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Abstract. In this paper, we propose a new formulation of the Differ-
ential Optical Flow Equation (DOFE) between two consecutive images
considering spatial and temporal information from both. The displace-
ment field is computed in a Markov Random Field (MRF) framework.
The solution is done by minimization of the Gibbs energy using a Direct
Descent Energy (DDE) algorithm. A hybrid multiresolution approach,
combining pyramidal decomposition and two-step multigrid techniques,
is used to estimate small and large displacements. A new pyramidal de-
composition method without warping process between pyramid levels
is introduced. The experiments carried out on benchmark dataset se-
quences show the effectiveness of the new optical flow formulation using
the proposed unwarped pyramid decomposition schema.

Keywords: Optical flow estimation, RMF minimization, Multiresolu-
tion technique.

1 Introduction

Motion estimation has always been a major activity in computer vision commu-
nity, with application in tracking, stereo matching, rigid and elastic motions, fluid
propagation... Since early 80’s, it has been well studied and many approaches
have been proposed. But it is still remaining challenging to this date. For details
on existing algorithms, you can refer to Barron’s et al. [4].

Differential Optical Flow Equation (DOFE), introduced by Horn & Schunck
[9], has proved to be very powerful in motion estimation. The DOFE is based
on the hypothesis of illumination constancy over a small period of time. At
the beginning, approaches were defined on a centered formulation of the DOFE
that needs at least three successive images ([9,4]). Other approaches studied the
case of only two successive frames and proposed a non-centered DOFE based
on the first image ([5]) or on the second one ([11,13]). Recently the work of
Alvarez et al. [1] imagines an intermediate image at the half way from the first
to the second image and uses a symmetrical formulation of DOFE based on two
images. However, this method needs many interpolation and warping steps that
can affect the quality of the estimation.
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The hypothesis of small displacement made to define DOFE is very restric-
tive. Most of movements do not respect this assumption over image domain.
To deal with it, multiresolution techniques are commonly used. The idea is to
estimate the displacement field in an incremental and iterative way for different
image resolution (coarse-to-fine). The different resolutions can be generated by
scale-space theory ([2]) that convolves Gaussian filter of different variances to
the image to extract coarse to fine information or by pyramidal decomposition of
original images into successive images of smaller resolution. Many decomposition
techniques were proposed as Gaussian pyramid [5,11,13] , steerable pyramid [15]
or wavelet decomposition [10]. But all these approaches, during the multiresolu-
tion process, warp the image by the coarse displacement field estimated at upper
pyramid level before computing the missing incremental displacement between
the warped and the other image. This step transforms and interpolates image
information. It is strongly correlated to the quality of coarse displacement field.

These last years, many works has been done on the search of the optimal solu-
tion of the displacement field. Due to the non-convexity of problem formulation,
multigrid technique is often used ([12]). It allows local minimization to not be
trapped in local minima. It has been shown that coupling multiresolution and
multigrid techniques for optical flow estimation can improve the accuracy of the
estimation ([8,7]).

In the present work, we propose a new non-centered formulation of the DOFE
that refers to the two image spatial information (TI DOFE). The DOFE is solved
by maximizing a posterior probability using a Direct Descent Energy (DDE)
algorithm through the minimization of an equivalent MRF-Gibbs energy. Making
a local spatial assumption, we define a multiresolution technique that does not
need to warp image between two pyramid levels. As the previous work in [7], the
multiresolution is combined with a two-step multigrid technique helping DDE to
converge to the optimal solution while improving significantly the computational
time.

The rest of the paper is organized as follows. Section 2 defines TI DOFE, for-
mulates the MRF framework and introduces the minimization method. In section
3, we detail the pyramidal multiresolution schema using warping or unwarping
steps and the combined multigrid technique. Results about three different se-
quences are illustrated and discussed in section 4. Section 5 concludes the paper.

2 Methodology

2.1 Two-Frame Optical Flow Equation

For a two-frame temporal image sequence, the optical flow equation (OFE) is
the 2D vector field of apparent displacement d(s) = (dx(s), dy(s)) that links
pixels s = (x, y) of the first image at time t with its correspondent position in
the second image at time t + Δt.

OFE definition is based on the assumption that the image illumination (I(s, t))
is constant over a small time interval Δt:
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I(s + d(s), t + Δt) − I(s, t) ≈ 0 (1)

Making the hypothesis of a small displacement d(s) over a small time interval
Δt, the Differential Optical Flow Equation (DOFE) can be computed from a 1st

order Taylor expansion of I(s + d(s), t + Δt) around s :

I(s + d(s), t + Δt) = I(s, t + Δt) + d(s).∇I(s, t + Δt) + ϑ(d2(s)) (2)

If d(s) is small enough, ϑ(d2(s)) can be neglected. We have the following DOFE:

I(s, t + Δt) − I(s, t) + d(s).∇I(s, t + Δt) ≈ 0 (3)

With ∇I(s, t + Δt) = (∂I(x,y,t+Δt)
∂x , ∂I(x,y,t+Δt)

∂y ) spatial gradients at time t + Δt

(second image). We call this equation DOFE 2.
Doing 1st order Taylor expansion of I(s + d(s), t + Δt) around s and Δt. For

d(s) and Δt small enough, ϑ(d2(s), Δt2) ≈ 0 and DOFE can be rewrite as:

Δt.It(s, t) + d(s).∇I(s, t) ≈ 0 (4)

With It(s, t) = ∂I(x,y,t)
∂t and ∇I(s, t) = (∂I(x,y,t)

∂x , ∂I(x,y,t)
∂y ) the temporal and

spatial gradients at time t (first image). Let call it DOFE 1.
The finite difference of the temporal gradient It(s, t) using the two-frame

image sequence is:

It(s, t) =
I(s, t + Δt) − I(s, t)

Δt
(5)

From eq.4 and eq.3, We obtain then a new non-centered DOFE that contains
spatial information from both images. We call it TI DOFE:

Δt.It(s, t) + d(s).
1
2

(∇I(s, t) + ∇I(s, t + Δt)) ≈ 0 (6)

2.2 MRF Framework and Minimization

The displacement field d is considered as a random variable that maximizes
a joint probability. It is computed within a MRF framework via Maximum a
Posteriori estimation using a Bayesian decomposition of a Gibbs distribution.

P (d(s), I(s)) =
1
Z

e−E(d(s),I(s)) (7)

Where Z is the normalization constant and the total Gibbs energy E is
defined by:

E(d(s), I(s)) =
�

s∈C1

Vd(d(s), I(s)) +
�

s,s�∈C2

αp Vp(d(s),d(s�)) (8)

I(s) represents the observed data extracted from image intensities. C1 and C2

are respectively the single-site and pair-site cliques. αp is a weighting coefficient
that is used to play on the influence of the data term Vd compared to the prior
term Vp. Vp only depends of its 4-neighborhood (s� neighbor of s).
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Data term is a quadratic function of DOFE 1 (eq.4), DOFE 2 (eq.3) or
TI DOFE (eq.6). Eq.9 represents the case of TI DOFE:

V d(d(s), I(s)) =
�

Δt.It(s, t) + d(s).
1
2

(∇I(s, t) + ∇I(s, t + Δt))
�2

(9)

DOFE does not admit a unique solution. To solve the ill-posed problem, we add
a prior term (regularization) that reduces the configuration of possible solutions.
The prior term is defined as Tikhonov regularization [16]:

V p(d(s),d(s�)) = ||d(s) − d(s�)||2 (10)

The minimization of the energy is achieved by a Direct Descent Energy (DDE).
DDE consists to minimize E(d(s), I(s)) by successive iterations over all pixels.
A small incremental δd(s) random value is generated where d(s) ← d(s) +
δd(s). δd(s) is conserved only if E(d(s), I(s)) is decreased. This minimization
method converges to a local minimum of the energy. It is then dependent to
the initialization of displacement field. To cope with this problem, the weighting
coefficient αp(i) is logarithmic increasing over the iteration (i) from 0 to αp.
In this way, the estimated displacement field satisfies first the DOFE then it
is slowly becoming more constrained by the regularization term. Moreover, the
multigrid technique allows the DDE minimization to not be trapped into local
minima and to reach an optimal solution.

3 Combined Multiresolution - Multigrid

3.1 Pyramidal Decomposition

The multiresolution by pyramidal decomposition from coarse to fine resolution
has been proved to be numerically useful for optical flow estimation [14]. The
image resolution is iteratively reduced in a pyramid of K different successive
resolution levels from the original resolution using Gaussian filter [6]. We use a
Gaussian filter of variance σ = 1.

At each pyramid level k, the total displacement field dk = d̃
k+1

+ d�k where
d̃k+1 is the interpolated total displacement field computed at coarser resolution
(k+1) and d�k is the complementary displacement field at level k. d�k is small at
each pyramid level k. The 1st order Taylor expansion condition is then respected
for each level. The TI DOFE becomes:

Δt.It(s + d̃k+1, t) + d�k.
1
2

�
∇I(s + d̃k+1, t) + ∇I(s + d̃k+1, t + Δt)

�
≈ 0 (11)

For better readability, we did not write the spatial dependency of the displace-
ment field (d̃k+1(s), d�k(s)). By similarity, DOFE 1 and DOFE 2 for multireso-
lution can easily be obtained in the same way.

To compute the observed data of the equation, common methods warp the
image (I) into a compensated intermediate image (Î) depending to the used
DOFE formulation : [5] warps the first frame to the second Î(s, t) = I(s+d̃k+1, t)
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or [8,13] warps the second to the first Î(s, t+Δt) = I(s+d̃k+1, t+Δt). The image
(I) is transformed by the displacement field d̃k+1, then the intensity distribution
is interpolated to a regular pixel grid s. Notes that s in Î(s, t) represents in fact
the old position s + d̃k+1 and s in Î(s, t + Δt) still represents the same s.

The multiresolution TI DOFE with warping (W MR) can be written as:

Δt.Ît(s, t) + d�k.
1
2

�
∇Î(s, t) + ∇Î(s, t + Δt)

�
≈ 0 (12)

The spatial and temporal gradients are computed from the warped images. Their
precision depends to the quality of d̃k+1 estimation and to the efficiency of
warping technique. Ît(s, t) = I(s, t + Δt) − Î(s, t) = Î(s, t + Δt) − I(s, t).

In this paper, we proposed to suppress the warping step. We consider that the
spatial derivatives are locally invariant over a small time interval Δt. It means
that the gradients of DOFE can be computed on both original images. No image
needs to be warped. Then we use the correct gradient quantity in respect to the
coarse interpolated displacement field d̃k+1(s) for each pixel s.

The multiresolution TI DOFE without warping (noW MR) take the following
form:

Δt.It(s + d̃k+1, t) + d�k.
1
2

�
∇I(s, t) + ∇I(s + d̃k+1, t + Δt)

�
≈ 0 (13)

Where ∇I(s, t) = ∇I(s + d̃k+1, t) is the spatial gradient on the first image,
∇I(s + d̃k+1, t + Δt) is the spatial gradient on the second image at coordinates
s + d̃k+1, Δt.It(s + d̃k+1, t) = I(s + d̃k+1, t + Δt) − I(s, t) is the difference of
the intensity at coordinates s + d̃k+1 on the second image with the intensity at
s on the first one. We use a bilinear interpolation to compute the corresponding
value of ∇I(s + d̃k+1, t + Δt) and I(s + d̃k+1, t + Δt).

To resume, W MR warps image information then compute spatial and tem-
poral gradients. In noW MR, due to local invariant hypothesis on gradients,
gradients can be first computed on original images then only values in s + d̃k+1

are interpolated.
The prior term along the multiresolution scheme is still the Tikhonov regu-

larization of the total displacement field dk(s):

V p(dk(s),dk(s�)) = ||(d̃k+1(s) + d�k(s)) − (d̃k+1(s�) + d�k(s�))||2 (14)

3.2 Multigrid Method

At each pyramid level k, we use a two-step multigrid method previously pro-
posed in [7]. The complementary displacement field d�k is decomposed into a
global component dg

�k (average over a mesh size) and a local component dl
�k

(local deviation from dg
�k for each pixel). dg

�k is very fast to compute and fur-
nishes a good approximation of the final displacement. It is used to initialize the
search of d�k = dg

�k + dl
�k at pixel level. Computational time is faster and the

minimization can reach a better solution closer to the optimal.
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4 Results

For all the illustrated results, we use the same parameter definitions to be able
to compare the DOFE formulations and multiresolution schema. We set a 4-level
pyramid decomposition for multiresolution and a grid size of 4× 4 pixels for the
multigrid method. The weighting coefficient αp is spatially constant and equal
to 100.

We evaluate the performance of our methods on the recent Middlebury optical
flow benchmark dataset [3]. We use, in this paper, the Average Angle Error
(AAE) [4,3] criteria to compare the efficiency of estimations:

AE = arccos

�
dc(s).de(s)

||dc(s)|| ||de(s)||

�
(15)

AE is the angle error between the correct displacement dc and the estimated
displacement de. The AAE is computed for three kinds of image area: all the
image domain without border (all), the motion discontinuities (disc) and tex-
tureless regions (untext). We pre-process the data by convolving each frame of
the sequence with a smoothing Gaussian filter (σ = 1).

We discuss the results of DOFE 1, DOFE 2 and TI DOFE using W MR or
noW MR on the dimetrodon sequence. Fig.1 shows the first input image, the
ground truth where displacement vectors are coded with the color map pro-
posed in [3] and the estimated displacement vector field computed using the
two-frame optical flow formulation (TI DOFE) with unwarping multiresolution
scheme (noW MR). The second line of Fig.1 illustrates the three masks used to
compute AAE for all image domain, motion discontinuity area and textureless
regions.

(a) first Image (b) Ground truth (c) TI DOFE with noW MR

(d) Mask all (e) Mask disc (f) Mask untext

Fig. 1. Dimetrodon: One of the three types of data illustrated in this paper. Ground
truth and estimated field (TI DOFE with noW MR) are represented by flow field color
coding map ([3]). Only white area is used to compute the AAE for the different masks.
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The estimated field is very similar to the ground truth field. Because it is
difficult to visualize the difference between the approaches, table 1 shows the
different AAE values for three kinds of sequences (Dimetrodon, Yosemite and
Venus) for the different DOFE formulation using warping and unwarping mul-
tiresolution. Performance of our methods is also compared to results shown in
[3] of few classic optical flow algorithms.

Table 1. AAE comparison of our methods with classic algorithms ([3]) for Dimetrodon,
Yosemite and Venus sequences. In bold: smallest AAE for classic algorithms, W MR
and noW MR. In red: smallest AAE over all methods.

AAE dimetrodon yosemite venus
all disc untext all disc untext all disc untext

Bruhn et al. 10.99 9.41 14.22 1.69 2.86 1.05 8.73 31.46 8.15
Black and Anandan 9.26 10.11 12.08 2.65 4.18 1.88 7.64 30.13 7.31

Pyramid LK 10.27 9.71 13.63 5.22 6.64 4.29 14.61 36.18 24.67
MediaPlayer TM 15.82 26.42 16.96 11.09 17.16 10.66 15.48 43.56 15.09

Zitnick et al. 30.10 34.27 31.58 18.50 28.00 9.41 11.42 31.46 11.12

W MR DOFE 1 5.20 8.62 6.17 3.21 4.88 1.33 8.56 34.85 8.21
W MR DOFE 2 5.43 8.72 6.19 3.49 4.75 2.01 9.57 35.17 9.02
W MR TI DOFE 5.00 8.43 5.89 3.17 4.81 1.35 8.32 34.81 7.90

noW MR DOFE 1 5.12 8.50 6.02 2.89 4.13 1.23 9.03 35.28 8.71
noW MR DOFE 2 4.99 8.09 5.80 2.93 4.15 1.12 8.72 34.37 8.72
noW MR TI DOFE 4.92 8.21 5.80 2.88 4.13 1.06 8.41 33.81 8.54

From the table, we can remark that our optical flow approach outperforms
algorithms as Pyramid LK, MediaPlayer TM and Zitnick and that it gets around
the same magnitude of AAE than Bruhn et al. and Black and Anandan. In bold
red are the smallest AAE over all methods for each sequence and each method
produces at least one of the best estimation.

The optical flow formulation using the two-frame spatial information
(TI DOFE) performs better than optical flow definitions based on only one
image information (DOFE 1, DOFE 2) independently to the used multireso-
lution schema. The new unwarping multiresolution method allows most of the
time a better estimation of the displacement field for all kind of optical flow
formulations.

However, we can notice that our methods have clearly stronger AAE for mo-
tion discontinuity areas. This is due to the MRF formulation of our energy terms
that are defined as quadratic functions.

Further results over the all Middlebury optical flow benchmark dataset, in-
cluding comparisons to other recent techniques are available at the website:
http://vision.middlebury.edu/flow/.

5 Conclusion

In this work, we propose a two-frame optical flow formulation using the spatial
information from the two images. A new unwarping multiresolution scheme is
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defined that reduces the number of transformation and interpolation during the
pyramidal decreasing process to estimate the displacement field.

Results have shown that the combination of TI DOFE and noW MR methods
increases the performance of optical flow estimation. The estimation efficiency is
as good as state of the art algorithms. It is interesting in a future work to intro-
duce robust function in our MRF framework to be able to extract better motion
discontinuities and to define a better data and prior function that physically
correspond to the studied motion phenomenon.
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