same qualitative property, such as color and gray-scale level.

1.2.5 Morphological Methods

Mathematical morphology is a theory for the analysis and processing of signals in terms
of geometrical structures, developed by Matheron (1975) and Serra (1982). Mathematical
morphology can characterize topological and geometrical concepts such as size, shape, con-
vexity, connectivity, and geodesic distance, on both continuous and discrete spaces. Mor-
phological image processing is based on this theory. It consists of a set of operators, e.g.
union, intersection and complementation, as well as dilation, erosion, openings, closings,
thinning and other derived operators. These operators transform the image according to
the above characterizations. Mathematical morphology was originally proposed to process
binary images, and was later extended to gray-scale images and multi-band images.
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Zhang et al. (1999) proposed an approach for detecting road networks from high re-
solution images using a combination of mathematical morphology operations. In the pre-
processing stage, the image is segmented and road network regions are separated from their
surroundings. Morphological trivial opening is then adopted. A criterion T is defined as
the long axis of the minimal ellipse which encloses an object. Only the connected compo-
nents that satisfy the criterion T are retained after morphological reconstruction. Thus, this
process preserves the elongated road areas, and filters out almost all the houses and small
clusters of noise as well. The result is further refined by filling holes, removing small paths
and recovering shadowed areas. In the high resolution simulation images and aerial photos,
the approximate road centerline network is finally extracted. However, road gaps may still
exist, if road surfaces are completely broken and there is no other information supporting
the linkage.

Chanussot and Lambert (1998) introduced a simple and fast unsupervised method for
the automatic extraction of road networks in SAR images. A series of morphological ope-
rators is used in order to retain elongated structures with a specific width. The sequence of
morphological filtering consists of an opening by reconstruction, a directional closing in 40
successive directions, an opening, and a closing top-hat operator. At every step, flat struc-
turing elements are used, and their size is specified according to a priori information about
the road’s maximum width and curvature. In the final stage, the roads are extracted by a
simple thresholding applied to the response of the morphological operators. The drawback
of this method is that the lack of contextual knowledge results in partial detection of the
road network together with several spurious detections.

Katartzis et al. (2001) combined and extended two earlier approaches for road detection
in SAR satellite images, and described a model based method for the automatic extraction
of linear features from aerial imagery. In fact, the authors made use of both bottom-up and
top-down processing, i.e. a combined strategy. During its first local analysis step, to detect
elongated structures, a set of morphological operators proposed by Chanussot and Lambert
(1998) is modified to enhance the performance of the morphological filtering in the case of
heavily noisy environments and partially disconnected roads. In its second global analysis
step, a segment linking process is performed with some prior information, based on the
Bayesian framework of Tupin et al. (1998) (which will be introduced in subsection 1.2.6).

In his survey of previously existing applications of mathematical morphology in geo-
science and remote sensing, Soille and Pesaresi (2002) analyzed the suitability of morpho-
logical operators for the processing of Earth observation data, detailed some new advances
in the theory of mathematical morphology, and demonstrated their efficiency for extracting
structural information from Earth observation data.

1.2.6 Markov Random Fields and Marked Point Processes

Contextual constraints are a general and powerful way to model spatial properties. Markov
random fields (MRFs) provide a convenient and consistent way to model context-dependent
entities such as image pixels and correlated features. MRF based models have been widely
used to identify road networks.
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Tupin et al. (1998) used both local and global techniques for linear feature extraction.
First, they performed a local detection of linear structures based on the fusion of the results
from two line detectors, both taking into account the statistical properties of speckle in SAR
images. The masks of the line detectors have widths ranging from one to a maximal number
of five pixels. The produced candidate road segments are then organized as a graph, together
with an additional set of segments that correspond to all possible connections between them.
The road identification is solved by the extraction of the best graph labeling based on an
MRF model for road like structures and a MAP criterion. As a result, this algorithm allows
complex topology and a priori detection; but its drawback is that the road network has to
be represented as a graph, and the number of nodes is fixed.

Stoica et al. (2004) modeled thin networks as ensembles of line segments embedded in
the image domain. A point process controls network parameters such as connectivity and
curvature. The road network is approximated by connected line segments under constraints
enforced by the interaction model. The specific properties of the road network in the image
are described by the data term. The probabilistic model is solved by simulated annealing
based on a Reversible Jump Markov Chain Monte Carlo algorithm. The main advantage is
that during the optimization process, new segments can be created, and their location and
orientation can be changed. Unlike the method of Tupin et al. (1998), the dimension of the
space is not fixed. Results are shown on SPOT, ERS and aerial images. Lacoste et al. (2005)
developed an extension of this model.

Negri et al. (2006) proposed a general processing framework for urban road network
extraction in high-resolution SAR images. First, road candidates are extracted with two
detectors. Then, road network topology is optimized with an MRF model, incorporating
the prior knowledge about road junctions. A final network regularization step is based on
perceptual grouping concepts.

1.2.7 Recursive Filtering

Filtering is a recursive procedure to estimate the parameters, i.e. the state, of a dynamic
system. In the case of road tracking, although the state is time independent, the progressive
growing of the estimated contour along the road is treated as if it were the time variable,
and the state to be estimated is the parameters that describe the position and shape of roads.

Vosselman and de Knecht (1995) presented a road tracing algorithm by Kalman filter-
ing. The first road segment given by an operator is used to initialize the parameters of the
Kalman filter and to extract a template road intensity profile. Since roads are elongated
regions, adjacent profiles taken perpendicularly to the road axis usually have a very similar
shape. The position and the width of the next adjacent road profile can be predicted based
on the current segment. The profile at the predicted position is matched with the model
profile. The shift between the two profiles is used by the Kalman filter recursively to up-
date the parameters. The prediction step of the Kalman filter enables continued following
the road despite temporary failures of the profile matching due to road crossings, exits and
cars. Baumgartner et al. (2002) developed a prototype system based on this method. An
interaction interface is designed to enable human interaction during the tracking process.

In the ‘JetStream’ method proposed by Pérez et al. (2001), the contour of the road is
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seen as the path of a stochastic process driven by both an inner stochastic dynamics, and a
statistical data model. The prior dynamics retains expected properties of the contours to be
extracted; the data model provides evidence about whether a measurement is, or is not, in
the vicinity of the ‘true’ contour. A Monte Carlo technique, based on sequential importance
sampling/resampling, is used to realize the recursion. Given the current position, particle
filtering manipulates the filtering density to estimate the most probable next position accord-
ing to different criteria. The filtering density is represented by a set of random samples with
associated weights. If the state space is extended to include a width variable, the algorithm
can deal with ribbon features. It is applied to road extraction from aerial images.

Zhou et al. (2005) employed a similar model as (Vosselman and de Knecht, 1995).
The main difference is that a particle filter is used in place of the Kalman filter for pre-
diction. Zhou et al. (2006) gave an overview of a road tracking system based on human-
computer interaction and two kinds of Bayesian filters, i.e. extended Kalman filters and
particle filters.

1.2.8 Support Vector Machines

Support Vector Machine (SVM) is a powerful classification technique based on the princi-
ples of statistical learning theory. SVM works by finding the hyperplane with the largest
margin in the feature space that separates the positive and negative training samples.

Yager and Sowmya (2003) applied SVM to road extraction from rural areas using edge-
based features. In the first level, the edges are found using a Canny edge detector. The
edge length and the edge gradient are the features used to classify edges as road edges or
non-road edges. After a learning stage from a training data set, an SVM is used to classify
all the edges. In the second level, opposite road edges are paired to create road segments.
They are classified as positive and negative edge pairs, using the pair width and the enclosed
intensity. Another SVM is trained from the pair samples to classify all possible edge pairs.
An extension of this work can be found in (Lai et al., 2005).

Song and Civco (2004) performed a two-step approach for road extraction from rural
and urban areas. In the first step, SVM is employed to classify the input image into a road
group and a non-road group. In the second step, the road group image is segmented into
geometrically homogeneous objects using a region growing technique based on a similarity
criterion, with higher weighting on shape factors over spectral criteria. Finally, a threshold-
ing on the shape index and density features derived from these objects is applied to extract
road features, which are further processed by thinning and vectorization to obtain road cen-
terlines.

1.2.9 Utilization of New Sensor Data

The utilization of new sensor data is a new tendency for research in road extraction to
overcome the difficulties from panchromatic satellite and aerial images.

Zhu et al. (2004) proposed an automatic road extraction technique that combines in-
formation from LIDAR data and aerial optical images. Firstly, the method obtains height
and edges of high objects from LIDAR data. Secondly, digital images are analyzed at
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these edges for road detection. Finally, shadowed parts are reconstructed by a spline-
approximation algorithm. Hu et al. (2004) also combined information from LIDAR data
and aerial optical images, taking advantage of deriving multiple clues and constraints to
significantly minimize the uncertainty in the extraction process.

To extract roads from LIDAR, Rottensteiner et al. (2005) used a two step process. First,
roads are detected by a hierarchical technique classifying the LIDAR points into road or
non-road. Each step in the classification hierarchy addresses the appearance of roads in
the sensor with respect to spectral, geometric, topological, and contextual characteristics.
Secondly, road vectorization is performed. The road centerline, orientation and width are
detected.

1.2.10 Other Methods

Many other techniques have also been employed for the application of road extraction.
Active testing. This approach was proposed by Geman and Jedynak (1996), originally

for road tracking from SPOT satellite images with 10m resolution. It also offers a general
computational strategy for tracking linear structures and other recognition tasks in computer
vision. Given a start point and an orientation, the algorithm searches the road by construct-
ing a decision tree. Candidate road pixels are selected in a limited number of directions
using hypothesis tests. At each step, the best test is that which removes as much as possible
the uncertainty in the road position, given the results of the previous tests. This choice is
made online based on a statistical model for the joint distribution of tests and hypotheses.
The uncertainty is measured by entropy. At each iteration, new image data are examined,
and a new entropy minimization problem is solved, resulting in a new image location to
inspect, and so forth. Dal Poz and Silva (2002) extended the work of Geman and Jedynak
(1996) to medium- and high-resolution images. They defined road segments as rectangles,
and performed the active testing strategy to track road segments. Finally, the road centerline
is obtained from the extracted road segments. However, if the road borders are incomplete,
or the road width changes, the centerline position might not be accurate.

Perceptual grouping. Mangin et al. (1992) proposed an iterative algorithm for edge in-
tensity image enhancement. It uses local cooperation-inhibition processes to produce an
edge image in which the most relevant contours have reached maximal activation, and small
gaps and junctions have been filled in. The algorithm is robust in complex edge image con-
text, and is stable under any number of iterations. Urago et al. (1994) proposed an algorithm
to restore images of incomplete contours using a Markovian model. To complete the bound-
aries, a criterion is defined and introduced in an energy function. The minimization of this
energy generates a configuration, in which the contours are reconstructed. This algorithm is
tested on real SPOT images to fill up large gaps and to get a better contour grouping. Gamba
et al. (2006) detected urban road networks from high resolution optical and SAR mages. An
adaptive filtering procedure is performed to capture the predominant directions of roads, and
enhance the extraction results. Then, to both discard redundant segments and avoid gaps,
a perceptual grouping algorithm is devised, exploiting colinearity and proximity concepts.
Finally, the road network topology is considered, checking for road intersections, and regu-
larizing the overall pattern.
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Region competition. Amo et al. (2006) proposed a combined approach consisting of re-
gion growing and region competition to extract road centerlines and sides. The initial seeds
are given manually. Then, a first simple region growing based model is applied to obtain a
rough road approximation. This model is refined by the region competition algorithm.

Shape classification. Hu et al. (2007) presented a two-step approach, i.e. detecting and
pruning, for the automatic extraction of road networks from aerial images. The road de-
tection step is based on the shape classification of a local homogeneous region around a
pixel. This step involves detecting road footprints, tracking roads, and growing a road tree.
The road tree pruning step makes use of a Bayesian decision model based on the area-to-
perimeter ratio of the footprint to prune the paths that leak into the surroundings.

Neural networks. Mokhtarzade and Zoej (2007) treated the possibility of using artificial
neural networks for road detection from high-resolution satellite images. Attempts are also
made to verify the impacts of different input parameters on the network’s ability to find the
optimal input vector for the problem. A variety of network structures are used to determine
the best network structure and termination condition in the training stage.

Normalized cut. Grote et al. (2007) dealt with the segmentation of images of sub-urban
scenes with the normalized cut algorithm. The similarity matrix necessary for normalized
cuts is built up using similarity criteria, such as edges, color, hue and road surface color,
which are suitable for the separation of road and non-road segments. The results are used
for the verification of an existing road database, which is also introduced into the model as
prior information for the segmentation.

Differential geometry. Jin and Davis (2003) presented an automatic road extraction
strategy from pan-sharpened multispectral Ikonos images. First, initial road seeds are ge-
nerated based on shape and structural analysis through segmentation and grouping. Based
on the fact that roads are 1D bar-shaped or parabola-shaped intensity profiles perpendicular
to road directions, a line detection method is used to extract additional road seeds, which
are integrated with the initial seeds using graph theory. Missing pieces of road networks are
added using a road tracker based on profile matching.

1.2.11 Summary

In this section, we have presented a wide range of techniques applied to road extraction.
The early work mainly focused on extracting thin linear features from low resolution data,
where the data input is some relative simple scene, i.e. rural or semi-urban areas. With
the commercial availability of very high resolution (VHR) satellite images, recent research
tends to extract belt or ribbon structures from VHR data. Furthermore, more and more
attention has been directed to urban areas due to a variety of urban applications. The exist-
ing algorithms are very varied due to different goals, available data, scene complexity, etc.
Comparatively, bottom-up methods, such as mathematical morphology and dynamic pro-
gramming, are less computationally expensive, but due to their high sensitivity to nuisance
factors, they show strong limitations, and in general, low robustness. Top-down methods,
such as active contours, MRFs and marked point processes, are relatively less sensitive to
incomplete and ambiguous information, but the computations needed are usually expensive,
and the generic definition of a specific object is usually difficult.
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1.3 Conclusion

In this chapter, we have briefly reviewed the state-of-the-art in the areas of road extraction
and active contours. In the former, we classified road extraction algorithms according to the
different techniques applied. Although a great number of approaches exist, few algorithms
can give satisfactory results for VHR data; most of them utilize a series of processing steps
to extract roads progressively. We also classified the various variational models into edge-
based and region-based approaches. We focused on active contours with shape constraints,
because having prior shapes is especially useful in segmenting high noise remote sensing
images. Almost all of this work includes shape knowledge by using a reference shape or
shapes. These methods are powerful when a topologically correct reference shape is given,
but unfortunately fail when the topology is unknown a priori, such as in the problem of
road extraction. In this thesis, we choose to make use of active contours because they
provide a unified, analyzable and solid mathematical framework. Different types of prior
knowledge can be easily integrated into such a framework. The introduction of geometric
prior constraints in the absence of a particular reference shape, i.e. generic shape modeling
problem, has been first tackled by Rochery (2005). For the flexibility and robustness that
it provides, we decide to adopt this particular family of models in our work. In the next
chapter, we will introduce the fundamentals of our used framework.



Chapter 2

Higher-Order Active Contours and
Phase Fields

This chapter presents the phase field higher-order active contour (HOAC) framework for
image segmentation. HOACs are a new generation of active contours, recently developed
by Rochery et al. (2003, 2005b, 2006). They can encode complex prior knowledge about ge-
ometry. Thus, they are more robust and can be initialized generically, hence automatically,
outperforming conventional active contours. Later, ‘phase fields’ were introduced for re-
gion modeling in (Rochery et al., 2005a), where HOACs are reformulated as (non-local)
phase field models. Phase field modeling is the approach favored in this thesis, because it
has several advantages over other traditional methods: a linear representation space; neutral
initialization; ease of implementation; and greater topological freedom. On the other hand,
parameter settings play an important role in the phase field HOAC model, and greatly affect
the model performance, so we need to choose the parameters properly. In section 2.1, we
first present a general probabilistic framework for image segmentation. In section 2.2, we
briefly review the HOAC model, and its application to road network extraction from low to
medium resolution (∼ 10m/pixel) remote sensing images. We recall the essentials of phase
field models in the same section. In section 2.3, a stability analysis of a long straight bar of a
fixed width is performed as an effective way to understand model behavior and the internal
dependence among these parameters. In section 2.4, after adding a region based likelihood
term, we define our overall primary model and specify the implementation details.

2.1 A General Framework for Image Segmentation

In this section, we introduce the Bayesian formulation of image segmentation, and show its
connection with energy minimization methods.

Image segmentation refers to the process of partitioning on the image domain Ω ⊂ R2

into multiple meaningful regions, given image data I : Ω → R. In particular, the aim of
image binary segmentation is to find the region R that corresponds to objects of interest,

37
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from the image to be segmented. Thanks to Bayes’ theorem, different knowledge, such as
intensity, variance, color, texture, and shape information, can be integrated easily into this
framework. Knowledge of R can be taken into account to define the a posteriori probability
distribution P(R|I,K), given the image data I, and given all the prior knowledge K we may
have. From this formulation, the optimal partition of the image can be computed by finding
the region R with maximum posterior probability. Using Bayes’ rule, this probability can
be expressed as

P(R|I,K) =
P(I|R,K)P(R|K)

P(I|K)
, (2.1)

where P(R|K) and P(I|K) are respectively the probability of a segmented region R and the
probability of an image I, given the knowledge K. The third term, P(I|R,K) represents the
likelihood of the image I, given the region R and the knowledge K. When segmenting a
given image using maximum a posteriori (MAP) estimation, the denominator P(I|K) does
not depend on the estimated quantity R, and can thus be neglected in the maximization.
Equation (2.1) simplifies to

P(R|I,K) ∝ P(I|R,K)P(R|K) . (2.2)

Equivalently, the MAP estimate can be found by minimizing the negative logarithm of
the probability, which leads to the ‘energy’. The total energy to be minimized, up to an
additive constant, can be defined by

E(R; I) = θEP(R) + ED(I,R) , (2.3)

where EP is the prior energy, and ED is the data energy. θ is a constant that balances the
contribution of the two energies.

2.2 Summary of Higher-Order Active Contours and Phase Fields

In this section, we give a brief introduction to the work on HOACs in (Rochery et al., 2003,
2005b, 2006), and then to the work on phase field models in (Rochery et al., 2005a).

2.2.1 Higher-Order Active Contours

Conventional active contours (Chan and Vese, 2001a; Chen et al., 2002; Cremers et al.,
2002; Kass et al., 1988; Mayer et al., 1998) are defined by linear functionals on a certain
space containing the space of curves. They are expressed in terms of single integrals over
the contour, and can incorporate only local interactions between contour points, and hence
only very weak prior information about the region geometry. Examples of linear functionals
include boundary length and region area. In contrast, HOACs (Rochery et al., 2003, 2005b,
2006) are defined by arbitrary polynomial functionals on this space. Expressed as multiple
integrals over the contour, they are associated to nonlocal interactions. Thus, via these
arbitrarily long-range interactions between subsets of points along the region boundary,
HOACs allow the inclusion of complex prior geometrical constraints.
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Figure 2.1. The interaction function Ψ.

Rochery et al. (2003) proposed a Euclidean invariant HOAC prior energy for modeling
network regions. It is the sum of two linear terms and a quadratic HOAC term:

EC,S (R) = λCL(∂R) + αCA(R) −
βC

2

"
(∂R)2

γ̇(t) · γ̇(t′) Ψ
( |∆γ(t, t′)|

d

)
dt dt′ , (2.4)

where ∂R is the boundary of region R; γ : S 1 → Ω is a map representing ∂R, parameterized
by t; dots represent differentiation with respect to t; L is the boundary length; A is the region
area; ∆γ(t, t′) = γ(t) − γ(t′); and d is a constant that controls the range of the interaction.
The long range interaction between t and t′ is modulated by Ψ, the interaction function
(Figure 2.1):

Ψ(x) =

1
2

(
2 − |x| + 1

π sin(π|x|)
)

if |x| < 2 ,

0 else .
(2.5)

It is a smoothly decreasing function from 1 at x = 0 to 0 for x ≥ 2 1. In Appendix D, another
type of interaction function will be discussed, for a new model proposed in chapter 5.

In equation (2.4), L(∂R) acts as a regularizer and encourages the smoothness of the
boundary, while A(R) controls the expansion of the region. The quadratic HOAC term has
two effects, as illustrated in Figure 2.2. It prevents pairs of points with antiparallel tangent
vectors from coming too close; they keep a certain distance related to the value of d. On the
other hand, it encourages pairs of points with parallel tangent vectors to attract each other,
and thus the growth of arm-like structures. Consequently, the effect is to assign low energy
to (and hence favor) regions composed of long arms of a certain width and with roughly
parallel sides that join together at junctions. In other words, it models network structures.
Note that this prior knowledge is more generic compared to those methods reviewed in
subsection 1.1.3, because it permits modeling a family of shapes, rather than a given specific
reference shape.

1In this thesis, if the interaction function is not specially indicated, equation (2.5) is the default definition of
Ψ.



40 Chapter 2. Higher-Order Active Contours and Phase Fields

(a) (b)

Figure 2.2. The effects of the quadratic HOAC term in equation (2.4) (thin blue arrow:
tangent vector; thick cyan arrow: interaction force; black dot: interacting point). (a): when
the tangent vectors of two interacting points are nearly aligned, it encourages them to attract
each other; (b): when the tangent vectors of two interacting points are nearly anti-aligned,
it prevents them from coming too close.

Figure 2.3. Evolutions for road detection on a SPOT satellite image (Rochery et al., 2005b).

Adding an edge-based likelihood term, Rochery et al. (2003) used the entire model to
detect road structure from low to medium resolution (∼ 10m/pixel) remote sensing images.
An example is shown in Figure 2.3. The road network has been detected in the SPOT image.
The prior term favors network shapes with respect to other shapes, by reducing the energy of
network configurations. In addition, the data term defines privileged directions, and drives
the production, growth, and branching of the network in such directions. Perturbations that
do not fit the data will be rapidly damped, but this is dependent on the relative magnitudes
of the likelihood and prior models. In this case, the presence of HOACs penalizes a large
number of false contour configurations, and eliminates many local energy minima, thanks
to the incorporation of more sophisticated prior knowledge. For this reason, HOACs are
more robust to noise than conventional active contours, get rid of the pose estimation of the
shape, and permit a generic initialization that renders automatic the network extraction.
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2.2.2 Phase Field Models

Phase field models have been widely used for modeling many phenomena in physics. Re-
views can be found for example in (Chen, 2002) and (González-Cinca et al., 2004). Suppose
an interface moves with a velocity proportional to the gradient of some field, which could
correspond to temperature or impurity concentration in solidification problems, pressure or
another appropriate potential in viscous fingering, etc.; this is a class of non-equilibrium
pattern formation problems. The motion of the interface is controlled by the associated me-
chanical principles, coupled with a boundary condition. The shape is evolving in time, so
it has proved to be very difficult to find analytic solutions of practical use for these moving
boundary problems. Alternatively, the phase field model provides a powerful computational
way to study such problems. It enables the conversion of a moving boundary problem into
a set of partial differential equations (PDEs), enabling easier numerical treatment. In phase
field modeling, no distinction is made between the different phases or the interface. All re-
gions are described in terms of an additionally introduced phase field function φ. The phase
field φ is continuous in space, but takes distinct constant values in each phase. The physical
interface is then located in the region where φ changes its value. The range over which the
value changes is the width of the interface w. This representation permits the whole domain
to be computed simultaneously. In particular, the need for an explicit boundary representa-
tion is eliminated, and the interface is then given implicitly by the chosen value of φ as a
function of time and space. Not having to track the boundary greatly simplifies topological
changes of the interface and extensions to higher dimensions.

Recently, phase field models have attracted increasing interest in the image process-
ing community. For image inpainting, Grossauer and Scherzer (2003) solved a complex
Ginzburg-Landau equation, with boundary conditions depending on image data. Beneš et al.
(2004) presented an algorithm based on the modified Allen-Cahn equation for image seg-
mentation. A special forcing term is imposed on mean curvature to drive the level set to
the desired object boundary. Aubert et al. (2005) modified the complex Ginzburg-Landau
equation by a diffusion coefficient depending on the image data and by the addition of a data
term, and applied it to detect codimension two objects in the image domain. Samson et al.
(2000) used a phase field model with Gamma convergence to construct piecewise constant
approximations to an image.

In the rest of this subsection, we explain two phase field terms introduced in (Rochery
et al., 2005a): the basic phase field term, and the standard phase field HOAC term, which is
an equivalent reformulation of the quadratic term described in the previous subsection.

Region Representation

Phase fields represent a region R using a function φ : Ω→ R defined over the entire image,
rather than using its bounding contour. By definition, φ defines a region R in the space of
regions R via the map ζz(φ) ∈ R = {x ∈ Ω : φ(x) > z}, where z ∈ R is some threshold. R can
be regarded as a level set of φ. In fact, when the interface width ω → 0+, the phase field
model with diffuse-interface becomes identical to a sharp-interface formulation. Compared
to other region modeling methods, e.g. parametric active contours or standard level sets,
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phase fields provide a more convenient framework, for the following reasons:

• The lack of any hard constraints on the phase field function, e.g. that it should be a
distance function, means that the set of functions considered is a linear space. This is
responsible for a great simplification in model description and analysis.

• A neutral initialization can be used for evolutions 2. The initial value of the phase field
function is set equal to a suitable value z (a constant depending on the mathematical
definition of the model) everywhere in the image domain. Hence, the bias which the
initialization may create can be removed.

• They provide a unified, analyzable variational framework, rather than a series of pro-
cessing steps. The evolutions are based solely on the PDE that results from an energy
functional using gradient descent. The complicated procedure of boundary extrac-
tion, velocity extension, and ad hoc regularization or reinitialization in the level set
framework is thereby avoided. Moreover, the functional derivative of HOAC terms
takes the form of a convolution, and can be computed linearly in the Fourier domain.
As a consequence, numerical implementation is simple.

• They allow greater topological freedom, i.e. components of a region can be created
or destroyed everywhere in the image domain; holes can be created or destroyed
inside existing regions. This characteristic is critical when the topology of the region
is not known a priori. In the context of the present application, the objects to be
segmented, i.e. road networks, may have several connected components and many
loops. Dealing with this topological complexity is arguably one of the most difficult
aspects of automatic road network extraction; phase fields handle it “naturally”.

Because of the above advantages, the phase field representation and phase field model-
ing is the favored methodology in this thesis. Later, we will use φ instead of R to denote the
region in the energy functionals. For each term of the HOAC model in equation (2.4), to a
very good approximation, a counterpart can be constructed using phase fields.

Basic Phase Field Term

To model the region of interest with the phase field function, the basic phase field term E0
is given by the Ginzburg-Landau energy (Ginzburg and Landau, 1950) plus an odd parity
term:

E0(φ) =
∫
Ω

{1
2
∇φ(x) · ∇φ(x) + U(φ(x))

}
dx . (2.6)

The ‘potential’ U is

U(y) = λ
(1
4

y4 −
1
2

y2
)
+ α

(
y −

1
3

y3
)
, (2.7)

2Except in the case of purely geometric evolution, where φ is initialized to some particular shape, or to the
neutral value plus random noise, like the experiments in subsection 2.3.4.
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Figure 2.4. An example of the potential function U (λ = 3, α = 0.1). Red dot: extremum.

where λ and α are constants. As shown in Figure 2.4, for λ > α > 0, U has two minima, at
y = −1 and y = 1, and a maximum at y = α/λ. The threshold z we mentioned before for the
neutral initialization is associated to this maximum.

Define φR = arg minφ: ζz(φ)=R E0(φ). If we ignore the gradient term in equation (2.6), and
set z = α/λ, we clearly find that φR(x) = 1 for x ∈ R and φR(x) = −1 for x ∈ R̄ = Ω \ R.
As a result, the quantities φ± = (1 ± φ)/2 are equal to the characteristic functions of R and
R̄. Adding the gradient term results in a smooth transition from 1 to −1 over an interface
region RC around the boundary ∂R. It has been proved that E0(φR) ' λCL(∂R) + αCA(R),
i.e. E0 corresponds to the two linear terms in EC,S (equation (2.4)). The detailed proof
can be found in (Rochery et al., 2005a). Therefore, E0 ensures region stability, boundary
smoothness, and the properties of the functions φ±.

Standard Phase Field HOAC Term

To introduce sophisticated prior knowledge of geometric information into the phase field
framework, the quadratic term in EC,S (equation (2.4)) should also be reformulated in terms
of an equivalent phase field energy (Rochery et al., 2005a). The tangent vector of the con-
tour is then replaced by the normal vector of the phase field surface at the threshold level.
The standard phase field HOAC term ES

3 becomes

ES (φ) = −
β

2

"
Ω2
∇φ(x) · ∇φ(x′) Ψ

( |x − x′|
d

)
dx dx′ , (2.8)

where β is constant, and Ψ denotes the interaction function as defined in equation (2.5).
Note that ∇φ is very close to zero except in the interface region, so the integrand in ES

is non-zero solely inside the interface RC . In other words, ES describes long-range in-
teractions between pairs of points on RC , and it also favors the configurations shown in

3In order to distinguish this term from the other phase field HOAC terms we will propose in chapter 5, we
name the one in (Rochery et al., 2005a) the standard HOAC prior term.
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Figure 2.2. Consequently, the sum E0 + ES is equivalent to the HOAC prior model EC,S in
equation (2.4) (Rochery et al., 2005a).

2.3 Stability Analysis of the Standard HOAC Total Prior Model

So far, the standard HOAC total prior model takes the form EP,S = E0 + ES . There are four
parameters (α, λ, β, d), and unfortunately, not all the parameter values can create the desired
stable network structures. The behavior of the prior energy indeed depends on the parameter
settings, and can vary significantly. If we wish to model networks with this energy, it is
therefore very important to analyze the stability conditions, and to deduce the resulting
parameter dependence. In this section, a long straight bar of a given width is first defined.
We calculate the terms E0 and ES for this bar. By considering the total prior energy EP,S ,
we establish the constraints on the parameters (α, λ, β, d) that ensures that a long network
branch of the desired width is a stable configuration of the energy functional. An important
side-effect is that some of the (rather abstract) model parameters are effectively replaced
by ‘physical’ quantities, such as bar and interface width, which we can reasonably fix from
numerical or application considerations. Appendix A furnishes details of intermediate steps
in the derivation of certain results used in this section. Note that, in addition, to guarantee the
Turing stability of the model, Rochery et al. (2005a) introduced another constraint, which
we will not detail here.

2.3.1 Definition of a Bar

Since network branches are locally like straight bars, we can, to a good approximation,
analyze the stability of a long straight bar, of length L and width W << L→ ∞. This allows
us to ignore boundary effects. Such a bar, oriented arbitrarily, is shown in Figure 2.5.

Ideally, we should minimize the prior energy under the constraint that ζz(φ) = Rbar, and
then expand around that point to test stability, but this is very difficult. Instead, we take a
simple ansatz for φRbar, and study its stability in a low-dimensional subspace of function
space; the results may be justified a posteriori by numerical experiments. In (Rochery et al.,
2005a), a similar procedure was followed, the results comparing favorably to those obtained
by more sophisticated ‘matched asymptotics’.

The ansatz is defined as follows. The phase field is given by φ(x) = 1 for x ∈ R \ RC;
φ(x) = −1 for x ∈ R̄ \ RC , while in RC , φ changes linearly from 1 to −1. To denote
more clearly the “bottom” interface and the “top” interface during the calculation, they are
denoted respectively by RCB and RCT . Using Cartesian coordinates and rotation invariance,
φ at each pixel x = (u, v) ∈ Ω takes the values:

φ(x) =


2
w v − 1 if −∞ < u < ∞ and 0 < v < w ,

1 if −∞ < u < ∞ and w < v < W ,
2
w (W − v) + 1 if −∞ < u < ∞ and W < v < W + w ,

−1 else .

(2.9)
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Figure 2.5. A bar of length L→ ∞ and width W in the u − v plane.

Now we evaluate the prior energy on this ansatz, per unit length of bar. The constraint
that the network branch is a local energy extremum requires the first derivatives with respect
to w and W to be zero, while the constraint that it is a local minimum requires that the
second derivatives must be positive semi-definite (the semi-positive condition comes from
the fact that in some applications, the inflection point can achieve a particular effect). These
requirements provide the stability conditions of the model.

2.3.2 Basic Phase Field Term of a Bar

For the basic phase field term E0 (equation (2.6)), there are three contributions from the
region R, the region R̄ and the interface RC .

First, the contributions from the two regions are:

E0,R =
(
−

1
4
λ +

2
3
α
)
(WL − wL) , (2.10)

E0,R̄ =
(
−

1
4
λ −

2
3
α
)
(A0 −WL − wL) , (2.11)

where A0 is the area of Ω, and W is the distance between the threshold points.
The “bottom” and “top” interfaces are symmetric, so we only need to calculate the

contribution of one of them, for example, RCB. The gradient of φ with respect to x in RC is
given by ∇φ = −(2/w)n̂, where n̂ is the outward normal vector to the boundary, extended to
RC . The third contribution, from the interface, is thus (see details in Appendix A.1.1)

E0,RC =
4L
w
−

7
30
λwL . (2.12)
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Therefore, summing equations (2.10) to (2.12), the basic phase field energy, per unit
length of bar, e0 is

e0(w, Ŵ) =
4
3
αŴd +

4
15
λw +

4
w
+C1 , (2.13)

where the scaled width Ŵ = W/d, and C1 = −(λ/4 + 2α/3)A0/L is independent of Ŵ or w.
We can therefore neglect it in the following discussion.

2.3.3 Standard Phase Field HOAC Term of a Bar

Since ∇φ is zero in the regions R and R̄, the double integral of the standard phase field
HOAC term ES in equation (2.8) needs to be calculated only across the interface RC . After
a lengthy calculation (see Appendix A.1.2), we have

ES = −8βL
{∫ ∞

0
Ψ
( z
d

)
dz − d

∫ ∞

Ŵ

η√
η2 − Ŵ2

Ψ(η) dη
}
. (2.14)

According to the definition of the interaction function Ψ (equation (2.5)), the first inte-
gral is equal to d. For the second integral, there are two cases: Ŵ > 2, and Ŵ < 2. The
first case just gives zero. Since the stable width of a network branch is expected to lie in the
interval Ŵ < 2, we obtain the standard phase field HOAC energy, per unit length of bar, eS :

eS (w, Ŵ) = −8βd + 4βd
∫ 2

Ŵ

η√
η2 − Ŵ2

(
2 − η +

1
π

sin(πη)
)

dη

= 4βd
∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη +C2 , (2.15)

where C2 = −8βd is also independent of Ŵ or w.

2.3.4 Standard HOAC Total Prior Model of a Bar

Combining equations (2.13) and (2.15), and omitting the terms independent of Ŵ and w, we
have the standard HOAC total prior energy, per unit length of bar, eP,S :

eP,S (w, Ŵ) = e0 + eS

=
4
3
αŴd +

4
15
λw +

4
w
+ 4βd

∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη . (2.16)

There are two unknown variables w and Ŵ. The energy eP,S is now minimized with
respect to w and Ŵ by setting its first derivatives to zero, while ensuring that the second
derivatives are positive semi-definite. The first derivatives are

∂eP,S

∂Ŵ
=

4
3
αd − 4βŴd

∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη , (2.17a)

∂eP,S

∂w
=

4
15
λ −

4
w2 . (2.17b)
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Since the interface width w > 0, the derivative of order two with respect to w is always
positive. On the other hand, we need to check that the second derivative with respect to Ŵ
is non-negative. It is given by (see details in Appendix A.2.1)

∂2eP,S

∂Ŵ2
= −4βd ln

2 +
√

4 − Ŵ2

Ŵ

 + 4βd
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη . (2.18)

In fact, stability depends only on the scaled parameter β̂ = β/α, and the scaled width
Ŵ = W/d. By tidying up the expressions derived in equations (2.17) to (2.18), we find
constraints on the parameters that ensure that a network branch with the given width is
stable:

β̂ =
1

3ŴI1(Ŵ)
, (2.19a)

I2(Ŵ) ≥ ln

2 +
√

4 − Ŵ2

Ŵ

 , (2.19b)

λ =
15
w2 , (2.19c)

where

I1(Ŵ) =
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη , (2.20a)

I2(Ŵ) =
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη . (2.20b)

Based on the constraint in equation (2.19a), if we plot β̂ against the possible position
of the energy local extrema of a straight bar, we obtain the curve in Figure 2.6. This is an
example of a fold catastrophe (Zeeman, 1977). The solid curve represents the extremum
as a local minimum, i.e. the second constraint in equation (2.19b) is satisfied; while the
dashed curve represents the extremum as a local maximum, i.e. the second constraint is not
satisfied. Indeed, for any given choice of Ŵ along this curve, there is a unique β̂. This means
that for α and β, one of them can be eliminated thanks to their dependence. Fixing β̂ by a
value on the curve, for example, suppose that β̂ = 0.2125 (the two associated local extrema
are at ŴMAX = 0.584 and ŴMIN = 1.173), and also suppose that units have been chosen
such that d = 1, we can plot the energy eP,S of a straight bar against its width W, as shown
in Figure 2.7(a). As expected, the energy has a local minimum at W = ŴMIN, and a local
maximum at W = ŴMAX. If β̂ is decreased, the local maximum and the local minimum will
move closer and closer together. At the critical point (Ŵ0 = 0.8798, β̂0 = 0.1732, the red
dot in Figure 2.6), the two local extrema completely merge, and become a single inflection
point at Ŵ0. For β̂ < β̂0, no local extrema exist (see Figure 2.7(b)): the energy function
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Figure 2.6. The relationship between the scaled parameters β̂ and Ŵ. The solid curve
represents a local minimum; the dash curve represents a local maximum; and the red dot
(Ŵ0 = 0.8798, β̂0 = 0.1732) represents the inflection point.

is monotonically increasing because the quadratic term is not strong enough to compensate
for the shrinking effect of the basic phase field term. In this case, the region will entirely
vanish under gradient descent. So when setting the parameters, we have to ensure that the
chosen β̂ is on the right branch of Figure 2.6.

Note that when d = 1, so that W = Ŵ, the minimum width that can be achieved is
Ŵ0 = 0.8798. By choosing the pixel units d, we can model a network branch with any
given width Ŵd. More importantly, the β̂ value remains the same as in the case d = 1.

To determine the parameter values of the standard phase field HOAC model for a pre-
scribed network branch width W, we take the following steps:

• Choose w. If w is too small, very fine and/or adaptive discretization is required,
which is computationally expensive; if w is too big, a reasonable approximation by
the phase field model of the HOAC model cannot be achieved (Rochery et al., 2005a).
Normally, the model works well with w = 1 ∼ 4. Then λ in equation (2.7) is fixed
using equation (2.19c).

• The critical point Ŵ0 determines an upper bound on d. Choose d in equation (2.8)
less than W/Ŵ0.

• Find the β̂ value corresponding to the current W/d on the curve in Figure 2.6. Choose
α or β properly, so the other is then fixed.

• Make sure the parameter setting satisfies the more general Turing stability condi-
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(a) (b)

Figure 2.7. The prior energy eP,S for different β̂. (a): eP,S has one local minimum at W =
1.173 (β̂ = 0.2125 > β̂0); (b): eP,S has no local minimum (β̂ = 0.12 < β̂0).

tion (Rochery et al., 2005a). Moreover, since we haven’t expanded the energy around
the stable point to test stability to perturbations with non-zero frequency, a posteriori
numerical experiments are required to verify the results.

Figure 2.8 shows geometric evolutions using different β̂. The initial shape is composed
of four straight bars of various widths: 3, 9, 15, and 29 pixels. The other parameters are
(λ, d) = (2, 6). In the top row, we fix β̂ = 0.14, which is less than the critical value β̂0. The
straight bars disappear one after another due to the weak force of the quadratic energy. In
the bottom row, we set β̂ = 1.5 > β̂0, a relatively strong value to exaggerate the effect of
the quadratic term in order to make clear the information contained in it. Note that since
these initial widths are between the local maximum and the local minimum of the prior
energy, the situation that a straight bar slides down to the zero width, will not arise. By
either expanding or shrinking, all the straight bars eventually stop at a common stable width
as desired.

Figure 2.9 represents the phase field function for geometric evolutions using the stable
parameter setting (β̂ > β̂0), but with other initial shapes. The parameters used in this group
of experiments are (λ, α, β, d) = (2, 0.2, 0.3, 6). In the top row, the initial shape is a circle
of radius 50 pixels. Arms with a certain width are formed from the circle, and continue
growing in the whole domain. In the bottom row, the function φ is initialized at the local
maximum of the potential function α/λ, plus Gaussian random noise of very small variance.
The evolution shows that different pixels agglomerate into regions, whose borders become
smoother and smoother, and a line network is finally generated. Although different initial
conditions result in convergence to possibly very different shapes, these shapes have many
qualitative and quantitative properties in common. Therefore, the designed prior energy
incorporates geometric knowledge suitable for network structure modeling.

Note that this value β̂ = 1.5 is not the same as the one used in the presence of a data
term. In the absence of data, β̂ is adjusted to a somewhat large value so that each unit length
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Iteration 0 50 1500 3200

Figure 2.8. Geometric evolutions using different β̂ (λ = 2, d = 6). Left column: the initial
shape composed of four straight bars of various widths (3, 9, 15, and 29 pixels); three
rightmost columns: the thresholded phase field function at different iteration steps (time
runs from left to right). The precise behavior of the prior energy depends on the size of β̂.
Top row: the straight bars disappear one after another (β̂ = 0.14 < β̂0); bottom row: by
either expanding or shrinking, all the straight bars eventually stop at a common stable width
as desired (β̂ = 1.5 > β̂0).
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Iteration 0 1000 2000 4500

Iteration 0 10 50 300

Figure 2.9. Geometric evolutions using the stable parameter setting (β̂ > β̂0), with other
initial shapes. The parameters used are (λ, α, β, d) = (2, 0.2, 0.3, 6). Left column: the initial
shape; three rightmost columns: the thresholded phase field function at different iteration
steps (time runs from left to right). The initial φ is a circle of radius 50 pixels (top row); or
the local maximum of the potential function α/λ, plus Gaussian random noise of very small
variance (bottom row).
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of a straight bar adds a negative amount of energy to the total. Once created, the arms are
maintained, and furthermore, elongate. In the experimental results on the real images that
we will show later, β̂ is tuned so that each unit length of a straight bar adds a small but
positive amount to the total energy, because the data can indicate the preferred regions.

2.4 Overall Model for Linear Network Extraction

Building upon the previous work on HOACs and phase field models, in this section, we set
up our primary model. This model integrates the geometric constraints as already seen in
section 2.2, and the data-based constraint, which we introduce hereafter. We also specify
some of the implementation details.

2.4.1 Data Energy

In addition to the prior energy, we need a likelihood energy ED linking the region R, which
in our case corresponds to the road network, to the data, i.e. a very high resolution (VHR)
optical satellite image. The proposed data energy ED takes into account the following ra-
diometric properties of dense urban areas, which discriminate roads from the background:

• Roads are mainly built from the same materials (concrete, asphalt) and thus tend to
have somewhat homogeneous spectral properties. In contrast, the background (i.e.
the non-road region) has no single photometric characteristic.

• The surfaces of main roads are not entirely uniform due to the presence of determi-
nistic noise, such as zebra crossings, over-bridges, vehicles, shadows, road signs, etc.
Nevertheless, they still show much less variability than the background.

ED is the negative logarithm of P(I|R,K) in equation (2.2). After making the reasonable
assumption of independence between the image data in R and R̄ given R and K, P(I|R,K)
can be factorized as P(IR|R,K)P(IR̄|R,K), where subscripts indicate ‘restricted to’. We use
the same parameterized model for IR and IR̄, the choice of model being based on a study of
the image statistics. We model both the one point statistics of the image intensity, i.e. the
distribution of I(x), and the two-point statistics, which we characterize by the variance V(x)
of the image in a small window around each pixel. Because of the factorization, the data
energy becomes the sum of two pieces (R is replaced by its representation φ):

ED(I, φ) = −
∫
Ω

{[
ln P+(I(x)) + θv ln Q+(V(x))

]
φ+(x)

+
[
ln P−(I(x)) + θv ln Q−(V(x))

]
φ−(x)

}
dx , (2.21)

where θv is the weight of the two-point statistics. φ± = (1±φ)/2, as we discussed before, are
approximately equal to the characteristic functions of R and R̄. P+ and P− are the density
functions of the grey level I (one-point statistics model), and Q+ and Q− are the density
functions of the variance V (two-point statistics model) respectively. The parameters for this
model are learned a priori, in a supervised way, from image samples of road and non-road.
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Figure 2.10. Left: histograms of the pixel intensity I on-road (top) and off-road (bottom);
right: histograms of the variances V on-road (green/light grey) and off-road (blue/dark
grey), and the models fitted to them (solid lines).

For each class (road and background), we compute the histograms of the pixel intensities
I and the variances V , from which we estimate the parameters of two-component Gaussian
mixture distributions (a±; µ1±, σ

2
1±; µ2±, σ

2
2±) and of Gamma distributions (b±, c±, d±):

P±(I) = a±N(I; µ1±, σ
2
1±) + (1 − a±)N(I; µ2±, σ

2
2±) , (2.22a)

Q±(V) =
Vb±

d±
e−

V
c± , (2.22b)

where + denotes the road and − denotes the background, a± ∈ [0, 1], and N is the normal
distribution. Examples of histograms and fitted models are shown in Figure 2.10.

The goal of introducing a region-based data term, rather than an edge-based data term, is
to make use of all the information in the VHR image. Because in the edge-based data term,
the local descriptor, such as the gradient vector, considers neighborhoods that are very small
compared to the size of the image, the algorithm may easily get trapped in one of the many
local minima of the energy. Although in (Rochery et al., 2005a), this problem is partially
alleviated by introducing nonlocal interactions between the phase field and the data in an
edge-based data term, the low and medium resolution image data used in that application is
less complicated than the VHR image data. A data term based on high gradients along the
edges of roads is clearly insufficient in VHR images, where the edges have rapid changes
of contrast. So it is of great importance to introduce more global information about the data
into the model.

2.4.2 Optimization and Parameter Setting

We use the standard prior model E0 + ES plus the above data model ED as a primary model
Eprimary for extracting road networks from VHR images. To minimize the total energy
Eprimary with respect to φ, we perform gradient descent with the neutral initialization: the
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initial value φinit is set equal to the threshold z = α/λ everywhere in Ω (Rochery et al.,
2005a). In this sense, it corresponds to the maximum of the potential, and hence is not
biased towards one minimum or the other; moreover, φinit is not biased towards interior or
exterior, since both interior and exterior regions are empty. Because the initialization is
automatic, the algorithm is quasi-automatic.

The functional derivative of Eprimary is given by

δEprimary(φ)
δφ(x)

=θ
{
−∇2φ(x) + λ

(
φ3(x) − φ(x)

)
+ α

(
1 − φ2(x)

)
+ β

∫
Ω

φ(x′)∇2 Ψ
( |x − x′|

d

)
dx′

}
+

1
2

ln
P−
P+
+
θv

2
ln

Q−
Q+

. (2.23)

The derivative δES /δφ is nonlocal. To avoid performing explicit convolutions, it is
calculated in the Fourier domain. The resulting evolution equation is

∂φ(x)
∂t
=θ

{
∇2φ(x) − λ

(
φ3(x) − φ(x)

)
− α

(
1 − φ2(x)

)
+ βF−1

{
k2dΨ̂(kd)φ̂(k)

}}
+

1
2

ln
P+
P−
+
θv

2
ln

Q+
Q−

, (2.24)

where F and F−1 denote the Fourier and the inverse Fourier transform respectively, and a
hat ( ˆ ) indicates the Fourier transform of a variable. In the discretized implementation, all
derivatives are computed in the Fourier domain, while the time evolution uses the forward
Euler method. At convergence, the region where φfinal > z belongs to the road network.

The parameters of the prior energy, i.e. λ, α, β, and d are constrained by the stability
conditions discussed in section 2.3, and the general Turing stability condition (Rochery
et al., 2005a). Only the weight θ of the prior energy remains. θ is a key parameter in
tuning the behavior between the prior energy and the data energy. It reflects the confidence
we have in the prior knowledge. There are also certain intuitions that can be used to give
order of magnitude settings of this parameter: the forces due to the prior term should not be
much greater than or much less than the forces due to the data term, otherwise the prior will
dominate in one case and have little effect in the other. In our application on ‘noisy’ images
of dense urban areas, θ is quite large, to prevent the model from being too sensitive to the
‘noise’ in the data. These intuitions are common to any energy-based method, however.

2.5 Conclusion

‘Phase field HOACs’ are powerful models for region-based and shape-based image segmen-
tation. They have many advantages with regard to conventional methods in both model ana-
lysis and implementation. Most importantly, they can include sophisticated prior knowledge
of region geometry. In this chapter, we have established the foundations of our models. Fol-
lowing a brief review of image segmentation from a probabilistic point of view, we have
recalled the main principles of the HOAC model (Rochery et al., 2006), and subsequently
the phase field HOAC model (Rochery et al., 2005a). The problem of stability and param-
eter tuning is a crucial issue in this model. We have shown that the precise performance
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of the model greatly depends on the parameter values, and in particular on the ratio of the
parameter describing the strength of the quadratic term and the parameter describing the
strength of the area term. We have provided an efficient way to fix some of the parameters
in terms of network width. We have presented an overall primary model adapting ‘phase
field HOACs’ to the problem of urban road extraction from VHR images. In the following
chapters, we will develop various new models based on this primary model for the purpose
of solving different problems.





Chapter 3

Multiresolution Analysis of the
Primary Model

A multiresolution representation provides a very effective hierarchical framework for ana-
lyzing data content. It has been widely used in both applied mathematics and signal pro-
cessing. In this chapter, we examine the extraction of the main road network from a single
QuickBird image. We show that the difficulty of performing this task from very high re-
solution (VHR) images of dense urban areas suggests naturally a multiresolution analysis
(MRA). In section 3.1, following an explanation of our motivations for this idea, we give
a brief review of wavelet based MRA: the general mathematical background, and one of
its specific forms, i.e. Haar MRA. In section 3.2, we introduce a multiresolution statistical
data model, which integrates the data information at different resolution levels. We then
describe a two-step robust multiresolution framework. In this framework, we first segment
a low resolution image. Since reducing the resolution eliminates high frequency noise, the
resulting pre-segmentation gives an approximate detection of the objects of interest. This
rough result is then incorporated into the model, to force the final segmentation to lie ‘close’
to the pre-segmentation. In section 3.3, we present experiments on a VHR QuickBird image
at several different resolutions using the primary model introduced in the previous chapter,
and the preliminary improvement using the multiresolution data model. Finally, we show
experimental results using the multiresolution framework. Comparisons with other methods
demonstrate quantitatively its robustness and efficiency.

3.1 Multiresolution Analysis and Wavelets

With the aim of tackling the complexity of the information existing in VHR images, we
propose to take advantage of MRA. The motivation for this idea originates in the following
three observations:

• Real-world objects, in particular the objects observed in VHR images, e.g. roads,

57
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buildings, are composed of different structures of different scales. In order to extract
objects of different scales, we should analyze an image at several resolutions.

• The large dimension of VHR images compels us to “optimize” computation speed.
Computational efficiency may be improved by coarse-to-fine strategies.

• Real-world objects may appear in different ways depending on the scale of observa-
tion. Some relevant details in images exist only over a limited range of scales (as
opposed to certain ideal mathematical entities such as ‘point’ or ‘line’, which appear
in the same way at all scales of observation). Specifically, in our image data, at low
resolutions, the background can be viewed as noise, while the larger roads are still
clearly distinguished as homogeneous regions. In contrast, at higher resolutions, a
large amount of noise appears, but on the other hand, high resolution images can pro-
vide a more precise location and width for the roads. Thereby, road segmentation at
low resolutions, compared to that at high resolutions, is facilitated, but is also less
precise. The use of several resolutions thus allows the combination of coarse data
– in which details in the image that can disrupt the recognition process have been
eliminated – with fine data to increase precision.

The concept of MRA using a wavelet decomposition was initiated by Meyer (1992)
and Mallat (1989, 1999). The original signal/data is represented using an orthonormal
wavelet basis, and can be interpreted as a decomposition using a set of independent fre-
quency channels having a spatial orientation. We explain, in the rest of this section, the
formal definition of MRA, and show how to use the wavelet decomposition. Then, we
describe the canonical form of Haar MRA.

3.1.1 Definition of Wavelet Based Multiresolution Analysis

A function or signal f (t) can be viewed as composed of a smooth background and fluctu-
ations or details on top of it. The distinction between the smooth part and the details is
determined by the resolution, i.e. by the scale below which the details of the given signal
cannot be discerned. We label the resolution level by j. The scale associated with the level
j = 0 is set to unity, and that with the level j is 1/2 j 1. At a given resolution j, an approxi-
mated signal f j(t) is obtained by ignoring all details below that scale. Let d j(t) be the details
included at the next level of resolution j + 1. We can imagine progressively increasing the
resolution; at each stage of increasing the resolution from j to j + 1, finer details d j(t) are
added to the coarser description f j(t), providing f j+1(t) = f j(t) + d j(t), a successively better
approximation to the original signal. Eventually, when the resolution goes to infinity, the
exact original signal f (t) is recovered:

f (t) = f j(t) +
+∞∑
k= j

dk(t) . (3.1)

1To facilitate this explanation, here we adopt the general definition of the resolution. Note that the resolution
‘level’ in our problem, which we will describe later, has a different meaning.
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The L2(R) space can be decomposed into a sequence of subspaces {W j} j∈Z and {V j} j∈Z, such
that for a specific level of resolution j, the details d j(t) are found in W j (detail space), and
correspondingly f j(t) in V j (approximation space).

Definition of multiresolution analysis. An MRA of L2(R) is a nested sequence of embed-
ded closed subspaces {V j} j∈Z (Z is the set of integers) with the following conditions (Wol-
fram, 1999):

1. . . . ⊂ V−1 ⊂ V0 ⊂ V1 . . . ⊂ L2(R).

2.
⋂

j V j = {0}, and
⋃

j V j is dense in L2(R).

3. f (t) ∈ V j ⇔ f (2t) ∈ V j+1.

4. f (t) ∈ V0 ⇒ f (t − k) ∈ V0.

5. There exists a scaling function ϕ ∈ V0, such that {ϕ(t − k)} is an orthonormal basis of
V0.

The first condition specifies that the subspace V j is contained in all the higher subspaces,
since information at resolution level j is necessarily included in the information at a higher
resolution. The second condition states that the only function that can be approximated at an
arbitrarily coarse scale is the zero function (lim j→−∞ V j = {0}), and if the resolution instead
goes to infinity, the entire L2(R) space should be recovered (lim j→+∞ V j → L2(R)). The
third condition defines the difference between two successive resolutions. This requirement
of scale or dilation invariance means that V j+1 approximates functions at a twice finer scale
than V j. It is the key condition that determines dyadic refinement. The fourth condition is
the requirement of translation or shift invariance of the space V j.

The final condition requires the approximation spaces {V j} to be spanned by scaling
functions. Using the scale and translation invariance, the normalized scaling functions
{ϕ jk(t)}, where ϕ jk(t) = 2 j/2ϕ(2 jt − k), form an orthonormal basis for the space V j. Since
V0 ⊂ V1, the scaling function ϕ ∈ V0 can be expanded in terms of the basis function of V1,
{ϕ1k(t)}:

ϕ(t) =
√

2
∑

k

hk ϕ(2t − k) , (3.2a)

hk =
√

2
∫ +∞

−∞

ϕ(t)ϕ(2t − k) dt . (3.2b)

Equation (3.2a) is known as the dilation equation, which relates the scaling functions at two
consecutive scales.

For an MRA, the detail space W j between two consecutive spaces V j and V j+1 is the
complementary space of V j, i.e. V j+1 = V j⊕W j. Similar to the fact that the scaling function
ϕ jk(t) defines a family of bases for the approximation space V j, it would be useful to have a
compact representation of its complementary space W j. In this context, the wavelet function
is introduced. The space W j has an orthonormal wavelet basis {ψ jk(t)}, where ψ jk(t) =
2 j/2ψ(2 jt − k) is the scaled and translated wavelet. The function ψ(t) that generates all the
basis functions of the W space is referred to as the basic wavelet or the mother wavelet.
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Since W0 ⊂ V1, the wavelet function ψ ∈ W0 can also be expanded in terms of the basis
functions of V1, {ϕ1k(t)}:

ψ(t) =
√

2
∑

k

gk ϕ(2t − k) , (3.3a)

gk =
√

2
∫ +∞

−∞

ψ(t)ϕ(2t − k) dt . (3.3b)

Equation (3.3a) is called the wavelet equation, which relates the basic wavelet to the scaling
function at the next finer scale.

Moreover, Mallat (1989) proved that the coefficients {gk} in the wavelet equation (equa-
tion (3.3a)) are related to the coefficients {hk} in the dilation equation (equation (3.2a))
through the expression

gk = (−1)k h1−k . (3.4)

We have seen that wavelets constitute a special class of basis functions for L2(R), which
are usually enough for the multiresolution representation. However, in many applications,
it is more convenient to work with the spaces {V j} explicitly, since the scaling function has
analytic and operational properties. Once the scaling function ϕ is chosen, the coefficients
{hk} are obtained from equation (3.2b). In turn, the coefficients of {gk} are known from
equation (3.4). Finally, using the wavelet equation (equation (3.3a)), we have the wavelet
function ψ.

Subsequently, a multiresolution representation can be obtained via the so-called wavelet
transform:

f j+1(t) = f j(t) + d j(t) =
∑

k

s jk ϕ jk(t) +
∑

k

w jk ψ jk(t) , (3.5)

where the scaling coefficients s jk and the wavelet coefficients w jk can be computed from the
scaling coefficients at the next finer level s( j+1)k, and vice versa. In the orthogonal case, the
wavelet transform takes the form:

s jk =
∑

l

hl−2k s( j+1)l , (3.6a)

w jk =
∑

l

gl−2k s( j+1)l . (3.6b)

The corresponding relation that is used in the inverse wavelet transform is

s( j+1)l =
∑

k

(hl−2k s jk + gl−2k w jk) . (3.7)

The direction from finer to coarser in equation (3.6) is called the decomposition process
or the analysis process; the direction from coarser to finer in equation (3.7) is called the
reconstruction process or the synthesis process.
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3.1.2 Haar Multiresolution Analysis

The Haar wavelet is the simplest form of possible wavelets. Let V0 be the space of functions
f (t) ∈ L2(R) that are constant on the unit intervals [k, k + 1) for integer k, and let V j be the
space of functions that are constant on the intervals [k/2 j, (k + 1)/2 j). We can easily verify
that this definition satisfies all the conditions on the subspaces of an MRA. The scaling
function ϕ(t) is chosen to be the characteristic function on the interval [0, 1):

ϕ(t) =

1 if 0 ≤ t < 1 ,
0 else ,

(3.8)

and the basic wavelet function of Haar wavelet, ψ(t), is given by

ψ(t) =


1 if 0 ≤ t < 1/2 ,
−1 if 1/2 ≤ t < 1 ,
0 else .

(3.9)

In this thesis, the Haar wavelet transform (Mallat, 1989, 1999) is used to generate a
multiresolution version of the original image at different scales (levels) (see Figure 3.1). As
already noted, in our problem, the resolution ‘level’ l is different from that in the general
definition in subsection 3.1.1. The data at level l = 0 corresponds to the original image; and
the data at level l are the scaling coefficients after performing the wavelet transform l times.

3.2 Model Definition at Multiple Resolutions

Many tasks in computer vision defined in term of energy minimization suffer from a general
difficulty, that is, the algorithm can easily become stuck in irrelevant sub-optimal local min-
ima. The reason for this drawback is that even if well-defined, these applications typically
require finding the minimum of a complicated (i.e. non-convex) underlying cost functional
in a very high-dimensional space. For instance, in our case, the problem of image segmen-
tation is defined as distinguishing roads from their background. The discrete version of this
problem can be viewed as labeling each pixel as either foreground or background. Thus,
the space of possible segmentations is 2N , where N is the number of the pixels in the image.
Searching over all such solutions is intractable even for small images. Smoothing the ori-
ginal image (by reducing the resolution) is equivalent to smoothing the energy functional
itself, which has the consequence of diminishing the number of local minima. However,
unfortunately, as the images at higher resolutions get finer, more complex, have higher di-
mensionality, and more complicated constructions, more local minima appear due to the
increase in complexity of the energy functional. The geometric prior knowledge included
in the primary model is insufficient to overcome this effect thoroughly, which compels us to
seek another, better solution.

Therefore, to tackle the complexity of information contained in VHR images, in this
section, we first propose a multiresolution statistical data model integrating the data in-
formation from multiple resolutions. We then consider a two-step robust multiresolution



62 Chapter 3. Multiresolution Analysis of the Primary Model

Figure 3.1. The multiresolution representation of the original data via a wavelet transform.
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framework to overcome the remaining problems. In this framework, an approximate detec-
tion is first obtained at a coarse resolution; at the original resolution, this preliminary result
is incorporated into the model to serve as a flexible constraint.

3.2.1 Multiresolution Data Model

First, let us recall the energy functional of the primary model Eprimary at a single resolution,
which was introduced in section 2.4:

Eprimary = θ(E0 + ES ) + ED , (3.10)

where

E0(φ) =
∫
Ω

{1
2
∇φ(x) · ∇φ(x) + λ

(1
4
φ4(x) −

1
2
φ2(x)

)
+ α

(
φ(x) −

1
3
φ3(x)

)}
dx , (3.11a)

ES (φ) = −
β

2

"
Ω2
∇φ(x) · ∇φ(x′) Ψ

( |x − x′|
d

)
dx dx′ , (3.11b)

ED(I, φ) = −
∫
Ω

{[
ln P+(I(x)) + θv ln Q+(V(x))

]
φ+(x)

+
[
ln P−(I(x)) + θv ln Q−(V(x))

]
φ−(x)

}
dx . (3.11c)

Our first attempt to improve the data model is to propose a multiresolution statistical
data model with fusion of information from multiple resolutions. As already mentioned,
at coarser resolutions, the extraction task is easier. On the other hand, image pixels on
the edge of the road region are the average values of road pixels and background pixels in
the full resolution image; consequently, the accuracy of the result is limited by the reduced
resolution of the image. Conversely, at full resolution, while greater precision is in principle
attainable, a great deal of ‘noise’ appears too, rendering the extraction task very difficult.
With the aim of combining the advantages and balancing the disadvantages of coarser and
finer resolution data, we introduce a multiresolution data energy, ED,MUL, defined as the
sum of energies computed at several different levels:

ED,MUL(I, φ) =
∑

l

ED,l(Il, φ) , (3.12)

where Il, l ∈ {0, 1, . . . , k}, are the scaling coefficients at level l of the Haar wavelet transform.
ED,l is the data energy recalled in equation (3.11c). For the scaling coefficients at each con-
sidered resolution l, the statistics of intensity and variance are computed, for each of the two
classes (main road, background). Therefore, at each level, the parameters of two-component
Gaussian mixture distributions P±,l and of Gamma distributions Q±,l, l ∈ {0, 1, . . . , k} are de-
termined. One can interpret the energy from a maximum entropy point of view, in which
case it amounts to assuming that the mean energy at each level is fixed. In practice, since
the size of the image varies with a factor of 22 from level l to level l+ 1, we up-sample all Il
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to the finest resolution. The evolution equation for multiple resolutions involves replacing
the data part in equation (2.24) by

k∑
l=0

{1
2

ln
P+,l
P−,l
+
θv

2
ln

Q+,l
Q−,l

}
. (3.13)

We refer to the energy Eprimary,mul = θ(E0 + ES ) + ED,MUL (equations (3.11a), (3.11b)
and (3.12)) as the multiresolution model.

3.2.2 Multiresolution Framework

The multiresolution framework presented in this subsection looks at the coarse scale na-
ture of a problem before considering the fine scale nature. In fact, such an idea has been
introduced into many active contour models, to improve noise resistance and speed up pro-
cesses. For example, in (Leroy et al., 1996), the image is down-sampled to a coarse scale,
and a ‘snake’ is evolved until convergence. The resulting active contour is up-sampled to
a finer scale of the image, and used as its initialization. The process is continued on suc-
cessively finer scale representations of the image until the active contour is evolved in the
image itself. Since in the classical active contour, the initial contour cannot be too far away
from the desired boundary, a big problem of multiscale techniques like (Leroy et al., 1996)
is that the result at the previous coarser level gives a very strong constraint on the result
at the next finer level, and finally on the result in the original image. In other words, the
final contours at all the higher resolutions just move slightly around the final contour at the
coarsest resolution. This is problematic in many applications: because errors that occur
at the beginning due to the reduced resolution may not be corrected during the evolutions
at the higher resolutions; in addition, many small objects, which can be discerned at full
resolution, are probably invisible at a reduced resolution.

In contrast, in our proposed framework, prior to the segmentation of the original image,
we extract, by a pre-segmentation of a reduced resolution image, an effective zone where
the geometric prior knowledge carried by the standard higher-order active contour (HOAC)
term ES will be included. Although the final segmentation at full resolution is still some-
how forced to lie close to the rough pre-segmentation, this constraint in our framework is
quite flexible so as to permit reasonable changes everywhere in the image domain at full
resolution. This property will be clearly demonstrated by the experimental results.

To clarify the above heuristic explanation, the detailed algorithm scheme is as follows:

1. The energy Eprimary = θ(E0 + ES ) + ED (equation (3.10)) is applied to the data at a
coarse resolution. At convergence, a rough pre-segmentation is obtained.

2. This first result is up-sampled to the full resolution through nearest neighbor interpo-
lation. Let R0 be the interpolated result, whose phase field function is φR0 . Then, we
define a weight factor for each pixel by φR0+(x) = (1+φR0(x))/2. As a result, φR0+ ' 1
for x ∈ R0; and φR0+ ' 0 for x < R0.
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Figure 3.2. The flowchart of the proposed multiresolution framework.

3. At full resolution, a weight constrained quadratic term is formulated as

ES ,CON(φ) = −
β

2

"
Ω2
∇φ(x) · ∇φ(x′) Ψ

( |x − x′|
d

)
φR0+(x) dx dx′ . (3.14)

The energy EHR = θ(E0 + ES ,CON) + ED is applied to the original image. The geo-
metric prior knowledge encoded by the quadratic term ES ,CON thus takes effect only
near the pre-segmentation result. This can significantly diminish false detections in
the background, such as buildings, shadows, etc., which have similar geometric pro-
perties to the object. On the other hand, thanks to the effects of other terms (mainly
the data term), components of the object can still be extracted in the exterior of the
pre-segmentation region.

Note that E0, ES , ED are recalled in equations (3.11). The flowchart is illustrated in
Figure 3.2.
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3.3 Experimental Results and Comparisons

The input data are several pieces of a QuickBird panchromatic image of dense urban areas.
To extract the main road networks, we carry out a series of experiments using the primary
model at a single resolution, the multiresolution model, and the two-step multiresolution
framework. The advantages of the proposed approaches are highlighted in these experi-
mental results and the comparisons with other methods in the literature.

3.3.1 Results Using the Single-Resolution Model

First we apply the single-resolution primary model Eprimary (equation (3.10)) to the scaling
coefficients of the original image in Figure 1(a) at different levels of the wavelet decomposi-
tion (Mallat, 1999). The implementation details, described in subsection 2.4.2, are followed.
We start at level 3. Figure 3.3 shows the thresholded phase field function at iterations 1 and
400 of gradient descent, and at the final iteration 18, 000. The parameters of the model are
set to (θ, θv, λ, α, β, d) = (200, 0.02, 3, 0.0905, 0.02, 10). The computational time is about 15
minutes 2. Thanks to the incorporation of strong geometric prior knowledge, the segmen-
tation of the main road network appears very successful, but the road region is actually not
very accurate. This observation is also supported by quantitative measures. Compare the
first row of Table 3.1 to the first row of Table 3.2. Accuracy is limited both directly, by the
low resolution of the phase field, and indirectly, because each scaling coefficient in the data
at level 3 is the average of 8 × 8 pixels at full resolution. Coefficients near the road border
therefore include both road and background contributions, and the road width is thereby
distorted.

The level 3 image is already quite complex, and we observe experimentally that if we
try to apply the same single-resolution primary model Eprimary at finer resolutions, using the
images at levels 2, 1, or 0, the details of the scene in the image make road extraction more
difficult (see Figure 3.4). These experiments show, as expected, that this primary model is
not sufficient to overcome the difficulties of VHR images at finer resolutions. The erroneous
detections in the background result from regions of poor contrast between the roads and the
buildings or areas of vegetation, which have statistical properties similar to the roads. On
the other hand, the shadows of high buildings, cars, road markings and bridges lead to
jagged borders or gaps along the roads. The former indicates a lack in the single level data
model, while the latter is due to a weakness in the prior model, which therefore needs to be
improved in order to enforce the road geometry more effectively.

This set of experiments shows the primary model is promising, suggesting that at least
at lower resolutions, for the main road network, the previous (standard) prior model could
be kept. It is clear, though, that to move to higher resolution, and thereby profit from the

2In fact, the computational time depends on the number of iterations and the number of operations at each
iteration. The number of iterations depends greatly on the complexity of the considered image scene. If ra-
diometric properties of the road are very similar to those of the background, it takes longer time to make false
detections in the background disappear. Second, the set of parameters which leads to the convergence of the
solution is not unique: it is possible to find other parameter settings which may obtain the similar result but
converge faster. Third, the computational efficiency is also related to the computer’s CPU. Results presented in
this thesis were obtained with several different computers.
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Figure 3.3. Experiment on Figure 1(a) at level 3 (size: 320 × 320, road width ' 12 pixels),
using the single-resolution primary model Eprimary. Left to right: the thresholded phase field
function at iterations 1 and 400, and at the final iteration 18, 000.

(a) (b) (c)

Figure 3.4. Experiments on Figure 1(a) at finer resolutions, using the single-resolution
primary model Eprimary. (a): result at level 2 (size: 640 × 640, road width ' 24 pixels); (b):
result at level 1 (size: 1280 × 1280, road width ' 48 pixels); (c): result at full resolution,
level 0 (size: 2560 × 2560, road width ' 96 pixels).
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Figure 3.5. Experiment on Figure 1(a) at full resolution (size: 2560×2560, road width ' 96
pixels), using the multiresolution model Eprimary,mul.

precision offered by VHR data, both the data model and the prior model of the road network
have to be changed.

3.3.2 Results Using the Multiresolution Model

In an attempt to overcome the problems at fine resolutions, we use the multiresolution model
Eprimary,mul and apply it to the image in Figure 1(a). We start with information from the level
at which the model energy with a single level works well, i.e. level 3. Thus, information
from levels 3, 2, 1, and 0 is used.

The result is shown in Figure 3.5. It is not perfect, but it is an improvement over the re-
sult obtained at full resolution using the single-resolution model Eprimary (see Figure 3.4(c)).
It shows that MRA is an encouraging avenue. However, there are still some false detections
in the background and the road borders are rather inaccurate due to geometric noise along
the boundaries of the road. The result indicates that a simple sum of data energies at several
different scales, while helpful, is not sufficient to solve the problem completely. We pro-
pose thereafter an alternative more efficient way to integrate the information from multiple
resolutions.

3.3.3 Results Using the Multiresolution Framework and Comparisons

In this subsection, we first apply the single-resolution primary model Eprimary to the data at a
reduced resolution, and then integrate the segmentation result into the high-resolution model
EHR for the original data. To evaluate the performance of our model, the results at both
resolutions are compared to those obtained with four other methods: maximum likelihood



3.3. Experimental Results and Comparisons 69

XXXXXXXXXXXMethod
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

Eprimary

(Figure 3.6(d))
0.9517 0.7823 0.7525

MLE
(Figure 3.8(a))

0.9409 0.1607 0.1591

θE0 + ED

(Figure 3.8(b))
0.8468 0.6007 0.5418

Wang
(Figure 3.8(c))

0.9028 0.5790 0.5450

Yu
(Figure 3.8(d))

0.9776 0.7077 0.6964

Table 3.1. Quality measures for the different methods tested on Figure 3.6(a) at 1/4 re-
solution (T = true, F = false, P = positive, N = negative). The completeness is the per-
centage of ground truth road network that is extracted; the correctness is the percentage of
extracted road network that is correct; and the quality is the most important measure of the
“goodness” of the result, because it takes into account the completeness and the correctness.

estimation (MLE, i.e. θ = 0); a standard active contour formed by dropping the quadratic
term ES or ES ,CON in our model (i.e. β = 0); a classification, tracking, and morphology
algorithm by Wang and Zhang (2003); and a fast but rough segmentation technique based
on “straight line density” by Yu et al. (2004). The two last approaches are detailed in
Appendix E.

The first example of extraction is shown in Figure 3.6(a). The parameters (θ, θv, λ, α, β,

d) are (200, 0, 3, 0.0905, 0.03, 20) at 1/4 resolution, and correspondingly (2000, 0, 3, 0.0905,
0.03, 80) at full resolution. The computational time is 3 minutes and 281 minutes respec-
tively at the two resolutions. Figures 3.6(b)-3.6(d) show the thresholded phase field function
at iterations 1 and 100 of gradient descent, and at convergence at iteration 2, 200, using the
single-resolution primary model Eprimary on the 1/4 resolution data. The main road net-
works are mostly retrieved, but since the information has been simplified at the reduced
resolution, there are still some problems in this result: parts of the parking lot are mis-
takenly included; the position of the bottom road somewhat shifts. When applying the
single-resolution primary model Eprimary to the original image, due to the appearance of too
much detail and noise, the extraction result is not satisfactory (see Figure 3.7(a)). When
we use the high-resolution model EHR instead, Figure 3.7(b) shows the final result in the
original image. Although the computational time is longer at full resolution, the segmen-
tation is very successful: the whole of the road network has been extracted completely and
accurately.

By comparison, Figures 3.8 and 3.9 show the results obtained using the other four me-
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(a) (b)

(c) (d)

Figure 3.6. Data, and experiment at 1/4 resolution. (a): a QuickBird image (size: 1280 ×
1280); (b)-(d): the thresholded phase field function at iterations 1, 100, and at convergence
at iteration 2, 200, using the single-resolution primary energy Eprimary.



3.3. Experimental Results and Comparisons 71

(a) (b)

Figure 3.7. Experiments on Figure 3.6(a) at full resolution. (a)-(b): results obtained re-
spectively with the single-resolution primary energy Eprimary and the high-resolution energy
EHR.

thods mentioned earlier, at 1/4 resolution and at full resolution, while Tables 3.1 and 3.2
present some quantitative evaluation measures (Heipke et al., 1997) of all the results at both
resolutions. The ground truth used to calculate quantitative criteria is segmented by hand
(see Figures 3.8(e) and 3.9(e)). The comparisons show that our model at both resolutions
achieves the highest values of the ‘quality’ of the result. MLE is obviously far from enough
to distinguish the roads from the background. The results obtained without the quadratic
term, i.e. θE0 + ED, exemplify the importance of the geometric knowledge. The results
using the method of Wang and Zhang (2003) show a great deal of noise, and the accuracy
obtained in the delineation of the road boundary is poor. According to the quantitative mea-
sures, the method of Yu et al. (2004) is the second best after our model, but this approach
is highly restricted to straight roads (for instance, the curved road at the bottom right corner
in Figure 3.6(a) is missing).

Figure 3.10 presents another experiment on Figure 1(a) using the multiresolution frame-
work, which shows significant improvement both on the result in Figure 3.4(c) and on the
result in Figure 3.5. The pre-segmentation of the reduced resolution image is obtained
at level 3 (Figure 3.3). The parameters (θ, θv, λ, α, β, d) used at full resolution are set up as
(2000, 0.02, 3, 0.0905, 0.02, 80). They meet the requirement of model stability (section 2.3).
With respect to the parameters for level 3, except the change of d which controls the road
width, and the change of the overall weight θ of the prior energy (which results from the
appearance of a great deal of noise at full resolution), the other parameters remain the same
between the two resolutions. We will give evaluations of all the experiments on this image
later when comparing to the new model proposed in the next chapter.

Figure 3.11 shows segmentation results on another piece of QuickBird image. The para-
meters (θ, θv, λ, α, β, d) at 1/4 and full resolution are respectively (200, 0, 3, 0.0905, 0.02, 20)
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XXXXXXXXXXXMethod
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

EHR

(Figure 3.7(b))
0.9329 0.9199 0.8628

Eprimary

(Figure 3.7(a))
0.9766 0.3439 0.3411

MLE
(Figure 3.9(a))

0.9340 0.1612 0.1594

θE0 + ED

(Figure 3.9(b))
0.8120 0.5855 0.5156

Wang
(Figure 3.9(c))

0.9307 0.4707 0.4547

Yu
(Figure 3.9(d))

0.9651 0.8092 0.7862

Table 3.2. Quality measures for the different methods tested on Figure 3.6(a) at full re-
solution (T = true, F = false, P = positive, N = negative). See Table 3.1 for an explanation
of completeness, correctness and quality.

(a) (b) (c)

(d) (e)

Figure 3.8. Comparisons on Figure 3.6(a) at 1/4 resolution. (a)-(d): results obtained with
the MLE (i.e. θ = 0), a standard active contour by dropping the quadratic term (i.e. β = 0),
the work of Wang and Zhang (2003) and of Yu et al. (2004). (e): the ground truth.
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(a) (b) (c)

(d) (e)

Figure 3.9. Comparisons on Figure 3.6(a) at full resolution. (a)-(d): results obtained with
the MLE (i.e. θ = 0), a standard active contour by dropping the quadratic term (i.e. β = 0),
the work of Wang and Zhang (2003) and of Yu et al. (2004). (e): the ground truth.

Figure 3.10. Experiment on Figure 1(a) at full resolution (size: 2560 × 2560, road width
' 96 pixels), using the multiresolution framework.
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(a) (b)

(c) (d)

Figure 3.11. More experiments on the QuickBird image. (a): image data (size: 1280 ×
1280); (b): result at 1/4 resolution, using the single-resolution primary model Eprimary; (c)-
(d): results at full resolution, using the single-resolution primary model Eprimary and the
high-resolution model EHR respectively.
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(a) (b)

(c) (d)

Figure 3.12. More experiments on the QuickBird image. (a): image data (size: 1000 ×
1000); (b): result at 1/4 resolution, using the single-resolution primary model Eprimary; (c)-
(d): results at full resolution, using the single-resolution primary model Eprimary and the
high-resolution model EHR respectively.
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(a) (b)

(c) (d)

Figure 3.13. More experiments on the QuickBird image. (a): image data (size: 1280 ×
1280); (b): result at 1/4 resolution, using the single-resolution primary model Eprimary; (c)-
(d): results at full resolution, using the single-resolution primary model Eprimary and the
high-resolution model EHR respectively.
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and (2000, 0, 3, 0.0905, 0.03, 80). In the result at 1/4 resolution obtained with the primary
model Eprimary (Figure 3.11(b)), the small road on the top right of the image is not in-
cluded, and the borders of the vertical main road are not very accurate. If we still use the
single-resolution primary model Eprimary but on the full resolution image, a large amount
of false detections appears (see Figure 3.11(c)). Figure 3.11(d) shows the final segmenta-
tion at full resolution using the proposed multiresolution framework (or EHR). Note that
at full resolution, the small road in the top right corner has been retrieved, and moreover,
the position and the width of the vertical main road are more precise. For example, at the
lowest end of the vertical road, due to white road markings, the result in Figure 3.11(d)
is closer to the actual image than that in Figure 3.11(b). More experiments are illustrated
in Figures 3.12 and 3.13. For the former, the parameters (θ, θv, λ, α, β, d) at 1/4 and full
resolution are respectively (200, 0, 3, 0.0905, 0.02, 4) and (2000, 0, 3, 0.0905, 0.03, 16); and
for the latter, the parameters (θ, θv, λ, α, β, d) at 1/4 and full resolution are respectively
(200, 0, 3, 0.0905, 0.03, 20) and (2000, 0, 3, 0.0905, 0.03, 80). Notice the better performance
of the high-resolution model at the road junction.

3.4 Conclusion

In this chapter, we have presented two models for the extraction of the main road network
from a multiscale representation of the image. After considering the merits and demerits
of the primary model, we have proposed a multiresolution data energy integrating the data
information from multiple resolutions. Although the result at full resolutions are better
than those obtained with the single-resolution primary model, the multiresolution approach
needed further improvements in order to eliminate false detections and improve the ac-
curacy of road border delineation. Consequently, we have introduced a two-step robust
multiresolution framework, with aims of reducing the solution space of the energy func-
tional. The algorithm is robust, and experimental results are accurate. They indicate that,
when working at full resolution, the combination of segmentation results at different re-
solution levels is imperative, due to the great complexity of VHR images. Our model gives
better results than several other methods in the literature. In the next chapter, we will take
Geographical Information System (GIS) information into account for the particular task of
map updating.





Chapter 4

GIS Specific Prior for Map Updating

Keeping the road network information contained in Geographical Information Systems
(GIS) up to date is crucial for many applications, for example urban planning, vehicle
navigation, and environmental monitoring. The high rate of urban growth, especially in
many developing countries, means that this has become an increasingly important research
topic in remote sensing. In this chapter, we focus on the issue of main road network updat-
ing from very high resolution (VHR) images in dense urban areas. Specifically, we show
how to make use of an outdated GIS digital map and a recently acquired QuickBird image
to generate an up-to-date road network of the observed region. The proposed GIS-based
higher-order active contour (HOAC) model includes three different types of prior geometric
knowledge characterized by their level of generality. From the most generic to the most spe-
cific, they are (i) generic boundary smoothness constraints, equivalent to a standard active
contour prior; (ii) knowledge of the geometric properties of road networks (i.e. that they oc-
cupy regions composed of long, low-curvature segments joined at junctions), equivalent to
a HOAC prior; and (iii) knowledge of the road network at an earlier date derived from GIS
data. All three types of prior knowledge prove important for overcoming the complexity of
‘geometric noise’ in VHR images. In section 4.1, we give a brief introduction to map updat-
ing, and show that object extraction can benefit from the specific prior knowledge encoded
by outdated GIS maps. In section 4.2, we give the definition of a new specific prior term,
and incorporate it into the phase field framework. In section 4.3, we present experimental
results on QuickBird panchromatic images, and validate and compare them with several
other techniques from the literature.

4.1 Introduction

Generally, map updating consists in three main tasks. The first one is to correct the positions
of partly changed objects, and to improve the spatial accuracy of other unchanged objects
if necessary. The second one is to extract newly appeared objects, and to incorporate them
into the new map to be generated from more recent imagery. The third one is to remove

79
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(a) (b)

(c) (d)

Figure 4.1. Two pairs of QuickBird panchromatic images ∼ 0.61m/pixel (both size: 1000×
1000) of Beijing. Top: year 2002; bottom: year 2006.

from the map any object which no longer exists in the image. Compared to the first, the
two last tasks are more difficult, because, for a component in one piece of image, we cannot
find its counterpart in the other piece of image. Figure 4.1 shows two pairs of QuickBird
panchromatic images of Beijing, retrieved respectively in the year 2002 and the year 2006.
Due to the great changes in the past few years, the two image pairs give good examples in
which map updating is necessary.

For an object extraction process, the GIS map at an earlier date is of great help, be-
cause it can serve as an exogenous source of information to the data, and provide valuable
(though not completely correct) prior information. The incorporation of an existing map
into the algorithm can yield useful semantic and spatial information, and thus increase the
robustness of the extraction. More concretely, in our problem, the abundance of ‘artifacts’
of VHR images in dense urban environments, such as shadows, occlusions, cars, etc., may
be effectively overcome by adding the older digital map. Since the prior knowledge fur-
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nished by existing digital maps concerns the particular scene under consideration, we refer
to it as specific prior knowledge. This type of knowledge says that the region sought must
be ‘close’ to an exemplar region 1.

In contrast, the most generic prior knowledge concerns the regularity properties of the
boundary ∂R of the region of interest R. These properties apply to almost any entity, not
only road networks. As a consequence, this prior knowledge is included in almost all region
models, e.g. the Ising model (Ising, 1925), and most active contour models (Kass et al.,
1988). It suffices to include a term penalizing the length of ∂R. Between the most generic
and the most specific is prior knowledge derived from a common understanding of the object
of interest. In our case, one example of such knowledge of any road network is the statement
‘roads have parallel borders’.

Note that there is an important assumption behind all GIS-guided techniques, i.e. the
new scene in the image data and the old map should have some regions more or less similar
to each other. Otherwise, if the scene were completely different from the GIS map, the map
would not be useful, and would probably hinder obtaining the correct result. Of course,
this is true of all prior information: if it is incorrect, then it will not help and will probably
hinder.

In the rest of this chapter, based on the standard HOAC prior model E0 + ES , we intro-
duce an additional specific prior term EGIS , derived from an outdated GIS digital map, to
solve the above three aspects of road map updating.

4.2 Specific Prior Energy

Suppose that we are given a region R0 representing the road network at an earlier date than
the image data. R0 can also be described by its minimum energy phase field function φR0 .
We propose a specific prior energy, EGIS , that incorporates knowledge of the earlier road
network, R0, and has effect in the whole of the image domain. We define

EGIS (φ, φR0) =
∫
Ω

[
ω+φR0+(x) + ω−φR0−(x)

][
φ(x) − φR0(x)

]2 dx , (4.1)

where φR0± = (1 ± φR0)/2 denote the characteristic functions for the regions R0 and R̄0.
The two terms of EGIS correspond to the two components of the symmetric area difference
between the segmenting region R and the prior shape R0: x ∈ R∩ R̄0 and x ∈ R̄∩ R0. These
are separated so that they can be weighted differently by the parameters ω+ and ω−. The
values of ω± will be fixed based on factors such as the time lapse between the GIS map and
the image. For example, if the time lapse is large, then ω± should be small, indicating a
weak link between the GIS map and the current road network. If the time lapse is unknown,
a mixture model over ω± is conceivable. Here we do not discuss these possibilities further,
and choose ω± manually. EGIS expresses the fact that the evolving phase field φ should
be ‘close’ to φR0 , which is equivalent to R being ‘close’ to R0. At each iterative step, φ
is modified so as to resemble the given reference shape φR0 in the image domain. Since

1In other applications, the reference shape may be set as the mean of a set of training shapes with a small
variation, as seen in subsection 1.1.3.
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this term takes into account the exterior of R0 (i.e. R̄0), it counteracts the background noise
appearing in the data.

It is worth noting that the above formulation is similar to the shape prior term proposed
by Chan and Zhu (2003) (equation (1.26)). However, our energy EGIS presents three main
differences. First, the outdated GIS data has been globally registered to the image, so pose
estimation between the evolving shape and the specific prior shape can be neglected. Sec-
ond, because of the lack of any hard constraints on φ in the phase field modeling, we can
avoid the Heaviside function, and thus avoid the numerical error which may be introduced
due to approximate estimation of the Heaviside function. Third, due to the updating appli-
cation, the specific prior φR0 may include some errors.

After augmenting our primary model Eprimary with the additional specific prior term
EGIS , we have the overall GIS-based HOAC model θ(E0 + ES + EGIS ) + ED, where E0, ES

and ED have been defined in equations (2.6), (2.8), and (2.21) respectively. In this case of
updating, the parameters of the Gaussian mixture and Gamma distributions in the data term
are learned from the image data, using the known region R0 to create samples of road and
non-road. Note that the samples may contain errors, since R0 does not correspond exactly
to the road network in the image (e.g. we use Figure 4.3(b) as R0 for Figure 1(a)). The
evolution equation for the specific prior is

∂φ(x)
∂t
= −

δEGIS (φ)
δφ(x)

= −2(φ − φR0)
[
ω+φR0+ + ω−φR0−] . (4.2)

This term is added into the rest of the evolution equation for Eprimary (equation (2.24)).

4.3 Experimental Results and Comparisons

In this section, we test and evaluate the GIS-based HOAC model on QuickBird panchro-
matic images, and present comparisons with other approaches at full resolution.

4.3.1 Results Using the GIS-Based HOAC Model

Figure 4.2 illustrates two first experiments, using the images in Figure 4.1 acquired in 2006
as the input data. The top row of Figure 4.2 shows GIS maps of the main road networks
for the same zones from before the year 2002. Significant changes exist between the maps
and the satellite images. The results obtained with the GIS-based HOAC model using the
GIS maps as R0 are shown in the bottom row of Figure 4.2. For these two experiments,
the parameter values (θ, θv, λ, α, β, d, ω+, ω−) are (300, 0.02, 6, 0.1, 0.013, 50, 4.7× 10−4, 9×
10−4) and (300, 0, 5, 0.1, 0.016, 26, 0.0027, 0.0013); the computational time is 172 minutes
and 137 minutes. Both old maps are successfully updated.

Since a scene that involves all three kinds of changes (i.e. some roads missing, some
roads added, and some roads narrowed or broadened) seldom happens in the real data, a
further test is done on Figure 1(a), using the GIS-based HOAC model with a ‘damaged’
GIS map. Then we can compare to results on the same image obtained with the models
proposed in chapter 3. The reason for not using the real older GIS map for this example is
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(a) (b)

(c) (d)

Figure 4.2. Experiments on the later pair of images in Figure 4.1 at full resolution using the
GIS-based HOAC model. Top: GIS maps of the main road networks from before the year
2002, used as R0; bottom: the main road networks updated using the QuickBird images
from 2006.
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(a) (b)

Figure 4.3. Ground truth and simulated GIS map. (a): ground truth of Figure 1(a); (b):
deliberately ‘damaged’ ground truth of the same figure, to simulate an earlier GIS map.

(a) (b)

Figure 4.4. Experiments on Figure 1(a) at full resolution (size: 2560 × 2560, road width
' 96 pixels) using the GIS-based HOAC model. (a): result obtained with ‘damaged’ ground
truth (Figure 4.3(b)); (b): result obtained using the result obtained at level 3 (Figure 3.3) as
a replacement for the GIS information.

that we want to introduce all kinds of changes into R0. Therefore, the associated GIS map,
obtained a few year earlier than the satellite image in the zone, is used in two ways: first,
to create ground truth via a small manual correction (see Figure 4.3(a)); and to create an
inaccurate road network region to serve as R0 (see Figure 4.3(b)). Note that this ‘damaged’
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XXXXXXXXXXXMethod
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

GIS-based model
(e.g. Figure 4.4(a))

0.7920 0.8914 0.7198

Eprimary at level 3, but
up-sample to full resolution

(e.g. Figure 3.3)

0.7177 0.7571 0.5834

Eprimary

(e.g. Figure 3.4(c))
0.8159 0.6758 0.5893

Eprimary,mul

(e.g. Figure 3.5)
0.7859 0.7301 0.6141

Multiresolution framework
(e.g. Figure 3.10)

0.7098 0.8867 0.6566

Table 4.1. Average quality measures for our different models (T = true, F = false, P =
positive, N = negative). The completeness is the percentage of ground truth road network
that is extracted; the correctness is the percentage of extracted road network that is correct;
and the quality is the most important measure of the “goodness” of the result, because it
takes into account the completeness and the correctness.

GIS map is very different from the ground truth. Secondary roads have been kept in the
ground truth; this is to allow comparison with other methods, which attempt to find all
roads, not just the main road network.

The result is illustrated in Figure 4.4(a). The parameters are set as (θ, θv, λ, α, β, d, ω+,
ω−) = (300, 0.02, 3, 0.0905, 0.02, 80, 3.3 × 10−4, 6 × 10−4). The addition of EGIS provides
another great improvement, when compared to the results in Figures 3.4(c) and 3.5. Its
main effect is to eliminate false positives in the background, while preserving the correct
segmentation of the roads themselves. Figure 4.4(b) shows the result we obtain when we
use as R0, not the GIS map, but the result obtained at reduced resolution, i.e. at level 3 (see
Figure 3.3). Thus, in the case of extracting the road network at full resolution with GIS data
unavailable, we can replace GIS information in the specific prior term by a low resolution
result. We can free ourselves from the need to have a GIS map available. Moreover, it
includes multiresolution information in another way. In the multiresolution framework (i.e.
EHR) proposed in Chapter 3, a low resolution result is used in the weight of the standard
HOAC term ES so as to define an effective zone where the geometric prior knowledge is
included; while here, a low resolution result acts as an independent energy term in the
model to indicate privileged road regions. These experiments show that for the main roads,
at full resolution, the GIS-based HOAC model is able to keep unchanged roads, to correct
mistakes, and to extract new roads.



86 Chapter 4. GIS Specific Prior for Map Updating

(a) (b)

(c) (d) (e)

Figure 4.5. Road extraction results from Figure 1(a) at full resolution. (a)-(e): results ob-
tained using MLE (i.e. θ = 0), a standard active contour (i.e. β = 0), the work of Bailloeul
(2005), Wang and Zhang (2003), and Yu et al. (2004).

4.3.2 Evaluation and Comparison

To evaluate the performance of the various models we have proposed in the previous chap-
ter and in this chapter, we compare our results with five other methods. In the comparisons
in chapter 3, we used four of them: maximum likelihood estimation (MLE, i.e. θ = 0), a
standard active contour (i.e. β = 0), the work of Wang and Zhang (2003), and the work
of Yu et al. (2004). The last one is a level set approach incorporating a global shape con-
straint by Bailloeul (2005); an outdated map is needed to initialize the contour. (For more
details, see Appendix E.) Except for those involving the multiresolution model, all results
are obtained from full resolution images.

Figure 4.3(a) shows the ground truth used to calculate quantitative criteria. Figures 4.5(a)-
4.5(e) illustrate the results obtained using the five methods taken from the literature men-
tioned above. We have already analyzed the disadvantages of the four methods used in the
previous chapter, which we do not repeat here. Besides, the ‘flexible active contour’ method
of Bailloeul (2005) (initially dedicated to building extraction) fails because it is not able to
eliminate road sections that exist in the map but not in the image, and to extract new road
sections that exist in the image but not in the map. Figures 4.6 and 4.7 show the compa-
risons based on the original images shown in Figures 4.1(c) and 4.1(d). Some quantitative
evaluation measures (Heipke et al., 1997) of our proposed models and other different me-
thods are shown respectively in Tables 4.1 and 4.2. For each method and each measure, the
average value from three experiments (using the images in Figures 1(a), 4.1(c) and 4.1(d))
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(a) (b)

(c) (d) (e)

Figure 4.6. Road extraction results from Figure 4.1(c) at full resolution. (a)-(e): results
obtained using MLE (i.e. θ = 0), a standard active contour (i.e. β = 0), the work of Bailloeul
(2005), Wang and Zhang (2003), and Yu et al. (2004).

(a) (b)

(c) (d) (e)

Figure 4.7. Road extraction results from Figure 4.1(d) at full resolution. (a)-(e): the results
obtained using MLE (i.e. θ = 0), a standard active contour (i.e. β = 0), the work of Bailloeul
(2005), Wang and Zhang (2003), and Yu et al. (2004).
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XXXXXXXXXXXMethod
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

GIS-based model
(e.g. Figure 4.4(a))

0.7920 0.8914 0.7198

MLE
(e.g. Figure 4.5(a))

0.7567 0.2775 0.2545

θE0 + ED

(e.g. Figure 4.5(b))
0.6358 0.8743 0.5810

Bailloeul
(e.g. Figure 4.5(c))

0.5529 0.8318 0.4990

Wang
(e.g. Figure 4.5(d))

0.8918 0.6180 0.5717

Yu
(e.g. Figure 4.5(e))

0.7743 0.7196 0.5893

Table 4.2. Average quality measures for the different methods (T = true, F = false, P =
positive, N = negative). See Table 4.1 for an explanation of completeness, correctness and
quality.

is shown.

4.4 Conclusion

We have proposed a GIS-based HOAC model for the updating of road maps in dense urban
areas by extracting the main road network from VHR satellite images. The GIS-based
HOAC approach incorporates three different types of prior geometric knowledge: generic
knowledge about smoothness; knowledge of the geometry of road networks in general; and
knowledge of the specific road network at a different date, supplied as GIS data. Our results
indicate that, in order to work at full resolution, the combination of all three types of prior
knowledge is essential, to overcome the geometric noise of VHR images. However, in the
case of extracting the road network at full resolution with GIS data unavailable, we can
use instead a result obtained at lower resolution, where such knowledge appears not to be
necessary provided the other two types are present, to replace the GIS information in the
specific prior term. Hence, one can free oneself from the need for GIS data. This also leads
to a second type of multiresolution analysis. Our model gives better results than several
other methods published in the literature, even when smaller roads, which our model is not
designed to detect, are included in the ground truth. In the next chapter, we will consider
secondary road extraction. Due to the particular difficulties of secondary roads, we will
develop new types of HOAC prior.



Chapter 5

Modeling Shape for Network
Extraction

In previous chapters, we solved the problem of the extraction and the updating of main
road networks. Compared to the main roads, the secondary roads are much more difficult
to deal with, because, on the one hand, of the low discriminative power of the grey-level
distributions of road regions and the background, and on the other hand, of the greater
effect of occlusions and other noise on narrower roads. Moreover, the previously developed
higher-order active contour (HOAC) prior energy suffers from a serious limitation, when it
is used to model networks: the interactions between points on the same side of a network
branch have the same range and strength as the interactions between points on opposite
sides. To tackle the above mentioned problems, in this chapter, we show how to separate
the control of branch straightness and branch width, thus allowing better prolongation of
the network for a given road width. This chapter is organized as follows. In section 5.1, we
discuss the difficulties of secondary road extraction. In sections 5.2 and 5.3, we propose a
new nonlinear nonlocal HOAC prior energy and a new linear nonlocal HOAC prior energy,
and reformulate them as nonlocal phase field energies. We perform the stability analysis of
these two prior models, and thereby establish parametrical constraints. In section 5.4, we
illustrate the application of both models to road extraction from very high resolution (VHR)
images, and compare the results to other methods in the literature. The results demonstrate
the superiority of our models.

5.1 Introduction

The difficulty with secondary roads lies in the following aspects. As shown in Figure 5.1,
first, the radiometric properties of narrow roads are similar to those of the background;
second, narrow roads are more often obscured by shadows and trees, which could cause gaps
in the extracted network. For both reasons, data driven/bottom-up models fail to retrieve the
roads correctly: strong geometric prior information is needed.

89
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Figure 5.1. An example of small roads, to demonstrate the difficulty of extracting them
compared to main roads.

Although the network model of the standard HOAC prior energy EC,S (equation (2.4))

EC,S (R) = λCL(∂R) + αCA(R) −
βC

2

"
(∂R)2

γ̇(t) · γ̇(t′) Ψ
( |γ(t) − γ(t′)|

d

)
dt dt′ , (5.1)

where

Ψ(x) =

 1
2

(
2 − |x| + 1

π sin(π|x|)
)

if |x| < 2 ,

0 else ,
(5.2)

or equivalently, the network model of the standard phase field HOAC prior energy E0 + ES

in equations (2.6) and (2.8), contains such prior knowledge, it suffers from a significant
limitation when it comes to modeling networks. Apart from a sign change, the interaction
between two points on the same side of a network branch (γ̇(t) · γ̇(t′) > 0) is the same, and in
particular has the same strength and range as the interaction between two points on opposite
sides of a network branch (γ̇(t) · γ̇(t′) < 0). The former interaction controls the curvature
of network branches by trying to align tangent vectors, while the latter controls branch
width by creating a repulsive force. The effect is that for a stable network branch, a typical
maximum curvature of a branch κ is connected to the width of that branch W approximately
by κ ∼ 1/W. In other words, the length/range along which the network branch is expected
to be straight is the same as the width of the branch itself. The standard HOAC prior energy
EC,S (or its phase field counterpart E0 + ES ) thereby provides a poor model of networks
with straight narrow branches or highly curved, wide branches.

However, in our case of road extraction in cities, road width gives only an (approximate)
upper bound on the radius of curvature of the road: most roads are straighter than they are
wide, i.e. κ � 1/W. For narrow roads, this is particularly problematic, since the road
region is relatively unconstrained due to the small road width. In particular, using EC,S (or
equivalently E0 + ES ), the road prolongation will be of short range, while to overcome the
effects of geometric noise mentioned above, we want it to be long-range.

To solve these problems, we need to be able to model longer-range or stronger 1 in-

1To augment the magnitude of the interaction function or to increase its range can approximately be consid-
ered as equivalent.
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Figure 5.2. The interaction functions Ψ+‖ and Ψ−‖ (thin blue arrow: tangent vector; thick
cyan arrow: interaction force; black dot: interacting point).

teractions along the road, without changing the interactions across the road. This means
that we have to separate the two interaction functions, and hence allow separate control
of branch straightness and width, as shown in Figure 5.2. To achieve this goal, we will
construct new nonlocal HOAC prior energies, which act in a complementary way to the
standard HOAC term. The first new energy term is a nonlinear, nonlocal HOAC energy
ENL, which increases the magnitude of the interaction along one side of a network branch.
The second one is a linear, nonlocal HOAC energy EL, which provides a longer-range inter-
action along one side of a network branch; through the stability analysis of this new model,
we further demonstrate that the linear nonlocal term permits the modeling of two widths
simultaneously.

It is often convenient to formulate an active contour model in terms of the parametric
curve, and then reformulate it as a phase field model for implementation. In the rest of
this chapter, we follow this procedure by considering each new prior energy using first a
parametric contour representation, and then a phase field representation. We also calculate
the conditions for which each model has stable behaviors.

5.2 Nonlinear Nonlocal HOAC Prior Energy

We introduce a nonlinear nonlocal HOAC prior energy ENL that differentiates between
interactions along the road and across the road, and thus enables more sophisticated prior
knowledge to be included.

5.2.1 Contour Model Definition

Since roads are elongated structures, the interaction between points on the same side of a
road must have longer range (or be stronger) than the interaction between points on opposite
sides of a road. In order to separate the two interactions, the interaction function must
depend on the tangent/normal vectors at the pairs of points that are its argument. Although
the length scale in the interaction function of equation (5.1), d, could be made to depend
on the inner product between the tangent/normal vectors at the two pixels, it would lead to



92 Chapter 5. Modeling Shape for Network Extraction

complicated functional derivatives. Alternatively, we prefer to perform a linear interpolation
between two interaction functions. In the contour formulation, our new HOAC prior energy
EHO takes the form:

EHO(γ) = −
"

S 1×S 1

{
f+‖(γ̇(s) · γ̇(s′)) Ψ+‖ − f−‖(γ̇(s) · γ̇(s′)) Ψ−‖

}
ds ds′ , (5.3)

where γ : S 1 → Ω, is an arc length parameterization of the region boundary ∂R; γ̇(s) is the
tangent vector to the boundary at s (thus γ̇(s) · γ̇(s′) ∈ [−1, 1]); ‘+ ‖’ denotes parallel vectors
and ‘− ‖’ denotes antiparallel vectors. We define f+‖(x), f−‖(x) : [−1, 1] → [0, 1] as linear
functions:

f+‖(x) = (1 + x)/2 , (5.4a)

f−‖(x) = (1 − x)/2 . (5.4b)

Ψ+‖ and Ψ−‖ are interaction functions similar to that in equation (5.2), but have different
range or magnitude. They compete with each other: when γ̇(s) · γ̇(s′) ∈ [0, 1], i.e. the two
interacting tangent vectors are more parallel, Ψ+‖ is dominant; while when γ̇(s) · γ̇(s′) ∈
[−1, 0], i.e. the two interacting tangent vectors are more antiparallel, Ψ−‖ is dominant. We
decide to adjust only the magnitude of the interaction (although this effectively changes its
range also). Thus, we assume that the magnitude of the interaction of parallel vectors is
stronger than that of antiparallel vectors, i.e. Ψ+‖ = aΨ−‖, where a > 1, is a constant. Then,
equation (5.3) becomes

EHO(γ) = −
1
2

"
S 1×S 1

[
(a − 1) + (a + 1)

(
γ̇(s) · γ̇(s′)

)]
Ψ−‖ ds ds′ . (5.5)

5.2.2 Phase Field Model Definition

In order to implement EHO(γ) in the phase field framework, it needs to be reformulated
as a function of the phase field φ, instead of the arc length parameterization γ used in
equation (5.5). Since the constant length of γ̇(s) corresponds to the fixed change in φ across
the interface 2, we replace tangent vectors by normal vectors, and then normal vectors by
∇φ. Subsequently, the range of interactions is extended from the region boundary ∂R to the
whole of the image domain Ω. Due to the fact that ∇φ(x) is approximately equal to zero
everywhere outside the narrow interface RC in Ω, the boundary indicator function

S (φ) =
(
∇φ(x) · ∇φ(x)

)(
∇φ(x′) · ∇φ(x′)

)
'

1 ∀x, x′ ∈ RC ,

0 otherwise ,
(5.6)

is inserted into the first term of equation (5.5). Thus we have

EHO(φ) = −
1
2

"
Ω2

[
(a − 1)S (φ) + (a + 1)

(
∇φ(x) · ∇φ(x′)

)]
Ψ
( |x − x′|

d

)
dx dx′ . (5.7)

2In an arbitrary parameterization, the terms that do not depend on tangent vectors acquire factors of |γ̇||γ̇′|
arising from ds ds′.
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When a = 1, this reduces to the standard phase field HOAC term ES (up to a factor of β/2).
Therefore, we define our new additional energy term ENL by

ENL(φ) = −
β2

4

"
Ω2

S (φ) Ψ
( |x − x′|

d

)
dx dx′

= −
β2

4

"
Ω2

(
∇φ(x) · ∇φ(x)

)(
∇φ(x′) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx dx′ . (5.8)

(Note that d is the same as that in ES .) Thus in this case, we have a term that is quartic
in ∇φ.

The functional derivative of ENL is (see details in Appendix B)

δENL(φ)
δφ(x)

= β2

∫
Ω

{(
∇φ(x′) · ∇φ(x′)

)
∇2φ(x) Ψ

( |x − x′|
d

)
+

(
∇φ(x′) · ∇φ(x′)

)(
∇φ(x) · ∇Ψ

( |x − x′|
d

))}
dx′ . (5.9)

Since this functional derivative of ENL, unlike that of ES , contains a term nonlinear in ∇φ,
due to S (φ) being O(φ4), we refer to it as the nonlinear nonlocal term 3.

Note that whether the two tangent/normal vectors at a pair of interacting points are
parallel or antiparallel, the effect of ENL is always to encourage two points inside the range
of the interaction to attract each other. Thus ENL weakens the repulsive effect of ES between
opposite sides, so that ES along a network branch can be strengthened without changing the
width. Consequently, the interaction between pairs of points on the same side of a network
branch is stronger than that between pairs of points on opposite sides of a network branch.

We now add this new nonlinear term ENL into our primary model Eprimary (section 2.4),
and define our new nonlinear overall model as E = θ(E0 + ES + ENL) + ED. Since the
derivatives δES /δφ and δENL/δφ are nonlocal, to avoid performing explicit convolutions,
they are, as usual, calculated in the Fourier domain. The intermediate steps of this calcula-
tion are detailed in Appendix B. The resulting evolution equation for ENL is

−
δENL(φ)
δφ(x)

= −β2∇
2φ(x)F−1

{
dΨ̂(kd)F

{
∇φ(x) · ∇φ(x)

}}
− β2∇φ(x) · ∇

{
F−1

{
dΨ̂(kd)F

{
∇φ(x) · ∇φ(x)

}}}
. (5.10)

This term is added into the evolution equation for our primary model (equation (2.24)). We
follow all the other implementation details as described in subsection 2.4.2.

5.2.3 Stability Analysis of the Nonlinear Nonlocal HOAC Total Prior Model

The nonlinear nonlocal HOAC total prior model takes the form EP,NL = E0 + ES + ENL.
Due to the incorporation of ENL, an additional parameter β2 has been introduced. So now,
there are five parameters (α, λ, β, β2, d) under consideration. These parameters need to be

3We worked also on another nonlinear nonlocal HOAC prior term. We finally do not use it because of the
difficulty of its implementation. We describe it in Appendix C.
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chosen carefully, because the gradient descent equation of ENL is a highly nonlinear non-
local partial differential equation. To study the behavior of the model with respect to these
five parameters, we use an ansatz model of a bar, as defined in Figure 2.5, and conduct a
stability analysis. In this subsection, we first implement this calculation, and then give the
stability conditions for the nonlinear nonlocal HOAC total prior model.

Nonlinear Nonlocal Phase Field HOAC Term of a Bar

Following a similar calculation for the standard phase field HOAC term, we integrate equa-
tion (5.8) over the surface defined by the bar ansatz. The nonlinear nonlocal HOAC term of
a bar is

ENL = −
16β2L

w2

{∫ ∞

0
Ψ
( z
d

)
dz + d

∫ ∞

Ŵ

η√
η2 − Ŵ2

Ψ(η) dη
}
, (5.11)

where Ŵ = W/d is the scaled width. Based on the definition of the interaction function Ψ
(equation (5.2)), we obtain the nonlinear nonlocal phase field HOAC energy, per unit length
of bar, eNL:

eNL(w, Ŵ) = −
16β2d

w2 −
8β2d
w2

∫ 2

Ŵ

η√
η2 − Ŵ2

(
2 − η +

1
π

sin(πη)
)

dη

= −
16β2d

w2 −
8β2d
w2

∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη . (5.12)

Nonlinear Nonlocal HOAC Total Prior Model of a Bar

Combining the nonlinear nonlocal phase field HOAC term per unit length of bar eNL (equa-
tion (5.12)), with the basic phase field term per unit length of bar e0 (equation (2.13)), and
the standard phase field HOAC term per unit length of bar eS (equation (2.15)), we can ex-
press the nonlinear nonlocal HOAC total prior model, per unit length of bar, eP,NL as (after
removing all the constants not related to the variables):

eP,NL(w, Ŵ) =e0 + eS + eNL

=
4
3
αŴd +

4
15
λw +

4
w
−

16β2d
w2 + 4d(β −

2β2

w2 )
∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη .

(5.13)

To minimize the energy eP,NL, we need to calculate its first derivatives and its second
derivatives with respect to w and Ŵ. The first derivatives are set to zero:

∂eP,NL

∂Ŵ
=

4
3
αd − 4Ŵd(β −

2β2

w2 )
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη = 0 , (5.14a)

∂eP,NL

∂w
=

4
15
λ −

4
w2 +

16β2d
w3

∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη = 0 . (5.14b)
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Figure 5.3. Diagram of the scaled control parameters β̂ and β̂2, and the scaled width Ŵ,
when w = 2. The left part of the surface represents the parameter space for which eP,NL has
one local maximum; in the right part of the surface, eP,NL has one local minimum; and the
borderline between them, where Ŵ = 0.8798, represents the situation when two extrema
become an inflection point (i.e. ∂eP,NL/∂Ŵ = 0 and ∂2eP,NL/∂Ŵ2 = 0).

This is a complicated system of two-variable equations. To simplify the problem, we
fix arbitrarily the reasonable value of w beforehand (w = 2 ∼ 4), and then solve equa-
tion (5.14a) to get a sub-optimal solution of Ŵ. In this way, there is no need to calculate
the second derivative of eP,NL with respect to w, but we still need to ensure the derivative
of order two of eP,NL with respect to Ŵ non-negative. It is given by (see details in Ap-
pendix A.2.2)

∂2eP,NL

∂Ŵ2
= −4d(β −

2β2

w2 ) ln

2 +
√

4 − Ŵ2

Ŵ

+
4d(β −

2β2

w2 )
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη ≥ 0 . (5.15)

The above analysis shows that the stability of the nonlinear nonlocal HOAC total prior
model is related to the scaled control parameters β̂ = β/α and β̂2 = β2/α, and to the scaled
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width Ŵ = W/d. Therefore, we obtain the parameter constraints:

β̂ −
2β̂2

w2 =
1

3ŴI1(Ŵ)
, (5.16a)

I2(Ŵ) ≥ ln

2 +
√

4 − Ŵ2

Ŵ

 , (5.16b)

where

I1(Ŵ) =
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη , (5.17a)

I2(Ŵ) =
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη . (5.17b)

Now we can draw the diagram of the relationship among the scaled control parameters
β̂ and β̂2, and the scaled width Ŵ. We obtain a surface, according to the stability conditions.
When w is set to 2, an example of such a surface is illustrated in Figure 5.3. Note that the
curve on the surface of β̂2 = 0 is identical to that we have presented in Figure 2.6. The left
part of the surface represents the extremum as a local maximum, i.e. the second derivative
is negative; the right part of the surface represents the extremum as a local minimum, i.e.
the second derivative is positive; and the borderline between these two surfaces, where
Ŵ = 0.8798, indicates the situation when two extrema of eP,NL become an inflection point
(i.e. ∂eP,NL/∂Ŵ = 0 and ∂2eP,NL/∂Ŵ2 = 0). Clearly, once Ŵ is given, β̂ and β̂2 have to be
chosen in the right part of this surface. Due to the introduction of the additional parameter
β̂2, for each given width Ŵ, there is a curve to show all the possible groups of scaled
parameters β̂ and β̂2. As before, one of the parameters, α, has been eliminated.

5.3 Linear Nonlocal HOAC Prior Energy

In the previous section, we proposed a nonlinear nonlocal HOAC prior term ENL to over-
come the limitation of the standard HOAC prior term. Since the effect of ENL is to reinforce
the interaction along the bar branch and to weaken the interaction across the bar branch, the
interactions in these two directions are still somehow dependent, and hence the two effects
cannot be tuned in a completely independent way. Furthermore, since the computational
cost of this nonlinear term is high, as we will show, we cannot perform road extraction on
images at full resolution with this nonlinear model. To overcome these drawbacks, in this
section, we construct a new, Euclidean invariant linear nonlocal HOAC prior term EL as a
replacement for ENL. We analyze the stability of the new model, and find that in addition to
solving the above limitation by separating the interactions between points on the same and
opposite sides of a network branch, the new model permits a broader range of widths to be
modeled simultaneously, and can even model two disjoint width ranges.
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5.3.1 Contour Model Definition

As we have seen in chapter 2, one general class of quadratic HOAC terms can be written as

EHO(R) = −
"

(∂R)2
γ̇(t) ·GC(γ(t), γ(t′)) · γ̇(t′) dt dt′ , (5.18)

where GC is a map from Ω2 to 2 × 2 matrices. Imposing Euclidean invariance on this
term leads to two possibilities: GC(γ(t), γ(t′)) = Ψ(|∆γ|/d) δ, where δ is the unit matrix,
and ∆γ = γ(t) − γ(t′); or GC(γ(t), γ(t′)) = Ψ(|∆γ|/d) ∆γ∆γT . The first possibility leads to
the standard HOAC term in EC,S (equation (5.1)). The second possibility leads to our new
linear nonlocal HOAC prior energy, EL:

EL(R) = −
"

(∂R)2

(
γ̇(t) · ∆γ(t, t′)

)(
γ̇(t′) · ∆γ(t, t′)

)
Ψ
( |γ(t) − γ(t′)|

d2

)
dt dt′ , (5.19)

where we use the same Ψ (equation (5.2)) as in EC,S , but with a different range d2.
EL compares each tangent vector to the vector ∆γ(t, t′) joining the two interacting

points. When two points have tangent vectors that are both nearly aligned or anti-aligned
with ∆γ, the product of the dot products is positive. The energy EL can decrease further
by further aligning these tangent vectors with ∆γ and hence with each other. This situation
corresponds to two points on the same side of a network branch, as shown in Figure 5.4(a).
The energy thus favors straight lines, within a range controlled by d2. On the other hand,
when at least one of the two tangent vectors is nearly orthogonal to ∆γ, the product of the
dot products is small. In this configuration, changing the distance between the two points in
the argument to Ψ does not change the energy much, and thus the force between two such
points is small. This situation corresponds to two points on opposite sides of a network
branch, as shown in Figure 5.4(b).

As a result, when EL is added to EC,S , the width of the network branches is controlled
largely by the parameter d of EC,S , while the distance over which the branch will be straight
is controlled largely by d2, if d2 > d. For thin, straight bars, we will indeed fix d2 > d. The
exception to this rule is again shown in Figure 5.4(b). From the above, γ(t′) exerts no force
on γ(t), but for both γL(t′) and γR(t′), the product of the dot products is negative. The energy
EL can decrease when the value of Ψ becomes less positive, i.e. both γL(t′) and γR(t′) repel
γ(t), as shown by the force arrows FL and FR in the figure. The tangential parts of FL and
FR cancel, and there is an overall normal repulsion F. If the weight of EL in the model is
too large, this repulsion may begin to dominate the bar width.

We can notice an interesting fact by changing the notation of the linear nonlocal HOAC
term EL in equation (5.19). We make the following change of variables:

γ̇(t) = (cos θ, sin θ), γ̇(t′) = (cos θ′, sin θ′), ∆γ(t, t′) = (cos η, sin η).

Then, by developing the product of equation (5.19), EL can be rewritten as (up to a multi-
plicative)

EL(R) = −
"

(∂R)2

(
cos(θ − θ′) + cos

(
θ + θ′ − 2η

))
Ψ
( |γ(t) − γ(t′)|

d2

)
dt dt′ . (5.20)
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(a) (b)

Figure 5.4. The effects of EL in equation (5.19) (blue arrow: vector; cyan arrow: interaction
force; black dot: interacting point). (a): when two tangent vectors are nearly aligned or
anti-aligned with ∆γ, the energy EL favors their alignment; (b): when at least one of the two
tangent vectors is nearly orthogonal to ∆γ, there is only a very small force between the two
points, but contributions from many points can add up to a significant repulsion, as denoted
by F.

EL is not only a function of (θ − θ′), but also a function of (θ + θ′). If ∆γ(t, t′) acts as
a canonical axis, (θ − η) and (θ′ − η) are now the “fundamental” angles. Note that the first
cosine function in equation (5.20) is just the inner product γ̇(t) · γ̇(t′); thus the first part of
equation (5.20) has the same form as the standard HOAC term (except that d2 , d). The
second cosine function is the inner product of γ̇(t) with the reflection of γ̇(t′) in ∆γ(t, t′). So
the second part is a new term that results in the new effect of EL, but we will still make use
of EL in equation (5.19), because it is more convenient to analyse and implement this form.

5.3.2 Phase Field Model Definition

We now reformulate EL(R) in the phase field framework. We rotate tangent vectors to
normal vectors, and replace the latter by ∇φ. Since ∇φ is very small outside RC , the domains
of integration can be extended from ∂R to Ω without significantly changing the energy,
except for a multiplicative factor. By introducing a weight parameter β2, we define the
linear nonlocal HOAC phase field term EL(φ) as

EL(φ) = −
β2

2

"
Ω2

(
∇φ(x) × (x − x′)

)(
∇φ(x′) × (x − x′)

)
Ψ
( |x − x′|

d2

)
dx dx′ , (5.21)

where × is the 2D vectorial antisymmetric product. The functional derivative of EL is

δEL(φ)
δφ(x)

= β2

∫
Ω

∇ ·
(
ε(x − x′)(x − x′)T εT

)
· ∇φ(x′) Ψ

( |x − x′|
d2

)
dx′ , (5.22)

where ε rotates the tangent vectors to the inward normal vectors. Since this functional
derivative is linear in φ, we call EL as the linear nonlocal term.

After incorporating the additional linear nonlocal term EL into our primary model
Eprimary (section 2.4), we define the total energy as E = θ(E0+ES +EL)+ED. To minimize E,
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we perform, as usual, gradient descent with the neutral initialization. The functional deriva-
tive of EL, δEL/δφ, like all the other nonlocal terms, is calculated in the Fourier domain. So
the evolution equation of EL is given by

−
δEL(φ)
δφ(x)

=β2F
−1

{(
k2

1F
{
r2 sin2 θ Ψ

(
r/d2

)}
− 2k1k2F

{
r2 sin θ cos θ Ψ

(
r/d2

)}
+ k2

2F
{
r2 cos2 θ Ψ

(
r/d2

)})
φ̂(k)

}
, (5.23)

where k = (k1, k2)T is frequency in the Fourier domain, and x is represented by its polar co-
ordinate (r, θ). For more details, see Appendix B. By adding this term into equation (2.24),
we obtain the overall evolution equation of our new linear model.

5.3.3 Stability Analysis of the Linear Nonlocal HOAC Total Prior Model

The sum of the three energies, EP,L = E0 + ES + EL constitutes the linear nonlocal HOAC
total prior model. Compared to the standard prior model, two more parameters β2 and d2
have been introduced, so the situation is much more complicated. The behavior of EP,L

depends on the six parameters (α, λ, β, β2, d, d2), and can vary significantly. Therefore, in
this subsection, we analyze the stability conditions of the model for a network branch.

Linear Nonlocal Phase Field HOAC Term of a Bar

We evaluate the linear nonlocal HOAC term EL (equation (5.21)) on the ansatz of a long
straight bar described in equation (2.9). We obtain

EL = −8β2L
{∫ ∞

0
z2 Ψ

( z
d2

)
dz − d3

∫ ∞

Ŵ
η

√
η2 − Ŵ2 Ψ

( η
d̂2

)
dη

}
, (5.24)

where d̂2 = d2/d is the ratio between two interaction ranges. ReplacingΨ by equation (5.2),
we have the linear nonlocal phase field HOAC energy, per unit length of bar, eL:

eL(w, Ŵ) = −
16β2d3

2

3

(
1 −

3
π3

)
+ 4β2d3

∫ ∞

Ŵ
η

√
η2 − Ŵ2 Ψ

( η
d̂2

)
dη

=4β2d3
∫ 2d̂2

Ŵ
η

√
η2 − Ŵ2

(
2 −

η

d̂2
+

1
π

sin
(πη

d̂2

))
dη +C3 , (5.25)

where C3 = −16β2d3
2(1 − 3/π3)/3 is a constant independent of w and Ŵ.

Linear Nonlocal HOAC Total Prior Model of a Bar

Now we sum up all the energies per unit length, i.e. e0 (equation (2.13)), eS (equation (2.15))
and eL, and remove the constant terms. The linear nonlocal HOAC total prior model per unit
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length of bar, eP,L, is

eP,L(w, Ŵ) =e0 + eS + eL

=
4
3
αŴd +

4
15
λw +

4
w
+ 4βd

∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη

+ 4β2d3
∫ 2d̂2

Ŵ
η

√
η2 − Ŵ2

(
2 −

η

d̂2
+

1
π

sin
(πη

d̂2

))
dη . (5.26)

As for eP,NL, we find the minimum of eP,L by setting its first derivatives, with respect
to w and Ŵ, to zero, while ensuring that its second derivative, with respect to Ŵ, is non-
negative. This leads to lengthy calculations that we detail in Appendix A.2.3. Finally we
find

∂eP,L

∂Ŵ
=

4
3
αd − 4βŴd

∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη

−
4β2Ŵd3

d̂2

∫ 2d̂2

Ŵ

√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη , (5.27a)

∂eP,L

∂w
=

4
15
λ −

4
w2 , (5.27b)

∂2eP,L

∂Ŵ2
= − 4βd ln

2 +
√

4 − Ŵ2

Ŵ

 + 4βd
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη

−
4β2d3

d̂2

∫ 2d̂2

Ŵ

η2 − 2Ŵ2√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη . (5.27c)

It follows that stability is related to the three scaled control parameters β̂ = β/α, β̂2 =

β2d2/α and d̂2 = d2/d, and also to the scaled width Ŵ = W/d. The parameter constraints
are then as follows:

1 − 3β̂ŴI1(Ŵ) −
3β̂2Ŵ

d̂2
I3(Ŵ) = 0 , (5.28a)

β̂I2(Ŵ) −
β̂2

d̂2
I4(Ŵ) ≥ β̂ ln

2 +
√

4 − Ŵ2

Ŵ

 , (5.28b)

λ =
15
w2 , (5.28c)

where I1(Ŵ) and I2(Ŵ) have been defined in equation (5.17); and I3(Ŵ) and I4(Ŵ) take the
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(a) (b)

(c) (d)

Figure 5.5. d̂2 = 2 < D̂2. (a): different regions in the β̂2 − β̂ plane. eP,L has either no local
minimum (red) or one local minimum (green). (b): the associated stable bar width Ŵ∗. (c):
eP,L with no local minimum (β̂ = 0.05, β̂2 = 0.04). (d): eP,L with one local minimum
(β̂ = 0.2, β̂2 = 0.1).

form:

I3(Ŵ) =
∫ 2d̂2

Ŵ

√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη , (5.29a)

I4(Ŵ) =
∫ 2d̂2

Ŵ

η2 − 2Ŵ2√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη . (5.29b)

For w, the constraint is trivial, leading to λ = 15/w2. The stable width Ŵ, i.e. the value
of Ŵ where a local minimum of eP,L is found, depends on the parameters β̂, β̂2 and d̂2. Let
us compare the first constraint in equation (5.28a) to the constraint of the standard HOAC
total prior model in equation (2.19a). In the latter model, the part ŴI1(Ŵ) is a simple curve
with one maximum inside the interval [0, 2), so for a given β̂, the number of solutions of
this equation is at most two: one corresponds to the local minimum of the energy; and the
other the local maximum. However, due to the incorporation of the new linear prior energy
EL, we have an additional part in the above first constraint. This additional part ŴI3(Ŵ)/d̂2
is also a simple curve with one maximum but in the interval [0, 2d̂2). As a result, in the case
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(a) (b)

(c) (d) (e)

Figure 5.6. d̂2 = 5.5 > D̂2. (a): different regions in the β̂2 − β̂ plane. eP,L has either no
local minimum (red), one local minimum (green), or two local minima (white). (b): the
associated stable bar width(s) Ŵ∗. (c): eP,L with no local minimum (β̂ = 0.1, β̂2 = 0.01). (d):
eP,L with one local minimum (β̂ = 0.05, β̂2 = 0.015). (e): eP,L with two local minima
(β̂ = 0.2, β̂2 = 0.013).

where d̂2 is small, the effective intervals of the two curves are mostly overlapped, and the
first constraint possesses the same property as the previous constraint in equation (2.17a):
the possible number of solutions is zero or two; while in the case that d̂2 is large enough
so that one curve has a longer effective interval than the other, the property of the first
constraint changes significantly: the possible number of solutions is zero, two, or four.

Consequently, there is a singular point of d̂2, where the maximum number of solutions
jumps from two to four, and accordingly the stable width(s) that the prior energy can model
jump(s) from one to two. However, since equation (5.28a) involves complicated integrals
and the piecewise interaction functions, it is non-trivial to obtain analytically the number of
its solutions. Therefore, we carry out numerical experiments to find an approximate value
for this singular point. We find that such a singular point of d̂2 (named D̂2) indeed exists,
with D̂2 ' 2.7. If d̂2 is less than D̂2, at most one local minimum can be found. If d̂2 > D̂2,
there are three cases, depending on the values of β̂, β̂2 and d̂2: eP,L has no local minimum;
eP,L has one local minimum, with either Ŵ ' 1 (i.e. W ' d) or Ŵ ' d̂2 (i.e. W ' d2); or eP,L

has two local minima, at Ŵ ' 1 and Ŵ ' d̂2.
The two regimes are illustrated in Figures 5.5 and 5.6. For both regimes, the associated
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(a) β̂2 = 0, β̂ = 0.15 (b) β̂2 = 0.002, β̂ = 0.15

(c) β̂2 = 0.004645, β̂ = 0.15 (d) β̂2 = 0.01, β̂ = 0.15

(e) β̂2 = 0.01168, β̂ = 0.15 (f) β̂2 = 0.0132, β̂ = 0.15

(g) β̂2 = 0.01739, β̂ = 0.15 (h) β̂2 = 0.02, β̂ = 0.15

Figure 5.7. Changes in the energy graphs when the parameter setting is moved from left to
right along the dotted path P shown in Figure 5.6 (d̂2 = 5.5). Red dot: local minimum.
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(a) β̂2 = 0.01168, β̂ = 0.1115 (b) β̂2 = 0.01859, β̂ = 0.06167

Figure 5.8. Energy graphs when the parameter setting is chosen in the two intersection
points of curves shown in Figure 5.6 (d̂2 = 5.5). Red dot: local minimum.

stable bar width, where the local minimum of the prior energy eP,L is found, as well as the
possible behaviors of the energy, are shown in the same figure. Figure 5.5 gives an example
for d̂2 = 2 < D̂2. In the β̂2 − β̂ plane, the red region and the green region correspond to
the situations when eP,L has no local minimum, and one local minimum respectively. The
sole separation curve between the two regions corresponds to the situation when the two
extrema of eP,L become an inflection point. This curve demonstrates a qualitative change in
the behavior of eP,L.

The case for d̂2 > D̂2 (here d̂2 = 5.5) is shown in Figure 5.6. To make things clearer,
we label the three curves by numbers; and we name the widths where the two possible local
minima are found ŴMIN1 and ŴMIN2 , and the widths where the two possible local maxima
are found ŴMAX1 and ŴMAX2 , by the ascending order of their values, so ŴMAX1 ≤ ŴMIN1 ≤

ŴMAX2 ≤ ŴMIN2 . (In the case of equality, the extrema of the energy merge as the inflection
point(s).) We examine the situation of each curve and each intersection point between two
curves:

• Curve 1: ŴMAX1 and ŴMIN1 merge together and become an inflection point. See
Figure 5.7(c).

• Curve 2: ŴMAX2 and ŴMIN2 merge together and become an inflection point. See
Figure 5.7(e).

• Curve 3: ŴMIN1 and ŴMAX2 merge together and become an inflection point. See
Figure 5.7(g).

• Intersection point between curve 1 and curve 2: ŴMAX1 merge with ŴMIN1 and also
ŴMAX2 merge with ŴMIN2 . Four extrema of the energy merge as two inflection points.
See Figure 5.8(a).

• Corner point between curve 1 and curve 3: ŴMAX1 , ŴMIN1 and ŴMAX2 merge to-
gether. The energy has a very wide maximum (the inflection point of the three ex-
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trema) and a local minimum. See Figure 5.8(b).

• Corner point between curve 2 and curve 3: it actually goes off to infinity, which arises
from the finite range of the interaction function Ψ we use here. It corresponds to the
situation where ŴMIN1 , ŴMAX2 and ŴMIN2 merge together. The energy should have
a local maximum and a very wide local minimum (the inflection point of the three
extrema). This is exactly what we need, for modeling multiple widths of network
branches inside a somewhat wide range. Unfortunately, we cannot really use this
‘critical point’. In Appendix D, we discuss how to pull this corner point back to a
finite value, by changing to another type of interaction function.

In a word, each curve is a set of points where two extrema of the energy merge as
an inflection point, and where a qualitative change in the energy behavior happens; each
intersection point combines the properties of the two relative curves.

Let us now observe how the local minimum/minima of the energy eP,L evolve(s) accord-
ing to the three different states, i.e. no local minimum, one local minimum and two local
minima, if the parameter setting is moved from left to right along the dotted path P shown in
Figure 5.6. The sequence of energies eP,L is plotted in Figure 5.7. The state starts with no lo-
cal minimum (Figures 5.7(a)-5.7(b)). When the path P meets curve 1, a first local minimum
appears, and the state jumps from no local minimum to one local minimum. Initially, the
first local minimum is an inflection point (Figure 5.7(c)). The first local minimum gradually
becomes deeper, but the state stays in one local minimum, held there stably by the dynamic
(Figure 5.7(d)). Eventually, when the path P meets curve 2, a second local minimum, i.e.
an inflection point, appears (Figure 5.7(e)), and the state jumps from one local minimum
to two local minima (Figure 5.7(f)). When the parameter setting continues being moved to
the right and meets curve 3, the first local minimum and the second local maximum merge
together, and become an inflection point (Figure 5.7(g)). In the end, the first local minimum
disappears, and the state jumps back to one local minimum again (Figure 5.7(h)). The red
dots in Figure 5.7 denote the local minima. They are shown in Figure 5.6(b).

According to catastrophe theory (Zeeman, 1977), in our problem, the parameters related
to energy stability constitute an M-dimensional parameter space C, the width of the bar is
a 1-dimensional state space X, and the energy eP is a smooth function on X parameterized
by C. As noted in subsection 2.3.4, the relationship between the parameters of the standard
HOAC prior model and the model behavior, shown in Figure 2.6 is an example of a fold
catastrophe, because in that case, the dimension M of the parameter space is equal to 1
(there is only one parameter β̂ in space C), and the possible states of the 1-dimensional state
space are respectively no local minimum and one local minimum of the energy. Whereas,
here for the linear nonlocal HOAC prior model, two additional parameters d̂2 and β̂2 are
introduced. Then, M = 3, and besides the two previously existing states, a third new
behavior in the 1-dimensional state space corresponds to two local minima of the energy.
This behavior is an example of a swallowtail catastrophe. The analytical study illustrated
by the diagrams in Figures 5.5 and 5.6 confirms this statement.

The variety of behaviors is important for applications. As well as being able to model
networks with branches of more or less fixed width, but with greater ‘stiffness’ than pro-
vided by the model in (Rochery et al., 2006), the new energy can model two widths at the
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XXXXXXXXXXXMethod
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

New model E (with ENL)
(Figure 5.9(d))

0.9524 0.8591 0.8237

Eprimary (β2 = 0)
(Figure 5.10(a))

0.8832 0.8659 0.7769

θE0 + ED

(Figure 5.10(c))
0.4282 0.8314 0.3940

MLE (θ = 0)
(Figure 5.10(b))

0.9734 0.1831 0.1822

Table 5.1. Quantitative evaluation criteria for the different methods tested on Figure 5.9(a)
at 1/4 resolution (T = True, F = False, P = Positive, N = Negative). The completeness is the
percentage of ground truth road network that is extracted; the correctness is the percentage
of extracted road network that is correct; and the quality is the most important measure
of the “goodness” of the result, because it takes into account the completeness and the
correctness.

same time. At certain ‘critical points’ in parameter space, essentially where pairs of minima
merge, it could also model a large range of widths, all of which are approximately stable.

5.4 Experimental Results and Comparisons

As input data I, we use a number of images, with average size 1200×1200 pixels, extracted
from a QuickBird optical panchromatic image of Beijing. The scenes are characteristic of
dense urban regions. Our aim is to extract, completely and accurately, the road network from
an image. In order to evaluate the performance of our new nonlinear and linear models,
we compare them quantitatively to ground truth and to other methods from the literature.
Ground truth for the evaluations is segmented by hand. We also analyze the effect of the
different terms in our energies.

5.4.1 Nonlinear Nonlocal Overall Model

In this subsection, we demonstrate the behavior of our new nonlinear model containing the
nonlinear, nonlocal HOAC prior term ENL, i.e. E = θ(E0 +ES +ENL)+ED via experiments
on real QuickBird panchromatic images in dense urban areas, at reduced resolutions.

Figure 5.9(a) shows one of the input images at 1/4 resolution. The parameters (θ, θv, α, λ,

β, β2, d) are (100, 0, 0.12, 3.8, 0.0375, 0.0338, 4). The results obtained using the energy with
the new nonlinear nonlocal term ENL at iterations 1, 1, 500 and 27, 000 are illustrated in
Figures 5.9(b)-5.9(d). The result obtained using our primary model Eprimary (without ENL)
is shown in Figure 5.10(a). We see that adding ENL enables the recovery of the main and
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(a) (b)

(c) (d)

Figure 5.9. Data, and experiment at 1/4 resolution. (a): image data (size = 350 × 350, road
width = 3 ∼ 5 pixels). (b)-(d): results obtained using the new nonlinear model (with ENL)
at iterations 1, 1, 500 and 27, 000.
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(a) (b)

(c) (d)

Figure 5.10. Experiments at 1/4 resolution and ground truth. (a)-(c): results obtained re-
spectively using the energy Eprimary (without ENL), MLE, and a standard, non-higher-order
active contour model (with neither ES nor ENL). (d): ground truth segmented manually.

secondary road network, whereas the model without ENL misses a secondary road. In order
to illustrate the effects of other terms in the model, we compute results using maximum
likelihood estimation (MLE, i.e. θ = 0) and a standard, non-higher-order active contour,
i.e. β = β2 = 0 (see Figures 5.10(b) and 5.10(c)). The ground truth is presented in Fi-
gure 5.10(d). The MLE result shows that local image information alone is not sufficient to
distinguish the roads from the background, while the standard active contour result shows
the importance of the geometric knowledge introduced by HOACs. Quantitative evaluations
based on standard criteria (Heipke et al., 1997) are shown in Table 5.1. On the other hand,
the computation time for the result in Figure 5.9 is around 80 minutes, which is considerably
slower than the next nearest time, that obtained with the model Eprimary (Figure 5.10(a)).

Figure 5.11 presents more results at reduced resolutions. From top to bottom, the para-
meters (θ, θv, α, λ, β, β2, d) are respectively (200, 0, 0.12, 4.5, 0.035, 0.035, 3), (200, 0, 0.0905,
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Figure 5.11. More experiments at reduced resolutions. First column: input images, first
row: 1/2 resolution, size = 400 × 440, road width = 2 ∼ 4 pixels; second row: 1/4
resolution, size = 300 × 300, road width = 3 ∼ 5 pixels; third row: 1/4 resolution, size
= 300 × 400, road width = 3 ∼ 6 pixels; last row: 1/4 resolution, size = 512 × 512, road
width = 3 ∼ 15 pixels. Two rightmost columns: corresponding results obtained using the
new nonlinear model (with ENL) and the primary model Eprimary (without ENL).
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4.5, 0.0375, 0.025, 5), (200, 0, 0.0905, 5, 0.0375, 0.025, 4) and (100, 0, 0.1, 4.5, 0.0375, 0.03,
4). The first column shows the input image data, which is either at 1/4 or 1/2 resolution.
The two columns on the right show the corresponding results obtained with and without the
new nonlinear, nonlocal term ENL. The importance of ENL is clear: it facilitates greatly the
retrieval of secondary roads. However, the nonlinear nonlocal prior term is computation-
ally expensive, which is why the method is applied only at reduced resolutions. To solve
this problem, which is due to the nonlinear nature of ENL, we show the effect of the linear
nonlocal prior term in the next subsection.

5.4.2 Linear Nonlocal Overall Model

In this subsection, we focus on two particular cases of road extraction: extraction of a net-
work consisting of roads of roughly the same width; and extraction of networks containing
roads of two different widths. In the former case, we choose the parameters so that eP,L has
one local minimum. The resulting model can extract roads whose widths’ are close to the
minimizing value. In the latter case, we choose the parameters so that eP,L has two local
minima. Again a small range of widths around each minimum is possible.

Extraction of Roads of Similar Width

We apply our new linear model E = θ(E0 + ES + EL) + ED to both the full-resolution and
reduced resolution images. We fix the parameters as described in subsection 5.3.3.

The results obtained using the new linear model E (with EL), at 1/4 resolution and at full
resolution, are shown in Figures 5.12(b) and 5.12(c). For this experiment, the parameters
(θ, θv, α, λ, β, β2, d, d2) are (200, 0, 0.15, 4, 0.02, 2×10−4, 4, 12) and (200, 0, 0.15, 4, 0.02, 1.25×
10−5, 16, 48) at 1/4 and full resolution respectively. Note that apart from the obvious scaling
of d and d2, and a change in β2, the other parameters are the same for the two resolutions.
The computational speed of the linear model is equivalent to that of the primary model;
theoretically, they are supposed to be two times as fast as the nonlinear model 4. In practice,
the computational time of the linear model for this experiment is 60 minutes and 936 min-
utes at 1/4 and full resolution. The complete road network is retrieved successfully, at both
resolutions. Although the segmentation at 1/4 resolution appears geometrically smoother
and converges faster, the extraction result is actually more accurate at full resolution. Ac-
curacy at 1/4 resolution is limited both directly, by the low resolution of the phase field,
and indirectly, because each scaling coefficient in the data at level 2 is the average of 16
pixels at full resolution: coefficients near the road border therefore include both road and
background contributions, and the road boundary is thereby blurred.

To evaluate the performance of the new model, we now compare our result with other
methods at full resolution. As before, we compare results obtained with MLE (i.e. θ = 0);
with a standard, non-higher-order active contour (i.e. β = β2 = 0); and with the primary

4As already mentioned, we compute the functional derivative of the energy in the Fourier domain. At each
iterative step, for the nonlinear model, we need to compute twice a Fourier transfer and twice an inverse Fourier
transfer; while for the linear model or the primary model, only one Fourier transfer and one inverse Fourier
transfer are required.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12. Experiments using the new linear model (with EL), and analysis of the effect
of the different terms in the energy. (a): image data (size: 1400× 1400); (b): result obtained
using the new linear model (with EL), at 1/4 resolution; (c): result obtained using the new
linear model (with EL), at full resolution; and results obtained at full resolution using (d):
MLE; (e): the model with β = β2 = 0 (equivalent to a standard active contour); (f): the
primary model Eprimary (without EL, i.e. β2 = 0).
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(a) (b)

Figure 5.13. Comparisons at full resolution. (a)-(b): results obtained with (Wang and Zhang,
2003) and (Yu et al., 2004).

model Eprimary (without EL, i.e. β2 = 0). They are shown in Figures 5.12(d)-5.12(f). MLE is
clearly incapable of distinguishing the roads from the background, while the models with-
out EL and/or ES are not able to recover the complete road network (although that with ES

does better than the standard active contour, with only local prior knowledge). In addition,
we apply two other methods, proposed in (Wang and Zhang, 2003) and (Yu et al., 2004),
and compare them to ours (see Figure 5.13). Without much prior geometric knowledge,
they extract many incorrect areas that happen to have statistical properties similar to roads.
Moreover, the accuracy of the delineation of the road boundary is poor. Some quantita-
tive evaluations based on standard criteria (Heipke et al., 1997), are shown in Table 5.2.
The ‘quality’ is the most important measure because it considers both completeness and
correctness. The linear model and the nonlinear model at 1/4 resolution achieve a similar
performance; and the linear model at full resolution outperforms all others.

Figure 5.14 presents more results using the new linear model (with EL), at a reduced
resolution and at full resolution. From top to bottom, at a reduced resolution, the parameters
(θ, θv, α, λ, β, β2, d, d2) are respectively (200, 0, 0.15, 5, 0.025, 2× 10−4, 3, 9), (200, 0, 0.15,
5, 0.02, 3 × 10−4, 4, 12), (200, 0, 0.0905, 5, 0.03, 1.5 × 10−4, 4, 12), and (200, 0, 0.12,
5, 0.02, 2 × 10−4, 4, 12); and at full resolution, the parameters (θ, θv, α, λ, β, β2, d, d2) are
respectively (200, 0, 0.15, 4, 0.025, 5 × 10−5, 6, 18), (200, 0, 0.15, 5, 0.02, 1.25 × 10−5, 16,
48), (200, 0, 0.15, 5, 0.022, 1.375×10−5, 16, 48), and (200, 0, 0.15, 5, 0.02, 1.25×10−5, 16,
48). In practice, the results are not very sensitive to the precise choice of parameter values,
provided they lie in the correct subset of the β̂ − β̂2 − d̂2 diagram. We also apply the same
model to river extraction, as shown in Figure 5.17. Figures 5.15 and 5.16 show respectively
a large image (size: 1100 × 3300) and the road extraction result obtained using our models,
at full resolution.
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Figure 5.14. More results using the new linear model (with EL) on pieces of a QuickBird
image at a reduced resolution and at full resolution. Image size: first row: 800×880; second
row: 1200 × 1200; third row: 1200 × 1600; last row: 1400 × 1400.
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Figure 5.17. Result of river extraction on a QuickBird panchromatic image (size: 1024 ×
1024).

(a) (b) (c)

Figure 5.18. Extraction of a road network containing two different widths, at 1/4 re-
solution. (a)-(c): image data; results using: the new linear model E; the primary model
Eprimary (β2 = 0).
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XXXXXXXXXXXMethod
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

New model E (with EL) at 1/4

resolution (Figure 5.12(b))
0.9688 0.8519 0.8292

New model E (with ENL) at 1/4

resolution (Figure 5.9(d))
0.9524 0.8591 0.8237

New model E (with EL) at full

resolution ( Figure 5.12(c))
0.8756 0.9693 0.8520

MLE

(Figure 5.12(d))
0.9356 0.2073 0.2044

θE0 + ED

(Figure 5.12(e))
0.6047 0.8249 0.5359

θ(E0 + ES ) + ED

(Figure 5.12(f))
0.6946 0.9889 0.6892

Wang (Wang and Zhang, 2003)

(Figure 5.13(a))
0.9350 0.3463 0.3381

Yu (Yu et al., 2004)

(Figure 5.13(b))
0.6050 0.3695 0.2977

Table 5.2. Quantitative criteria tested on Figure 5.12(a) at full resolution (except first row)
(T = True, F = False, P = Positive, N = Negative). See Table 5.1 for an explanation of
completeness, correctness and quality.

Extraction of Roads of Different Widths

Images containing roads of different widths are processed after choosing parameter values
for which eP,L has two local minima. Figure 5.18(a) shows an input image containing two
roads: their widths are approximately 20 pixels and 80 pixels. The results obtained using
the new linear model (with EL) and the primary model Eprimary (without EL), at 1/4 re-
solution, are illustrated in Figures 5.18(b) and 5.18(c) respectively. The parameter values
(θ, θv, α, λ, β, β2, d, d2) used in this experiment are (25, 0, 0.15, 5, 0.02, 1.228 × 10−4, 4, 22).
The estimated stable widths for these parameter values are 5.28 and 20.68, corresponding to
the road widths at 1/4 resolution, i.e. 5 pixels and 20 pixels. This comparison shows clearly
that adding EL enables the detection of roads with both widths, while the primary model
without EL finds only an incomplete network.
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5.5 Conclusion

Narrow secondary roads in VHR images are very difficult to extract, because of occlusion
effects and the similar radiometric properties of the road region and background. In par-
ticular, the standard HOAC prior term has a severe limitation: network branch width is
constrained to be similar to maximum network branch radius of curvature, thereby pro-
viding a poor model of networks with straight narrow branches or highly curved, wide
branches. To deal with this problem, the incorporation of strong geometric prior knowledge
of road networks is essential. Building upon our primary model, we have first presented,
in this chapter, a novel nonlinear nonlocal phase field term. This novel term causes pairs
of points inside the range of the interaction to attract each other. In conjunction with the
original HOAC geometric term, it allows the interaction between points on the same side of
a network branch to be stronger than the interaction between points on opposite sides of a
network branch. Therefore, the incorporation of the term enables the generation of longer
arm-like branches and better prolongation. Subsequently, we have proposed another novel
linear nonlocal HOAC term for modeling bar shape and embedded it in the phase field
framework. Thus, the prolongation of the network branch is controlled by this new linear
term, which includes a longer-range interaction. Based on a stability analysis of a bar with a
desired width, we established constraints linking the parameters of the energy function. We
explored the possible behaviors of the resulting prior energy as a function of the parameter
settings, and showed that as well as separating the interactions between points on the same
and opposite sides of a network branch, the new linear model permits the modeling of two
widths simultaneously. The analysis also fixes some of the model parameters in terms of
network width(s). Moreover, due to the linearity, the linear nonlocal term is more efficient
from a computational point of view, and can be applied to images at full resolution. For this
reason, in the experiments on road network extraction from VHR satellite images, some
thinner networks can also be extracted, and in general, the extraction accuracy has been
improved, with the linear nonlocal term at full resolution.



Conclusion

In this chapter, we summarize the goal and the proposed models of this thesis. We also
point out some possible ways to improve our models in future work.

Summary

The goal of this thesis was to develop new variational models for the segmentation from an
image of entities that have the form of a ‘network’, i.e. branches joining together at junc-
tions. More particularly, we focused on incorporating different types of geometric prior on
network regions, while taking advantage of a multiresolution analysis of the image. We
applied our different models to segment road networks from very high resolution (VHR)
QuickBird panchromatic images (∼0.61m/pixel) in dense urban areas. This is a hard prob-
lem due to the complexity existing in the data, and the complexity of modeling network
regions with arbitrary topology.

We first started with a primary model in a phase field formulation. It was composed of
a standard higher-order active contour (HOAC) prior model and a region-based likelihood
model. Thanks to long-range interactions between pixels of the HOAC, the model enabled
the inclusion of sophisticated prior knowledge of region geometry. Phase fields also pro-
vided many advantages over other conventional methods for region modeling. To ease the
difficulties stemming from the complexity of the image scene at high resolution, we intro-
duced a multiresolution statistical data model and a multiresolution constraint prior model.
These two models allowed the effective integration of image information from different
resolutions. Multiresolution analysis can greatly increase the robustness of the algorithm.
Subsequently, in the context of map updating, we included a specific shape prior for the re-
gion, derived from a Geographical Information System (GIS) map, and combined it with the
other more generic priors. GIS information, though outdated, can provide partly correct in-
formation about the considered scene, and eliminate false detections in the background. We
showed that our model was able to improve the accuracy of unchanged objects, to extract
newly appeared objects, and to remove objects that had disappeared from the map.

To facilitate the extraction of thinner elongated structures, we proposed two new HOAC
prior models. Both of them achieved a similar effect on shape modeling, that is, to control
independently the straightness and the width of the road, in conjunction with the standard
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HOAC term. Therefore, the incorporation of these two terms enabled the generation of
longer arm-like branches and better prolongation. Moreover, the linear term had several
advantages over the other nonlinear one: it was more efficient from a computational stand-
point, and it was able to model multiple widths simultaneously. In each HOAC total prior
model, there were a number of control parameters. It was of great importance to establish
the internal constraints among them, so as to fix some in terms of the others. For these
prior models, within the phase field representation, we calculated stability conditions, and
indicated the related constraints. We showed that the relationships between the control
parameters and energy behavior followed some special cases of catastrophe theory.

We tested and evaluated the proposed models on QuickBird images of Beijing, and
compared them to several other techniques in the literature. The experimental results and
comparisons demonstrate the superiority of our models.

Perspectives

Of course, there are still many possibilities to improve the work in this thesis. Here we list
some perspectives:

1. From the stability analysis of the linear nonlocal HOAC total prior model, we showed
that the model’s behavior depends on the three scaled control parameters β̂, β̂2 and
d̂2. This is an example of a swallowtail catastrophe. Indeed, with the parameter set-
tings in one of its swallowtail corners, a wide flat minimum can be generated, which
seems to be an efficient way to extract branches of multiple widths. However, with
the current interaction function with finite support, this effective swallowtail corner
has an infinite value, therefore impossible to use in practice. Alternatively, in Ap-
pendix D, we started to investigate the feasibility of bringing it back from infinity to a
finite value, by changing to another type of interaction function with infinite support.
Furthermore, the condition of being at that right corner enables β̂ and β̂2 to be fixed.
Only d̂2 is left as an adjustable parameter. Besides the exponential function used in
Appendix D, we may exploit other types of interaction function, if it is monotonically
decreasing to zero at infinity.

2. In our last linear nonlocal HOAC prior model, the linear nonlocal term EL aims to
control the longer-range interactions along the network branch, (and of course, when
modeling two different widths, EL is responsible for the larger width,) while the stan-
dard term ES still controls the interactions (with a shorter range) in both longitudinal
and transverse directions. A possible replacement of ES , ET , can be restricted to
have an effect solely in the transverse direction. Following a similar idea to EL, but
changing the cross product to the dot product, we can write ET as

ET (φ) = −
β

2

"
Ω2

(
∇φ(x) · (x − x′)

)(
∇φ(x′) · (x − x′)

)
Ψ
( |x − x′|

d

)
dx dx′ .

So the prior model writes EP,L = E0+ET +EL, which provides a complete separation
of interactions.
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3. In our current data model, we only use a simple region-based likelihood data energy
based on the image intensity and/or the variance. Gradient information and Haar
wavelet coefficients are too noisy to be useful for segmentation in dense urban envi-
ronments at this resolution. In the future, we may integrate other cues, such as color,
texture, and wavelet coefficients with other wavelet kernels into the data model. This
would be useful for the extraction of large roads. Another possibility is a more so-
phisticated data model including interactions between pixels.

4. Due to the high computational cost, it is very important to improve the computational
efficiency. We could optimize the program in several different ways. Some sparse
matrix operators could be introduced to avoid the calculation of integrals. Another
potentially powerful numerical technique to solve the phase field equations is to use
the adaptive grid method (Provatas et al., 1998).

5. We may express the phase field prior model in a suitable wavelet basis, and develop
the multiscale structure of the prior model. On the one hand, the relationship among
the same parameters at different resolutions may be established. On the other hand,
the computational time may be reduced, in terms of a fast convergence.

6. Last but not least, we can think about cooperation among the different models we have
proposed. Introducing other appropriate prior knowledge is a promising direction to
increase robustness of the algorithm. In the future, we could apply our models to
VHR data of other cities or to other applications.





Appendix A

Stability Calculations

In this appendix, we detail the calculation of the stability analysis of a long straight bar,
of length L and width W << L → ∞ (see Figure 2.5). The ansatz for φR for such a bar
is defined as follows: the phase field is given by φ(x) = 1 for x ∈ R \ RC; φ(x) = −1 for
x ∈ R̄ \ RC , while in RC , φ changes linearly from 1 to −1. Its expression using Cartesian
coordinates is presented in equation (2.9).

A.1 Energy Terms of a Bar

A.1.1 Basic Phase Field Term

For the basic phase field term E0 (see equation (2.6)):

E0(φ) =
∫
Ω

{1
2
∇φ(x) · ∇φ(x) + λ

(1
4
φ4(x) −

1
2
φ2(x)

)
+ α

(
φ(x) −

1
3
φ3(x)

)}
dx , (A.1)

the image domain Ω decomposes into the region R, the region R̄ and the interface RC . The
integration gives

E0,R =
(
−

1
4
λ +

2
3
α
)
(WL − wL) , (A.2a)

E0,R̄ =
(
−

1
4
λ −

2
3
α
)
(A0 −WL − wL) , (A.2b)

E0,RC = 2
∫ ∞

−∞

{∫ w

0

{1
2

4
w2 + λ

(1
4

( 2
w

v − 1
)4
−

1
2

( 2
w

v − 1
)2)

+ α
(( 2

w
v − 1

)
−

1
3

( 2
w

v − 1
)3)}

dv
}

du

= 2
∫ ∞

−∞

( 2
w
−

7
60
λw

)
du

=
4L
w
−

7
30
λwL , (A.2c)

where A0 is the area of Ω.
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A.1.2 Standard Phase Field HOAC Term

Since ∇φ is zero in the regions R and R̄, the double integral of the standard phase field
HOAC term ES (see equation (2.8)):

ES (φ) = −
β

2

"
Ω2
∇φ(x) · ∇φ(x′) Ψ

( |x − x′|
d

)
dx dx′ , (A.3)

needs to be calculated only across the interface RC . If we assume that Ψ is roughly con-
stant over distances w, each integral simply contributes a factor w, which cancels w in the
corresponding gradient −(2/w)n̂ (n̂ is the outward unit normal vector to the boundary). The
energy becomes

ES = −
β

2

"
Ω2

4
w2 n̂(x) · n̂(x′) Ψ

( |x − x′|
d

)
dx dx′

= −
4β
w2

{"
RCB×RCB

Ψ
( |x − x′|

d

)
dx dx′ −

"
RCB×RCT

Ψ
( |x − x′|

d

)
dx dx′

}
= − 4β

{" ∞

−∞

Ψ
( |u − u′|

d

)
du du′ −

" ∞

−∞

Ψ
( √

W2 + (u − u′)2

d

)
du du′

}
. (A.4)

Putting z = u − u′, we then have

ES = −4βL
{∫ ∞

−∞

Ψ
( |z|

d

)
dz −

∫ ∞

−∞

Ψ
( √W2 + z2

d

)
dz

}
. (A.5)

Now the integrals are symmetric in z, so we can reduce the range of the integrals to
positive values. This enables us to remove the absolute value in the first integral. Having
done this, we can introduce the variable η2 = (z2+W2)/d2 for the second integral, and again
we have no need of an absolute value. Noting that dz = dη ηd

√
η2−Ŵ2

, we have the expression

in equation (2.14):

ES = −8βL
{∫ ∞

0
Ψ
( z
d

)
dz − d

∫ ∞

Ŵ

η√
η2 − Ŵ2

Ψ(η) dη
}
. (A.6)

A.1.3 Nonlinear Nonlocal Phase Field Term

The nonlinear nonlocal phase field term ENL is (see equation (5.8))

ENL(φ) = −
β2

4

"
Ω2

(
∇φ(x) · ∇φ(x)

)(
∇φ(x′) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx dx′ . (A.7)
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Following a calculation similar to that for ES , we have

ENL(φ) = −
β2

4

"
Ω2

( 4
w2 n̂(x) · n̂(x)

)( 4
w2 n̂(x′) · n̂(x′)

)
Ψ
( |x − x′|

d

)
dx dx′

= −
8β2

w4

{"
RCB×RCB

Ψ
( |x − x′|

d

)
dx dx′ +

"
RCB×RCT

Ψ
( |x − x′|

d

)
dx dx′

}
= −

8β2

w2

{" ∞

−∞

Ψ
( |u − u′|

d

)
du du′ +

" ∞

−∞

Ψ
( √

W2 + (u − u′)2

d

)
du du′

}
= −

8β2L
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−∞

Ψ
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d

)
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Ψ
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)
dz

}
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16β2L
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0
Ψ
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)
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∫ ∞

Ŵ

η√
η2 − Ŵ2

Ψ(η) dη
}
. (A.8)

This is equation (5.11).

A.1.4 Linear Nonlocal Phase Field Term

The linear nonlocal phase field term EL is (see equation (5.21))

EL(φ) = −
β2

2

"
Ω2

(
∇φ(x) × (x − x′)

)(
∇φ(x′) × (x − x′)

)
Ψ
( |x − x′|

d2

)
dx dx′ . (A.9)

where × is the 2D vectorial antisymmetric product. Evaluating it on the ansatz for a long
straight bar, we have (t̂ is the unit tangent vector)

EL(φ) = −
β2

2

"
Ω2

( 2
w

(x − x′)t̂(x)
)( 2

w
(x − x′)t̂(x′)

)
Ψ
( |x − x′|
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)
dx dx′
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4β2
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z2 Ψ
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−∞

z2 Ψ
( √W2 + z2

d2

)
dz

}
. (A.10)

To simplify the integral, the variable η2 = (z2 + W2)/d2 is introduced. Here the de-
nominator still includes d, instead of d2. Noting that d̂2 = d2/d is the ratio between two
interaction ranges, we obtain the result in equation (5.24):

EL(φ) = −8β2L
{∫ ∞

0
z2 Ψ

( z
d2

)
dz − d3

∫ ∞

Ŵ
η

√
η2 − Ŵ2 Ψ

( η
d̂2

)
dη

}
. (A.11)
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A.2 Model Energy per Unit Length

A.2.1 Standard HOAC Total Prior Model

The standard HOAC total prior energy, per unit length of bar, eP,S , is (see equation (2.16))

eP,S (w, Ŵ) = e0 + eS

=
4
3
αŴd +

4
15
λw +

4
w
+ 4βd

∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη . (A.12)

The first derivatives are

∂eP,S

∂Ŵ
=

4
3
αd − 4βŴd

∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη , (A.13a)

∂eP,S

∂w
=

4
15
λ −

4
w2 . (A.13b)

The second derivative with respect to w is always positive. Noting

I1(Ŵ) =
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη , (A.14)

to obtain the second derivative with respect to Ŵ, we have to calculate I′1(Ŵ) (Here ′ denotes
∂I1/∂Ŵ):

I′1(Ŵ) =
∫ 2

Ŵ

Ŵ√
(η2 − Ŵ2)3

(
1 − cos(πη)

)
dη −

1√
η2 − Ŵ2

(
1 − cos(πη)

)∣∣∣∣
η=Ŵ

= −
η

Ŵ
√
η2 − Ŵ2

(
1 − cos(πη)

)∣∣∣∣2
η=Ŵ
+

∫ 2

Ŵ

πη

Ŵ
√
η2 − Ŵ2

sin(πη) dη

−
1√

η2 − Ŵ2

(
1 − cos(πη)

)∣∣∣∣
η=Ŵ

=
π

Ŵ

∫ 2

Ŵ

η√
η2 − Ŵ2

sin(πη) dη

= −
π2

Ŵ

∫ 2

Ŵ

√
η2 − Ŵ2 cos(πη) dη . (A.15)
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Using this result, we have the expression in equation (2.18):

∂2eP,S

∂Ŵ2
= − 4βdI1(Ŵ) − 4βŴdI′1(Ŵ)

= − 4βd
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη + 4βπ2d

∫ 2

Ŵ

√
η2 − Ŵ2 cos(πη) dη

= − 4βd ln

2 +
√

4 − Ŵ2

Ŵ

 + 4βd
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη . (A.16)

A.2.2 Nonlinear Nonlocal HOAC Total Prior Model

The nonlinear nonlocal HOAC total prior energy, per unit length of bar, eP,NL, is (see equa-
tion (5.13))

eP,NL(w, Ŵ) =e0 + eS + eNL

=
4
3
αŴd +

4
15
λw +

4
w
−

16β2d
w2 + 4d(β −

2β2

w2 )
∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη .

(A.17)

The first derivatives are

∂eP,NL

∂Ŵ
=

4
3
αd − 4Ŵd(β −

2β2

w2 )
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη , (A.18a)

∂eP,NL

∂w
=

4
15
λ −

4
w2 +

16β2d
w3

∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη . (A.18b)

Since we decide to fix the value w beforehand with the aim of simplifying the problem,
there is no need to calculate the second derivative with respect to w. On the other hand, the
second derivative with respect to Ŵ has to be checked. Using the results of I1(Ŵ) and I′1(Ŵ)
in equations (A.14) and (A.15), we obtain the formula in equation (5.15):

∂2eP,NL

∂Ŵ2
= − 4d(β −

2β2

w2 )I1(Ŵ) − 4Ŵd(β −
2β2

w2 )I′1(Ŵ)

= − 4d(β −
2β2

w2 )
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη

+ 4π2d(β −
2β2

w2 )
∫ 2

Ŵ

√
η2 − Ŵ2 cos(πη) dη

= − 4d(β −
2β2

w2 ) ln

2 +
√

4 − Ŵ2

Ŵ

 + 4d(β −
2β2

w2 )
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη .

(A.19)
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A.2.3 Linear Nonlocal HOAC Total Prior Model

The linear nonlocal HOAC total prior energy, per unit length of bar, eP,L, is (see equa-
tion (5.26))

eP,L(w, Ŵ) =e0 + eS + eL

=
4
3
αŴd +

4
15
λw +

4
w
+ 4βd

∫ 2

Ŵ

√
η2 − Ŵ2

(
1 − cos(πη)

)
dη

+ 4β2d3
∫ 2d̂2

Ŵ
η

√
η2 − Ŵ2

(
2 −

η

d̂2
+

1
π

sin
(πη

d̂2

))
dη . (A.20)

The first derivatives are calculated as follows:

∂eP,L

∂Ŵ
=

4
3
αd − 4βŴd

∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη

− 4β2Ŵd3
∫ 2d̂2

Ŵ

η√
η2 − Ŵ2

(
2 −

η

d̂2
+

1
π

sin
(πη

d̂2

))
dη

=
4
3
αd − 4βŴd

∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη

−
4β2Ŵd3

d̂2

∫ 2d̂2

Ŵ

√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη , (A.21a)

∂eP,L

∂w
=

4
15
λ −

4
w2 . (A.21b)

Now, we calculate the second derivative with respect to Ŵ. Noting

I3(Ŵ) =
∫ 2d̂2

Ŵ

√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη , (A.22)

we first calculate I′3(Ŵ), i.e. ∂I3/∂Ŵ:

I′3(Ŵ) = −Ŵ
∫ 2d̂2

Ŵ

1√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη . (A.23)
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So we have the result in equation (5.27c):

∂2eP,L

∂Ŵ2
= − 4βdI1 − 4βŴdI′1(Ŵ) −

4β2d3

d̂2
I3(Ŵ) −

4β2Ŵd3

d̂2
I′3(Ŵ)

= − 4βd
∫ 2

Ŵ

1√
η2 − Ŵ2

(
1 − cos(πη)

)
dη + 4βπ2d

∫ 2

Ŵ

√
η2 − Ŵ2 cos(πη) dη

−
4β2d3

d̂2

∫ 2d̂2

Ŵ

√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη

+
4β2Ŵ2d3

d̂2

∫ 2d̂2

Ŵ

1√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη

= − 4βd ln

2 +
√

4 − Ŵ2

Ŵ

 + 4βd
∫ 2

Ŵ

1 + π2(η2 − Ŵ2)√
η2 − Ŵ2

cos(πη) dη

−
4β2d3

d̂2

∫ 2d̂2

Ŵ

η2 − 2Ŵ2√
η2 − Ŵ2

(
1 − cos

(πη
d̂2

))
dη . (A.24)





Appendix B

Evolution Equations of New HOAC
Prior Energies

In this appendix, we detail the calculation of the derivatives of the two new nonlocal HOAC
prior energies proposed in chapter 5. The corresponding evolution equation is the negative
of the functional derivative.

B.1 Nonlinear Nonlocal HOAC Prior Energy

The nonlinear nonlocal HOAC prior energy we propose in equation (5.8) is

ENL(φ) = −
β2

4

"
Ω2

(
∇φ(x) · ∇φ(x)

)(
∇φ(x′) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx dx′ , (B.1)

where φ is the phase field function, and x, x′ ∈ Ω.
We calculate the energy with a small variation of the phase field δφ (neglecting second

order terms in δφ):

ENL(φ + δφ) = −
β2

4

"
Ω2

(
∇φ(x) · ∇φ(x) + 2∇φ(x) · ∇δφ(x)

)
(
∇φ(x′) · ∇φ(x′) + 2∇φ(x′) · ∇δφ(x′)

)
Ψ
( |x − x′|

d

)
dx dx′

= ENL(φ) −
β2

2

"
Ω2

{(
∇φ(x) · ∇φ(x)

)(
∇φ(x′) · ∇δφ(x′)

)
+

(
∇φ(x′) · ∇φ(x′)

)(
∇φ(x) · ∇δφ(x)

)}
Ψ
( |x − x′|

d

)
dx dx′

= ENL(φ) − β2

"
Ω2

(
∇φ(x′) · ∇φ(x′)

)(
∇φ(x) · ∇δφ(x)

)
Ψ
( |x − x′|

d

)
dx dx′

= ENL(φ) + β2

∫
Ω

δφ(x)∇ ·
{
∇φ(x)

∫
Ω

(
∇φ(x′) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx′

}
dx , (B.2)
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so we obtain the energy derivative in equation (5.9):

δENL(φ)
δφ(x)

=β2∇ ·

{
∇φ(x)

∫
Ω

(
∇φ(x′) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx′

}
=β2

∫
Ω

{(
∇φ(x′) · ∇φ(x′)

)
∇2φ(x) Ψ

( |x − x′|
d

)
+

(
∇φ(x′) · ∇φ(x′)

)(
∇φ(x) · ∇Ψ

( |x − x′|
d

))}
dx′ . (B.3)

This formula in the Fourier domain is

F
{δENL(φ)
δφ(x)

}
=β2ik ·F

{
∇φ(x)

(
Ψ
( |x|

d
)
∗
(
∇φ(x) · ∇φ(x)

))}
=β2ik ·

{
ikφ̂(k) ∗F

{
Ψ
( |x|

d
)
∗
(
∇φ(x) · ∇φ(x)

)}}
=β2

(
−k2φ̂(k)

)
∗

(
dΨ̂(kd)F

{
∇φ(x) · ∇φ(x)

})
+ β2

(
ikφ̂(k)

)
∗

(
ikdΨ̂(kd)F

{
∇φ(x) · ∇φ(x)

})
, (B.4)

where ∗ is convolution. F and F−1 denote the Fourier and the inverse Fourier transform
respectively, and a hat ˆ indicates the Fourier transform of a variable. After the inverse
Fourier transform, the energy derivative is given by

δENL(φ)
δφ(x)

=β2∇
2φ(x)F−1

{
dΨ̂(kd)F

{
∇φ(x) · ∇φ(x)

}}
+ β2∇φ · ∇

(
F−1

{
dΨ̂(kd)F

{
∇φ(x) · ∇φ(x)

}})
. (B.5)

Finally we have the evolution equation in equation (5.10).

B.2 Linear Nonlocal HOAC Prior Energy

The linear nonlocal HOAC prior term EL proposed in equation (5.21) is

EL(φ) = −
β2

2

"
Ω2

[
∇φ(x) × (x − x′)

][
∇φ(x′) × (x − x′)

]
Ψ
( |x − x′|

d2

)
dx dx′ . (B.6)

To get rid of the cross products, we rewrite it as

EL(φ) = −
β2

2

"
Ω2
∇φ(x) ·

[
ε(x − x′)(x − x′)T εT ]

· ∇φ(x′) Ψ
( |x − x′|

d2

)
dx dx′ , (B.7)

where T denotes the transpose, and ε rotates the tangent vectors to the inward normal vec-
tors.
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We calculate the energy with a small variation of the phase field δφ:

EL(φ + δφ) = −
β2

2

"
Ω2

(
∇φ(x) + ∇δφ(x)

)
·
[
ε(x − x′)(x − x′)T εT ]

·
(
∇φ(x′)

+ ∇δφ(x′)
)
Ψ
( |x − x′|

d2

)
dx dx′

= EL(φ) − β2

"
Ω2
∇δφ(x) ·

[
ε(x − x′)(x − x′)T εT ]

· ∇φ(x′) Ψ
( |x − x′|

d2

)
dx dx′

= EL(φ) + β2

∫
Ω

{
δφ(x)

∫
Ω

∇ ·
[
ε(x − x′)(x − x′)T εT ]

· ∇φ(x′) Ψ
( |x − x′|

d2

)
dx′

}
dx . (B.8)

The functional derivative of EL is

δEL(φ)
δφ(x)

= β2

∫
Ω

∇ ·
[
ε(x − x′)(x − x′)T εT ]

· ∇φ(x′) Ψ
( |x − x′|

d2

)
dx′ , (B.9)

as shown in equation (5.22).
To avoid calculating the convolution, we apply the Fourier transform to the above for-

mula. It becomes

F
{δEL(φ)
δφ(x)

}
=β2F

{(
∇ ·

[
Ψ
( |x|
d2

)
εxxT εT ])

∗ ∇φ(x)
}

=β2ik ·F
{
Ψ
( |x|
d2

)
εxxT εT

}
· ikφ̂(k) . (B.10)

We replace x in equation (B.10) by its polar coordinates, i.e. x = (r cos θ, r sin θ)T . Thus,
εx = (r sin θ,−r cos θ)T . Equation (B.10) becomes

F
{δEL(φ)
δφ(x)

}
= − β2k ·F

{ r2 sin2 θ Ψ
(
r/d2

)
−r2 sin θ cos θ Ψ

(
r/d2

)
−r2 sin θ cos θ Ψ

(
r/d2

)
r2 cos2 θ Ψ

(
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) } · kφ̂(k)

= − β2
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)
·

 F
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r2 sin2 θ Ψ

(
r/d2

)}
F

{
−r2 sin θ cos θ Ψ

(
r/d2

)}
F

{
−r2 sin θ cos θ Ψ

(
r/d2

)}
F

{
r2 cos2 θ Ψ

(
r/d2

)}  · (k1
k2

)
φ̂(k)

= − β2
(
k2

1F
{
r2 sin2 θ Ψ

(
r/d2

)}
− 2k1k2F

{
r2 sin θ cos θ Ψ

(
r/d2

)}
+ k2

2F
{
r2 cos2 θ Ψ

(
r/d2

)})
φ̂(k) . (B.11)

After the inverse Fourier transform, the energy derivative is

δEL(φ)
δφ(x)

= − β2F
−1

{(
k2

1F
{
r2 sin2 θ Ψ

(
r/d2

)}
− 2k1k2F

{
r2 sin θ cos θ Ψ

(
r/d2

)}
+ k2

2F
{
r2 cos2 θ Ψ

(
r/d2

)})
φ̂(k)

}
. (B.12)

So we get the evolution equation in equation (5.23).





Appendix C

Another Nonlinear Nonlocal HOAC
Prior Term

In this appendix, we describe another nonlinear nonlocal HOAC prior term ẼNL, an alter-
native to ENL, which we do not use. We explain the reason after describing the energy.

C.1 Definition of ẼNL

The general HOAC prior energy EHO in the contour formulation, which involves the inter-
polation between interaction functions, is given in equation (5.3):

EHO(γ) = −
"

S 1×S 1

{
f+‖(γ̇(s) · γ̇(s′)) Ψ+‖ − f−‖(γ̇(s) · γ̇(s′)) Ψ−‖

}
ds ds′ , (C.1)

where γ : S 1 → Ω, is an arc length parameterization of the region boundary ∂R; γ̇(s) is the
tangent vector to the boundary at s (thus γ̇(s) · γ̇(s′) ∈ [−1, 1]); ‘+ ‖’ denotes parallel vectors
and ‘− ‖’ denotes antiparallel vectors.

Different from the discussion in subsection 5.2.1, we assume that Ψ+‖ = Ψ−‖, and
change the definitions of f+‖(x) and f−‖(x). In principle, f+‖(x) : [−1, 1] → [0, 1] has to
be a non-decreasing function with the boundary conditions of f+‖(−1) = 0 and f+‖(1) = 1,
and f−‖(x) is another function such that f−‖(−x) satisfies the same constraints as f+‖(x).
Here instead of the linear functions, we take both f+‖(x) and f−‖(x) to be quadratic. After
imposing the boundary and monotonicity conditions, and simplifying f by eliminating the
constant term from it, we choose the integrand of EHO to have the form:

f‖(x) = (a + 1)x + (a − 1)x2 . (C.2)

Note that f‖(1) = 2a, while f‖(−1) = −2. The monotonicity constraint applied directly
to f‖ implies that (1/3) ≤ a ≤ 3, which is the same as the constraint on a arising from
the monotonicity constraints on f+‖ and f−‖ separately, couple with the vanishing of the
constant term. Moreover, to guarantee that f‖(1) has the larger magnitude than f‖(−1), we
have another constraint that a > 1. Therefore, the parameter a takes the values on the
interval [1, 3].
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The contour energy thus becomes

ẼHO(γ) = −
1
2

"
S 1×S 1

[
(a + 1)

(
γ̇(s) · γ̇(s′)

)
+ (a − 1)

(
γ̇(s) · γ̇(s′)

)2]
Ψ−‖ ds ds′ . (C.3)

Since each term of ẼHO includes tangent vector, when changing the contour formulation
to the phase field formulation, there is no need to insert the boundary indictor function.
Accordingly, the corresponding phase field energy is given by

ẼHO(φ) = −
1
2

"
Ω2

[
(a + 1)

(
∇φ(x) · ∇φ(x′)

)
+ (a − 1)

(
∇φ(x) · ∇φ(x′)

)(
∇φ(x) · ∇φ(x′)

)]
Ψ
( |x − x′|

d

)
dx dx′ . (C.4)

The second term is different from ES . We thus define another nonlinear nonlocal HOAC
prior energy ẼNL as

ẼNL(φ) = −
β2

4

"
Ω2

(
∇φ(x) · ∇φ(x′)

)(
∇φ(x) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx dx′ . (C.5)

Obviously, ẼNL is also quartic in φ, but compared to ENL, this term leads to some
implementation difficulties when performing the energy minimization. We will explain
after first calculating its derivative.

C.2 Derivative of ẼNL

To calculate the derivative of ẼNL, we first calculate ẼNL with a small variation of the phase
field δφ:

ẼNL(φ + δφ) = −
β2

4

"
Ω2

(
∇φ(x) · ∇φ(x′) + ∇δφ(x) · ∇φ(x′) + ∇φ(x) · ∇δφ(x′)

)
(
∇φ(x) · ∇φ(x′) + ∇δφ(x) · ∇φ(x′) + ∇φ(x) · ∇δφ(x′)

)
Ψ
( |x − x′|

d

)
dx dx′

= ẼNL(φ) −
β2

2

"
Ω2

{(
∇φ(x) · ∇φ(x′)

)(
∇δφ(x) · ∇φ(x′)

)
+

(
∇φ(x) · ∇φ(x′)

)(
∇φ(x) · ∇δφ(x′)

)}
Ψ
( |x − x′|

d

)
dx dx′

= ẼNL(φ) − β2

"
Ω2

(
∇φ(x) · ∇φ(x′)

)(
∇φ(x′) · ∇δφ(x)

)
Ψ
( |x − x′|

d

)
dx dx′

= ẼNL(φ) + β2

∫
Ω

δφ(x)∇ ·
{∫
Ω

∇φ(x′)
(
∇φ(x) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx′

}
dx , (C.6)
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so the energy derivative is

δẼNL(φ)
δφ(x)

=β2∇ ·

{∫
Ω

∇φ(x′)
(
∇φ(x) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
dx′

}
=β2

∫
Ω

{(
∇φ(x′) · ∇∇φ(x) · ∇φ(x′)

)
Ψ
( |x − x′|

d

)
+

(
∇φ(x) · ∇φ(x′)

)(
∇φ(x′) · ∇Ψ

( |x − x′|
d

))}
dx′ . (C.7)

Unlike the gradient in equation (5.9), the above gradient cannot be expressed as any
form of convolution. The computation is thus very expensive. In the end, we choose the
energy ENL as the final definition of the nonlinear nonlocal HOAC prior term.





Appendix D

Another Type of Interaction Function

As we have seen in subsection 5.3.3, due to the finite range of the interaction function Ψ
(equation (5.2)), for a given d̂2 > D̂2, a corner point of the β̂− β̂2 diagram goes off to infinity,
whereas, at this critical point, the total prior energy should have a local maximum and a very
wide local minimum (the inflection point of the other two local minima and the other local
maximum). This is exactly what we need for modeling multiple widths of network branches
over a wide range. In this appendix, we describe how to bring in this swallowtail corner,
and thus achieve a wide minimum, by changing to a new type of interaction function with
infinite support.

Figure D.1. The new interaction function Ψ̃.

We define the new interaction function Ψ̃ (see Figure D.1) as

Ψ̃(x) = e−x . (D.1)

Note that this form is assumed to be the same in each HOAC energy term. We denote the
standard HOAC term and the linear nonlocal HOAC term with Ψ̃ respectively as ẼS and
ẼL. Thus, the overall prior model is the sum of the three energies: ẼP,L = E0 + ẼS + ẼL. As
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before, we obtain the new prior energy calculated using the ansatz for a long straight bar,
per unit length, ẽP,L (after removing the constant terms):

ẽP,L(w, Ŵ) =
4
3
αŴd +

4
15
λw +

4
w
+ 8βd

∫ ∞

Ŵ

√
η2 − Ŵ2 e−η dη

+ 8β2d3
∫ ∞

Ŵ
η

√
η2 − Ŵ2 e

−
η

d̂2 dη . (D.2)

After several intermediate steps, we find the first derivatives with respect to w and Ŵ,
and the second derivative with respect to Ŵ, of the above formulation. They are as follows:

∂ẽP,L

∂Ŵ
=

4
3
αd − 8βŴd

∫ ∞

Ŵ

1√
η2 − Ŵ2

e−η dη −
8β2Ŵd3

d̂2

∫ ∞

Ŵ

√
η2 − Ŵ2 e

−
η

d̂2 dη ,

(D.3a)
∂ẽP,L

∂w
=

4
15
λ −

4
w2 , (D.3b)
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Following the same procedure as in subsection 5.3.3, we observe that in this case, the
singular point of d̂2, i.e. D̂2, is approximately 3.4. Here we are only interested in a swal-
lowtail corner, so in the following analysis, we consider only the case where d̂2 > D̂2. For
different given values of d̂2, their β̂ − β̂2 diagrams, and corresponding ẽP,L against W with
parameters at the upper swallowtail corner, are illustrated in Figure D.2. This shows clearly
that this corner point now occurs at a finite value, and that the energy per unit length of bar
ẽP,L, with β̂ and β̂2 values at this corner, has a flat minimum. We see from these figures that,
with the increase of d̂2, the region where ẽP,L has two local minima becomes larger; and
in the energy plot, the peak of the first local maximum becomes higher. Note that the case
where d̂2 is near D̂2 (see Figure D.2(a)) is interesting. Since the three intersection points
between every pair of the three curves are close, all four extrema of ẽP,L tend to merge
together, and thus generate a very wide minimum (see Figure D.2(b)).

Generating a wide flat minimum seems to be an effective way to extract branches of
multiple widths. Moreover, the condition of being at that corner enables β̂ and β̂2 to be
fixed; thereafter only d̂2 needs to be chosen. Parameter setting is thereby facilitated, but
a new problem arises: in this situation, we cannot control the amplitude of the first local
maximum and the width of the flat minimum at the same time. If the amplitude of the first
local maximum is too large, many undesired structures in the image may not be able to
be eliminated during the evolution; on the other hand, if this amplitude is too small, some
thin features might slide down to zero width, and thus vanish. We may need to add another
parameter of the right type to the interaction function, in order to achieve separate control
of the above two factors, which is a subject for future work.
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(a) d̂2 = 4 (b) d̂2 = 4, β̂2 = 0.01631, β̂ = 0.2528

(c) d̂2 = 4.5 (d) d̂2 = 4.5, β̂2 = 0.01294, β̂ = 0.3325

(e) d̂2 = 5 (f) d̂2 = 5, β̂2 = 0.0105, β̂ = 0.4654

(g) d̂2 = 5.5 (h) d̂2 = 5.5, β̂2 = 0.008697, β̂ = 0.6788

Figure D.2. For different given values of d̂2 > D̂2, left column: β̂ − β̂2 diagrams. ẽP,L has
either no local minimum (red), one local minimum (green), or two local minima (white).
Right column: the corresponding energy per unit length of bar ẽP,L against W with para-
meters at the upper swallowtail corner.





Appendix E

Summary of Other Methods Used in
Our Comparisons

In this appendix, we recall the other methods in the literature that have been used in this
manuscript for comparison purposes. They are (i) a classification, tracking, and morphol-
ogy algorithm by Wang and Zhang (2003) (section E.1); (ii) a fast but rough segmentation
technique based on “straight line density” by Yu et al. (2004) (section E.2); and (iii) a level
set approach with global shape constraint by Bailloeul (2005) (section E.3).

E.1 Method by Wang

Wang and Zhang (2003) attempted to extract urban road networks using pan-sharpened
multispectral and panchromatic QuickBird imagery in two stages.

The first stage is a conventional multispectral classification of a pan-sharpened Quick-
Bird multispectral image. An unsupervised fuzzy K-means classifier is used on the red,
green and near infrared channels.

In the second stage, the edge image for road extraction is obtained from the corre-
sponding panchromatic image by a Robert edge detector. After performing edge-aided
segmentation, the classified road network is combined with the edge information so that
some misclassified objects are eliminated. Then a connected component labeling algorithm
is employed to register each isolated object. Finally, the roads are refined by a mathematical
morphology operation.

E.2 Method by Yu

To register the satellite image to the GIS data, Yu et al. (2004) performed a method based
on “straight line density” to extract roughly the road network. They considered only the
main road features having a pronounced straight linear pattern, while other road features
with high curvatures are omitted. A constraint is made that for any pixel on the main roads,
there exists at least one straight segment with given length passing through it, and most of
the pixels on the line segment possess road-specific spectral values.
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A set of candidate pixels whose gray values are in the road-specific spectral range
[S 1, S 2] is extracted. For each candidate pixel, a set of straight segments with a pre-defined
length L passing through this candidate pixel is obtained. Then, for each line segment, the
ratio of the number of pixels whose gray value belongs to [S 1, S 2] to the number of all pi-
xels on the line is checked. If the ratio is above a given value, i.e. 95%, this line segment is
considered as one part of the main roads; otherwise, this line is removed from the candidate
list.

E.3 Method by Bailloeul

For the purpose of building map updating, Bailloeul (2005) used the Chan-Vese func-
tional (Chan and Vese, 2001a) plus a shape prior (Chan and Zhu, 2003):

ECZ(φ, ψ0) = ECV(φ) + λshapeEshape(φ, ψ0) , (E.1)

where

ECV(φ) = λin

∫
Ω

|I(x) − µin|
2 H(φ(x)) dx + λout

∫
Ω

|I(x) − µout|
2 (1 − H(φ(x)) dx ,

(E.2a)

Eshape(φ, ψ0) =
∫
Ω

{
H(φ(x)) − H(Tsim ◦ ψ0(x))

}2 dx . (E.2b)

In these formulations, µin and µout respectively denote the image mean grey level inside and
outside the evolving active contour, which is embedded into the level set function φ. ψ0
is the level set function embedding the prior reference shape. H represents the Heaviside
function. Tsim is a similarity transformation computed at each iteration.

In (Bailloeul, 2005), an old digital map of the building is used to initialize the contour.
A gradient descent algorithm is used to minimize ECZ, while a Simplex algorithm is used
to estimate the parameters of Tsim. At convergence, a refined version of the old map is ob-
tained. However, one limit of this technique is its inability to handle objects newly appeared
in the image.



Appendix F

Publications and Scientific Activities
of the Author

Journal papers

1. T. Peng, I. H. Jermyn, V. Prinet, and J. Zerubia. Extended phase field higher-order
active contour models for networks. International Journal of Computer Vision, under
submission.

2. T. Peng, I. H. Jermyn, V. Prinet, and J. Zerubia. Incorporating generic and specific
prior knowledge in a multi-scale phase field model for road extraction from VHR
image. IEEE Trans. Geoscience and Remote Sensing Special Issue: Selected Topics
in Applied Earth Observations and Remote Sensing, 1(2):139-146, 2008.

3. T. Peng, I. H. Jermyn, V. Prinet, and J. Zerubia. A robust framework based on phase
field modeling for road network extraction from VHR satellite image. Chinese Jour-
nal of Computers, under review.

Conference papers

1. T. Peng, I. H. Jermyn, V. Prinet, and J. Zerubia. An extended phase field higher-
order active contour model for networks and its application to road network extraction
from VHR satellite image. In Proc. European Conference on Computer Vision 2008
(ECCV 2008), Marseille, France, October 13-16, 2008.

2. T. Peng, I. H. Jermyn, V. Prinet, and J. Zerubia. Extraction of main and secondary
roads in VHR images using a higher-order phase field model. In Proc. XXI ISPRS
Congress, Commission III, Part A, Beijing, China, July 3-11, 2008.

3. T. Peng, I. H. Jermyn, V. Prinet, J. Zerubia, and B. Hu. A phase field model incorpo-
rating generic and specific prior knowledge applied to road network extraction from
VHR satellite images. In Proc. British Machine Vision Conference 2007 (BMVC
2007), Warwick, UK, September 10-13, 2007.
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4. T. Peng, I. H. Jermyn, V. Prinet, J. Zerubia, and B. Hu. Urban road extraction from
VHR images using a multiscale approach and a phase field model of network geom-
etry. In Proc. 4th IEEE GRSS/ISPRS Joint Workshop on Remote Sensing and Data
Fusion over Urban Areas (URBAN 2007), Paris, France, April 11-13, 2007.

Talks

1. Road extraction from very high resolution satellite images, Beijing Municipal Com-
mittee of Communications, Beijing, China, April 28, 2008.

2. Road extraction from very high resolution satellite images, Beijing Institute of Sur-
veying and Mapping, Beijing, China, April 17, 2008.

3. Phase field models and higher-order active contours for road updating, Alcatel Alenia
Space (new name: Thales Alenia Space), Toulouse, France, November 29, 2006.
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ABSTRACT

The objective of this thesis is to develop and validate robust approaches for the semi-automatic extraction
of road networks in dense urban areas from very high resolution (VHR) optical satellite images. Our models are
based on the recently developed higher-order active contour (HOAC) phase field framework. The problem is
difficult for two main reasons: VHR images are intrinsically complex and network regions may have arbitrary
topology. To tackle the complexity of the information contained in VHR images, we propose a multiresolution
statistical data model and a multiresolution constrained prior model. They enable the integration of segmen-
tation results from coarse resolution and fine resolution. Subsequently, for the particular case of road map
updating, we present a specific shape prior model derived from an outdated GIS digital map. This specific prior
term balances the effect of the generic prior knowledge carried by the HOAC model, which describes the geo-
metric shape of road networks in general. However, the classical HOAC model suffers from a severe limitation:
network branch width is constrained to be similar to maximum network branch radius of curvature, thereby
providing a poor model of networks with straight narrow branches or highly curved, wide branches. We solve
this problem by introducing two new models: one with an additional nonlinear nonlocal HOAC term, and one
with an additional linear nonlocal HOAC term. Both terms allow separate control of branch width and branch
curvature, and furnish better prolongation for the same width, but the linear term has several advantages: it is
more efficient from a computational standpoint, and it is able to model multiple widths simultaneously. To cope
with the difficulty of parameter selection of these models, we analyze the stability conditions for a long bar
with a given width described by these energies, and hence show how to choose rigorously the parameters of the
energy functions. Experiments on VHR satellite images and comparisons with other approaches demonstrate
the superiority of our models.
Keywords: higher-order, active contour, phase field, prior, constraint, shape, multiresolution, parameter, road
network extraction, map updating, very high resolution (VHR), dense urban area, remote sensing images.

RÉSUMÉ

L’objectif de cette thèse est de développer et de valider des approches robustes d’extraction semi-automati-
que de réseaux routiers en zone urbaine dense à partir d’images satellitaires optiques à très haute résolution
(THR). Nos modèles sont fondés sur une modélisation par champs de phase des contours actifs d’ordre supérieur
(CAOS). Le problème est difficile pour deux raisons principales : les images THR sont intrinsèquement com-
plexes, et certaines zones des réseaux peuvent prendre une topologie arbitraire. Pour remédier à la complexité
de l’information contenue dans les images THR, nous proposons une modélisation statistique multi-résolution
des données ainsi qu’un modèle multi-résolution contraint a priori. Ces derniers permettent l’intégration des
résultats de segmentation de résolution brute et de résolution fine. De plus, dans le cadre particulier de la mise
à jour de réseaux routiers, nous présentons un modèle de forme a priori spécifique, dérivé d’une ancienne carte
numérique issue d’un SIG. Ce terme spécifique a priori équilibre l’effet de la connaissance a priori générique
apportée par le modèle de CAOS, qui décrit la forme géométrique générale des réseaux routiers. Cependant, le
modèle classique de CAOS souffre d’une limitation importante : la largeur des branches du réseau est contrainte
à d’être similaire au maximum du rayon de courbure des branches du réseau, fournissant ainsi un modèle non
satisfaisant dans le cas de réseaux aux branches droites et étroites ou aux branches fortement incurvées et larges.
Nous résolvons ce problème en proposant deux nouveaux modèles : l’un contenant un terme additionnel, non-
local, non-linéaire de CAOS, et l’autre contenant un terme additionnel, nonlocal, linéaire de CAOS. Ces deux
termes permettent le contrôle séparé de la largeur et de la courbure des branches, et fournissent une meilleure
prolongation pour une même largeur. Le terme linéaire a plusieurs avantages : d’une part il se calcule plus
efficacement, d’autre part il peut modéliser plusieurs largeurs de branche simultanément. Afin de remédier à la
difficulté du choix des paramètres de ces modèles, nous analysons les conditions de stabilité pour une longue
barre d’une largeur donnée décrite par ces énergies, et montrons ainsi comment choisir rigoureusement les
paramètres des fonctions d’énergie. Des expériences sur des images satellitaires THR et la comparaison avec
d’autres modèles démontrent la supériorité de nos modèles.
Mots clefs : ordre supérieur, contour actif, champ de phase, a priori, contrainte, forme, multi-résolution,
paramètre, extraction de réseaux routiers, mise à jour de carte, très haute résolution (THR), urbain dense,
images de télédétection.


