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Abstract they raise worked against their favour and they were soon

largely abandoned. The pioneer work &f]] represents

We introduce a new image representation that encom-shape parts of object models as graph nodes and their ar-
passes both the general layout of groups of quantized localrangement as edge attributes, and notes the difficulty of
invariant descriptors as well as their relative frequenéy. matching “networks” to one another. This is one of the
graph of interest points clusters is constructed and we useissues that spontaneously arise when we want to compare
the matrix of commute times between the different nodes ofjraphs. In 0] node-to-node graph matching is modelled
the graph to obtain a description of their relative arrange- as an energy minimisation discrete problem and is solved
ment that is robust to large intra class variation. by continuation. However, th©(N*) complexity of the

The obtained high dimensional representation is then algorithm, whenNV is the number of nodes, makes it in-
embedded in a space of lower dimension by exploiting thetractable for real-life problems wher€ is of the order of
spectral properties of the graph made of the different im- a few thousands. In fact, the practical issue of computa-
ages. Classification tasks can be performed in this embed-ional intractability is recurrent when graphs are invalve
ding space. We expose classification and labelling resultsand a number of methods4],[17] based on properties of
obtained on three different datasets, including the clmgjle  the transition matrix, of dimensioN (N + 1)/2, however
ing PASCAL VOC2007 dataset. The performances of oursuccessful on synthetic data, simply cannot be efficiently
approach compare favorably with the standard bag of fea- implemented on standard actual computers.

tures, which is a particular case of our representation. From the point of view of the possible applications

to computer vision, some of the most promising results
. in graph theory concern the spectral properties of graphs
1. Introduction [4],[5]. In [19], graph nodes are clustered by the Lapla-

The progress that has been made in the field of content-c?an cut a.md.measures on Fhese clusters are used to.clas-
based image retrieval and object recognition during thie las SI'Y Satellite images according to the degree of urbaniza-
decade is significant. However, a widely usable solution to tion. The rela_tlonshlp between the graph Lap_IaC|an and
these problems is far from being established. Actual state-I"€ COmmute times between nodé$ 4lso opens interest-
of-the-art approaches do not scale well to large numbers9 Perspectives, and applications to image segmentation,
(tens of thousands) of object classes. One can think of aVIdeo tracking [¢] and dimensionality reductiorb],[16]
number of professional end users, such as press agencieg,ave been demonstrated.
marketing companies or spatial data analysts, for whom The state of the art of image representation is dominated
both the objects contained in the image, their layout as well by the bag of words paradigni][[&]: local features of in-
as their posture are of interest. Addressing all these chal-terest, also called keypoints, are extracted from the image
lenges together is a difficult task. and quantized to form an histogram of codebook entries.

Graph representations of visual data were quite popu-The resulting representation discards the informatioa-rel
lar at the early stages of statistical pattern recognitioth a tive to the spatial organisation of the keypoints and isgher
computer vision. Despite their ability to describe releljy ~ fore very robust to intra-class variability. The discrimaiive
complex interactions between groups of data, representegower of the interest points and the quality of the codebook
by nodes, with a variable degree of precision the problemsensure the ability to differentiate image classég],[21].
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In [11], the spatial organization of the keypoints is taken

into account by constructing a multi-scale bag of keypoints

representation. The image representation providedlpy [ Yo = io, (2)

contains properties of local parts as well as the spatial re- PYisr = j| Ve =] = “;’j if (4,5) € 3)

lations between parts. In these two examples results show ntl = J 1A =10 0 otherW|se

that incorporating a certain level of information concari

the image layout in the representation can increase imagevhered; = Zk 1 wir is the degree of node The hitting

labelling performance. time HT(z, j) is defined as the average number of steps of
We propose in this paper a new image representationthe random walk(y;,) started at node required to reach

which contains information concerning both the appearancenode; for the first time, and theommute timés the “sym-

and layout of the image content. This representation is metrized” hitting time:

based on statistical properties of graphs of interest point

intrinsically encodes in a loose manner the spatial arrange

ment of the interest points as well as their frequency rela- HT(i,j) = E[min{n:Y, =j}|Yo=i (4)
tively to a descriptor vocabulary codebook. In this respect CT(i,j) = HT(i,j)+ HT(j,1) 5)
our approach encompasses the bag of features representa- . ) ) )
tion. Note that the commute time is a metric and that it can

The remainder of this paper is organized as follows: we take infinite values if the graph is not connected. It has

present graph commute times and the associated results fg?€€n shown ({l, see [L¢] for a summary) that the commute
dimensionality reduction in sectio We then use these time matrixC'T' can be expressed as a function of the eigen-

results in two different contexts: first, we introduce a rove VECtors and eigenvalues of the normalised Laplacian of the

high dimensional image descriptor based on commute timegd'@Ph which is defined as theé > N matrix L:

between groups of keypoints in the image (SecBhnSe-

cond, we classify images according to their new represen- 1— e jfj=j

tation by embedding a graph of images in a new space, Vi,j € [1,N], L(i,j) = { Wi "y (6)
thereby assigning a descriptor of low dimension to each im- Vdid;

age (Sectio). Finally, we present labelling results and
compare them to the state of the art in secBpwhile dis-
cussion is the last section of our paper.

We denotg ¢4, . .. o) the eigenvectors of associated to

the eigenvalue§)\,, ... \x). We can demonstrate (see ap-

pendixA) that the eigenvalues daf are non-negative. We

. . consider the case when the graph is connected, i.e: for eve-

2. Commute times in a graph ry pair of nodes there exists a path that links them. In this

gase, it has been proven (se€@ that there is only one zero

eigenvalue. We can thus wrifle= \; < \o < --- < An. It

rpas been proved],[1]] that the elements of the commute
time matrix can be expressed as follows:

Graph-based representations have been considered in th
context of computer vision: a practical way to describe the
structure of a graph is to use the matrix of distances betwee
graph nodes. Distances between nodes are frequently de
fined as the length of the shortest path that separates them.
However, in problems where the presence or the accuracy Ny i 9 ()
of graph nodes is uncertain, as it will be the case here, the Vi j, CT(i,j) = Z " ( k Y ) @)
shortest path distance lacks robustness and does not@rovid k=
any statistical information about the structure of the brap
In this respect the notion afommute timebetween graph with vol = Z dy, (8)
nodes is preferable. k=1

L n = E,Q) a weigh raph wher
v iset:\ézjsse(:jteofcz/tgtices(,‘gr n7od>esa, ingé]xé(?z‘db;{??. . Nf © wheregy, (i) denotes thé'" coordinate of eigenvectdr.

E C V xVisthe set of weighted edges afids the N x N IhL:_S' the otn_ly _opt?]rano? reguwe(}l :ﬁ compute t?e com(;
weighted symmetric adjacency matrix: mute time matrix is the extraction of the eigenvectors an

eigenvalues ofZ. We will use these results in secti@rto

o (i,j) if (i,j) € E obtain a representation of the spatial layout of the interes
(i, j) = { 0 otherwise (1) points in the image, and thus a representation of the image
structure.
wherew(i, j) = w(j,1) is the weight of edgéi, j). Given As emphasized byl[j, it is possible to view the eigen-

1 <y < N, we define the random walk’, )o<,, Started at  vectors (¢) of £ as functions on the vertices of the
1o as follows: graph. In this light, equatiom can thus be considered



as anL? distance function between vectors of coordinates object. To this end, we consider that features belonging to
/%1 ((1)2(1) ¢N(2>)_ In equation7 we can neglect the the same object have close spatial positions as well as de-

terms corresponding to high eigenvalues (low valuefrok f schr_lp:]or vec:o_rs.d\_lvte w(l:lg?ere{pre c?tnhnect gtr_arl)h n(;)des for
and obtain an embedding of the graph nodes in a space ofVNich a cerlain distan unction ot the spatial and con-

arbitrary dimension inferior ta&v. The sharper the increase :ent pg))gﬂ:lty W'"f bet sm;ll. V\éeXchos?hto defmhet t(fjns dis-
of the sequencé\;); << the better the approximation. ancea between features; and.; as the weighted pro-

In sectiond we will apply this method to the dimension- g;ﬁ;ﬁitehe'r normalised spatial distance and their detarip
ality reduction of the image representation. '
A(Xy, Xj) = Ddese(Xiy Xj)* Dgeo (X3, X5) 7 (9)
3. Image representation Agese(Xi, X;) = [|Ds — Dy| (10)

Our image representation consists in computing proper- Ageo(Xi, Xj) = \/w (11)

ties of a graph built on interest points of the image; interes o

points are first collected in the image to constitute the setParametetx can be adjusted to construct feature graph that
of nodes of what we call a “feature graph”. Then the cor- depend more or less on the spatial layout and the descrip-
responding “collapsed graph” is built by associating each tors similarity. Its thimal values will depgr_uj on the image
node of the feature graph to an entry of a descriptor code-classes (see sectidi). Naturally the definition ofA ;..
book. Finally the symmetric matrix of commute times be- depends on the type of features and could be chosen to be
tween the nodes of this collapsed graph is computed to ob-2 Sum of squared differences oxa distance for instance;
tain the final image representation which encodes both theSe€ P1] for a performance review of the different possible
relative frequency of the codebook entries to which the fea- distances. Moreover, we should note that the definition of
tures are associated, as in the bag of features representati 2 Proposed in this paper can be amended to encode other
as well as their spatial proximity, in a sense that will be de- types of distances between features as well.

fined. The A distancé will be used to determine the presence
of edges between graph nodes as well as their weight: we
i i inti t h node to it&/ cl t neighb d h
3.1. Keypoints detection and description connect each node to 15l closes 72?}'{?_@?”5 and eac

edge weight is defined as(i,j) = e~ =, whereo is

Here, the selection of the keypoint detection and descrlp-a normalisation factor chosen appropriately (in practice

tion strategy is directly linked to the nature of the investi depends only on the descriptor distankg,..). It should
gated data, and not to the algorithm itself. All possible eom be noted that each node is connecte(attdxsecastM other
binations of feature detectors and descriptors can be nsed i nodes: see figurgfor an illustration.

the context of our approach, as long as it is possible to com- A feature graph is represented in figure the graph

|toute a:jdEtarll(c_e b etweenthstpr|ptc;rfhan(;j to c_r(?[ate a desclr 'odes have been embedded in a space of dimension 3 ac-
or codebook 1.€. a quantization of the descriptor space. r]cording to sectior2. The difference in colour of the nodes

particular, the selection of the invariances (rotatioralesc belonging to the same object (e.g: water) can be explained
affine, illumination, etc.) to which the detectors and de- by the fact thaty # 0

scriptors are subject should be investigz_ited in detail hiko t The feature graph in itself can hardly be used to describe
end we forward the reader to work dedicated io comparing ., image for various reasons. In particular, the feature

Egtras?fé]fc[)rln;]ances of various feature detectors and descrlp'graph representation is not unique because the order of the

i ) interest points is arbitrary, so any representation based o

Ineach _mage a variable ”Pmbe"" of features the transition matrix or the commute time matrix can be
(Xi)lfiSN is collected.  We deflne_these features as: 104 gut. Also, if we decided to rely on the graph repre-
Vi, Xi = (4,yi,06, Di), where(z;, y;) is the feature po- goqiaiion to compare images we would have to use graph
sition in the imageg; its scale e_mch- its descriptor vector. matching techniques, such a<7, which quickly become
Moreover., we denote by; the '“F’ex of the codebook en- intractable when it comes to graphs containing thousands of
try associated t;: ki = argminy << ([[Qr = Dill).  nodes, as itis the case here. Stil, the information coathin
Where(Qk)lngK is our codebook. in the commute times matrix is a powerful description of the
structure of the feature graph, thus of the image itself.-Con
sequently, we will base our representation on the matrix of

We want to arrange the set of interest points extractedCommute times of a normalised graph, in which each node
from the image in a graph that will preserve their general represents a cluster of similar features.

layout, the “feature graph”. |V|0.I’e precisely, we want t0 1A goes not satisfy the conditions to be a metric, but for its eaimncy
strongly connect nodes that are likely to belong to the samewe shall nonetheless use the term “distance”.

3.2. Feature graph




Figure 1. The nodes of the feature graph are embeddRd fol-
lowing the approach described in sectidnwith o = 0.5 and

M = 10. They are represented here as (R,G,B) values. Parts of
the graph between which commute times are high have very differ-
ent colours. Graph edges are not shown for the sake of readability.
(best viewed in coloursy]

3.3. Collapsed graph

The matrix of commute times of the feature graph cannot

be used as an image descriptor, but it is possible to compute

instead the matrix of commute times betwegoupsof in-

terest points, where each group corresponds to a codebook

entry. In this perspective, we would compute the commute
times between the distributions of nodgs & € [1, K],
with:

d;
voly

if k; =k

Vi € [1, N],05(i) otherwise

(12)

(13)

voly,

Given a random walKY,,) started at a random nodg
following distributiondy, we want to determine the average
number of steps required to reach a pointpfand come
back tof, for the first time. This comes down to computing
the hitting time:

HT(Q/C, Ok/) =F [min {n : Hk/ (Yn) 7& 0} |Y0 ~ 9],3} (14)

The resolution of this problem with the Laplacian of the
graph is a difficult problem and, to our knowledge, there
exists no closed form solution that can be implemented in
a computationally feasible way. However, we can approx-

Figure 2. Toy example of collapsed graph, with paramelérs-
25, M =2, K = 5. (best viewed in colours)

The idea underlying the collapsed graph is to describe
the proximity of image regions: how can we represent the
fact that roads frequently stretch through urban areas in
satellite images, or that water features often lie between
sand and sky features in pictures of coastal scenes? We
measure this notion of proximity by computing the com-
mute times between different groups of features, each group
containing features that were assigned to the same code-
book entry of the features vocabulary.

Once the collapsed graph has been built we compute the
commute times between each pair of nodes as described in
section2. The hypothesis required to obtain result illus-
trated by equation? is that the graph (in our case the col-
lapsed graph) should be connected. If this is not the case, we
first compute the commute times between nodes belonging
to common connected components of the collapsed graph.

imate the commute times between distribution of nodes by Then the commute times between nodes belonging to dif-
computing the commute times between the nodes of the col-ferent connected components is set to infinity. Moreover,

lapsed graplt'.. I'. is the graph that is obtained by group-
ing (“collapsing”) the nodes of' associated to the same
codebook entry into a single node (see figlye The col-
lapsed graph contains thus nodes (wheréx is the size
of the codebook) and we define the weight.- of the edge
between nodes, &’ as:

N

Wik = E

i=1 j=
ki=k =k

N
(15)

wij
=1

the commute time from one node to itself is set to O if it is
present in the collapsed graph, and infinity otherwise.
Figure 3 shows the relationship between the commute
times computed in the collapsed graph and the experimental
commute times between the distribution of nodes associated
to the different codebook entries in the feature graph. The
correlation is not linear but suffices to justify our approxi
mation
The K x K symmetric matrixCT, of commute times of
the collapsed graph is a representation of the image that we
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" Collapend crente tine = (Fel sroue connile tame) |1 wherer is a normalisation factor appropriately selected (for
e instance the mean proximity between image descriptors).
0 . o The output of this step is a set of points in a low dimen-
00 ) o sional space, each one of them corresponding to an image.
Of course, this dimensionality reduction method can be ap-
S plied to any kind of high dimensional image representation
et o or data description.
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5. Image classification and labelling results

1000

. We evaluate the quality of our image representation by
Oe - = - - - - trying to complete classification and labelling tasks oeé¢hr
different datasets. Each dataset is equally divided inia-tra
Figure 3. Commute times in the collapsed graph as a function of ing set and a test set and performance is reported on the test
the empirically measured commute times between node groups inset only. The datasets are detailed below.
the feature graph. Commute times measures can be acquired by The high resolution satellite image datasetis com-
randomly walking on the graph. posed of 128 images containing roads and 103 images of
vegetation. The 60 cm panchromatic images were acquired
by satellite Quickbird in the area of Beijing, China.

The indoor scene dataseis a subset of the Fei-Fei &
—CT(k, K) Perona §] dataset. It is composed of 930 imgges belonging
Vk, k' € [1,K], x(k, k") = exp <K,> (16) to one of four classes: bedroom, kitchen, living room and

office. The training and testing sets contain respectivédy 4
and 466 images. Each test image has to be classified in one
of the four classes.

The vehicle datasetis a subset of the PASCAL
VOC2007 classification challenge datasét [It contains
1331 challenging images coming from the aeroplane, boat,
" bicycle, bus, motorbike, and train classes: these images di

play a high intra class variability and heavy background
clutter. Object instance(s) can come from one or more

normalise to obtain the final representatign

This normalisation is done in order to obtain a consistent
representation for whichy (&, ') = 0 if no feature is as-
sociated to the codebook entrigsor k'; x(k,k) = 1 if
codebook entry: exists in the collapsed graph.

Therefore, if the feature graph is entirely disconnected
the matrixy contains only zero values except on its diago-
nal, wherex(k, k) = 1 if at least one feature is assigned
to codebook entry:. In this particular case our image re- . .

S ! .. classes in each image.
presentation is equal to a binary bag of features. This will

allow us to compare our image representation to the bag of In our experiments we use scale and rotation-invariant
features representation simply by changing the valu&/of SURF (Speeded Up Robust Featureg), ¢f dimension 64.

(Sections) The number of points extracted with this detector is typi-
It should be noted that despite its high dimensionality, cally of the order ofl000 = 2000. The features quantiza-

can be made memory-efficient by taking into account its tion can be done in various ways  but we chose to use
X L . Y€ y taking simple k-means on the set of features collected in 10% of
sparsity since in practice it often contains less than 10% of

. ) .~ the training images. Bag of features approaches have been
non-zero values. We will nonetheless reduce the dimension- . . .
ality of y in order to praceed to the classification step shown to be more efficient with codebook sizes of_the order
' of a thousand7]; however, we have seen that/f is the
) ] ) ] ) . codebook size the dimension of the image descriptor will
4. Dimensionality reduction and image classifi-  pe K (K + 1)/2. Thus a value ok = 500 seems to be
cation a good compromise between dimensionality and computa-

. . : . . tional tractability.
We apply the dimensionality reduction method described ¢ gimensionality of the representations is reduced to

in section2 to a fully connected graph in which the nodes 54 |mages are then assigned real valued predictions for

are the image descripto(s;) and the weighi.;; between o401 class by summing one versus one linear SVM contri-

two nodes(i, ) is & function of the proximity of the image 1 sions. In the classification task each image is assigned

descriptors: to the class for which the prediction is highest. In the la-
belling task each image has a real valued prediction for each
class and receiver operator characteristic (ROC) curves ca

) (17) be drawn by changing the threshold on the prediction val-
ues.

1 & alp,a) — x5 (0, 9)|
\V/Za]mu’L =exrp\ — i ST
! T p%;l xi(ps @) + x;(p, @)



Figure 4. Sample images from the Fei-Fei & Perona indoor
scene classes datasé} nd the vehicles subset of the PASCAL
VOC2007 challenge’]

5.1. Parametric evaluation and comparison with the
bag of features

We first validate our approach by computing our im-
age representations on tlmgh resolution satellite im-

bedding we can plot the first two coordinates of the repre-
sentation. As we can see (figusethe separation between
road images and vegetation images is sharp. In fact, the
images that lie at the border of the separation are ambigu-
ously or incorrectly annotated: they are either road images
containing a lot of vegetation or vegetation images contain
ing relatively small roads or straight paths. Correct éfass
cation rates are nonetheless very gdai20% and97.30%

for the vegetation and road images respectively.
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Figure 5. High resolution satellite image database: vegetation im-
ages (green squares) and road images (orange circles) after em-
bedding of the image representations in two dimensions.

The quantitative contribution of our approach can be
observed in the classification results of tineloor scene
datasetas a function of\/, the minimum number of con-
nections per node in the feature graph (see figreThe
value M = 0 corresponds to a binary histogram of quan-
tized local descriptors, aka: the bag of features reprasent
tion. As M is increased the feature graph becomes more
connected and the information due to the layout of the dif-
ferent groups of nodes gains greater importance in the ima-
ge representation (outside the diagonalydfrelatively to
the histogram of quantized features (diagonakpf What
we observe is that an increaseMfcauses variations in the
classification performances. These variations can be posi-
tive or negative, depending on the classes and the value of
M. This reveals two phenomena: first, it shows that tak-
ing into account the image layout can raise the ambiguity
between image classes that have similar bag of features re-
presentations (see bedroom and office classes). For the two
others (kitchen and living room) adding spatial informatio
only increases confusion: the content of these images s spa

age dataset The parameters are assigned default values:tially too chaotic and our image representation is an ollerki

a = 0.5, M = 4. After the dimensionality reduction em-

compared to the simple bag of features. Second, the extent



] Class | M=0] M=4] point detectors and descriptors, using a customised defini-

Aeroplane (126)] 0.855 | 0.855 tion of the weights and the connections of the feature graph,
Bicycle (127) 0.722 | 0.743 and setting appropriate values for the parametesad M .
Boat (100) 0.752 | 0.762 Understanding the relationship in a formal way between
Bus (89) 0.722 | 0.726 the full and the collapsed graph in terms of commute times
Motorbike (125)| 0.813 | 0.842 is an ongoing research effort towards the solidification of
Train (134) 0.749 | 0.786 this new image representation. Such an action will lead to-

Table 1. Area under curve (AUC) scores of the vehicle classes fromWard the representation of parts of images in the purpose of
the PASCAL VOC2007 challenge fdvl = 0 (binary bag of fea- ~ completing object localisation tasks.
tures) andV/ = 4.

A. Spectrum of the normalised Laplacian ma-

to which the proximity between image regions should be trix
taken into account varies between classes: a low value of
M means that only the interactions between regions that
are both spatially close and very similar will be integrated
into the image representation.

The influence of parameter in the construction of the Vi g L(i,j) = di —wy ifi=j (18)
feature graph can be seen on figéreA value ofa = 1 by AT —w;; otherwise
means that connection between interest points will depend £ o= T-\2pp-1/2 (19)
only on the similarity of their descriptors: this leads tafe

ture graphs containing several disconnected subgraphs in  gince 7, is symmetric its eigenvalues are real. More-
which the most similar interest points tend to be grouped. o er 7, is (weakly) diagonally dominant¥, |L(i, )| =

On the contrary, a value of = 0 means that only the spatial s~ i |L(i, j)|. Gershgorin's circle theorem states that all
organisation of the interest points will decide on the canne eigjenvalues of, are non-negative and therefakeis posi-
tions of the feature graph. Again, this quantitative compar e semi-definite. Thug is positive semi-definite as well
son shows that capturing the information of the layout of the pacause the, are non-zero in a connected graph. We also

interest points is not evenly important for all image classe | now that the eigenvalues df are real becausé is sym-
Adjusting thea parameter can lead to substantial perfor- 1 atric so they are non-negative.

mance gain but is not critical. For the kitchen class, these
measures confirm the previous observation that adding in-

The normalised Laplaciafi can be written as a function
of the un-normalised Laplaciaix
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M | Bedroom| Kitchen | Liv.Ro. | Office | Average « | Bedroom| Kitchen | Liv.Ro. | Office | Average
(108) (105) (145) | (108) | (466) (108) (105) (145) | (108) | (466)
0 66.2 56.67 | 72.66 | 60.00 | 64.63 0 72.22 46.19 | 68.17 | 62.79 | 62.91
1 74.54 43.33 | 66.44 | 49.30 | 59.14 01| 71.76 48.57 | 69.55 | 62.79 | 63.77
2 73.61 48.57 | 70.93 | 60.93 | 64.20 02| 7222 48.57 | 69.90 | 61.86 | 63.77
3 72.69 48.10 | 69.20 | 63.72 | 63.98 0.3| 70.37 48.10 | 69.90 | 61.86 | 63.23
4 71.30 49.05 | 7197 | 64.19| 64.85 04| 71.30 50.00 | 69.90 | 61.86 | 63.88
5 72.69 4952 | 7093 | 61.86| 64.41 05| 70.37 50.48 | 70.59 | 60.47 | 63.66
6 72.22 48.57 | 70.93 | 61.86| 64.09 06| 7176 47.62 | 70.59 | 62.79 | 63.88
7 72.69 50.00 | 70.59 | 62.33| 64.52 0.7| 72.69 48.57 | 71.63 | 63.26 | 64.74
8 72.69 47.62 | 70.93 | 62.79 | 64.20 08| 71.76 50.00 | 69.90 | 60.93 | 63.77
9 72.22 49.05 | 71.28 | 61.86| 64.31 09| 70.37 51.90 | 69.90 | 63.26 | 64.41
10| 67.13 50.00 | 68.51 | 57.21 | 61.40 1.0| 69.44 52.86 | 69.44 | 60.47 | 62.69
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Figure 6. Good classification (in %) as a function of the minimum numbedgée per node in the feature grajphand of parametett.
The number of test images per class is indicated in brackets.
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