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ABSTRACT

Existing conditional video prediction approaches train a net-
work from large databases and generalise to previously un-
seen data. We take the opposite stance, and introduce a model
that learns from the first frames of a given video and extends
its content and motion, to, e.g., double its length. To this end,
we propose a dual network that can use in a flexible way both
dynamic and static convolutional motion kernels, to predict
future frames. We demonstrate experimentally the robustness
of our approach on challenging videos in-the-wild and show
that it is competitive w.r.t related baselines.

Index Terms— Frame Synthesis, Video Prediction, Mo-
tion Representation, Dynamic Kernels, Deep Learning, Neu-
ral Network

1. INTRODUCTION

We consider the problem of motion prediction for future
frame synthesis. While the vast majority of the recent lite-
rature in the field is dedicated to learning forecasting models
from (relatively) large databases, we focus our attention on
learning from few samples. Being able to learn efficiently
from a small dataset, exploiting a good motion representa-
tion, opens the door to a variety of new applications.

We explore for the first time predictive models that are
domain-agnostic but data-specific. Our aim is to learn a
model of a dynamic scene in the wild from a single video
clip, and to extend/extrapolate its content and motion to, e.g.,
double its length. We are interested in any natural repetitive
motions, such as a bird flapping wings or human walking (see
figure 2).

Learning a predictive model from a single video in the
wild is challenging: 1) the generic nature of the natural mo-
tion we are seeking to model is not suitable for loss-specific
or architecture-specific networks of most existing methods;
2) the choice of videos-in-the-wild implies a model capable
of robust background-foreground decomposition, to be able
to recover large background regions occluded by the fore-
ground in previous frames –something that no work of our
knowledge so far has demonstrated; 3) learning from a short
clip requires a quick and efficient convergence of the model
at training time.

Our model is related to two different lines of work tack-
ling the issue of motion prediction. The first one is concerned
with dynamic filters, i.e., methods that infer input-dependent
weights of a convolutional or LSTM network at each time-
step, and apply these filters to a frame to predict the next
one (e.g., [12, 5]). The second one refers to disentangled
representations from unsupervised learning (i.e., separating
the causes from the effect) –approaches that usually implicitly
assume simple background or semi-rigid motion [9, 14, 26].

Future frames are generated one by one, in a recursive
fashion. The model takes as input a context (i.e., historical
frames) and predicts the next frame. We propose a motion
representation based on a dual network: one stream applies
a transformation to an input and generate the next frame; the
second stream selects dynamically a subset of the kernels of
the transformation network which will effectively be active
for a given input. Our contributions can be summarized as
follows:

1. We propose the first DNN-based model that attempts to
extrapolate the content and motion of a given videoclip.

2. We introduce a predictive network that jointly learns
dynamic and static elementary convolutional kernels.
Its architecture makes it robust enough to learn effi-
ciently from a few data.

3. We validate our approach on natural challenging videos
with cluttered background, multiple and complex mo-
tions, and no particular semantic domain, with mid-
range (10-30 frames) prediction.

2. RELATED WORK

Motion representation
Motion representation is a long-standing open problem in

visual perception studies and computer vision [7, 18, 4, 13,
31]. Visual illusions show strong evidence that the perceived
motion between consecutive images strongly depends on the
image structure itself [31]. The first attempt to develop a
parametric statistical model that explicitly captures the condi-
tional dependence between the flow field and the input image
structure, might be attributed to Sun etal. [23]. More recently,
variational auto-encoders (VAE) have been shown to be an
efficient means to modelling motion with learned prior [10].



Our model also learns input-dependent constraints on the flow
field, albeit in a non-stochastic manner.

Video texture synthesis Dynamic texture (or textured
motion) are sequences of images of moving scenes or ob-
jects that exhibit certain harmonic or stationary properties
in time, often encountered in natural scenes (eg, fluid flow,
clouds). Early parametric [21, 28] and non-parametric [2]
approaches were mostly suitable to model global dynamic
systems. Layered representations [7, 8] and deep non-linear
dynamics [34, 32] were then introduced to improve the ex-
pressive power of these models. Our work took inspiration
from deep non-linear auto-regressive models, in a similar
fashion to [34]. However, in contrast to those cited ap-
proaches, our model can take advantage, but is not limited to,
dynamic textures patterns.

Video frame prediction Recent years have sparked huge
interest in conditional video prediction [12, 17, 26, 19, 33, 22,
9, 10, 25, 27, 3, 1, 16]. The goal is to generate future frames
given a few frames history –a ‘context’. Most closely related
to our work, some approaches represent motion using a set of
input-dependent convolution filters, that operate on an image
pyramid or at image full resolution [33, 12, 5, 27]. Amongst
those, [27] is the only one of our knowledge which proposes a
predictive model for domain-agnostic immediate future video
frame generation. The authors use a sole adversial loss to
constrain the network, thus accounting for the uncertainty of
the future. It is however restricted to short-term prediction,
while we aim at exploring long-range solutions. Besides, a
large body of work address the issue of disentangling video
content from motion, with some applications to video synthe-
sis [17, 26, 9, 14]. Most of those share a same basic principle:
a dedicated network architecture, which hard-codes the de-
composition between motion/pose and content, by the means
of two distinct encoders, and the use of LSTM. In contrast, we
propose a soft mechanism which simply learns how to dis-
tinguish the moving foreground from the background. This
enables us, in particular, to recover occluded background re-
gions, something not possible from existing techniques.

3. METHOD

3.1. Overview

We aim at learning an auto-regressive sequence model Pζ ,
to predict T − δ future frames, given δ observed ones, x<δ .
Applying the product rule, the conditional likelihood over the
future frames, xδ:T , can factorized as:

L(ζ) = Pζ(xδ:T |x<δ) =

T−1∏
t′=δ

Pζ(xt′+1|x̃t′−δ:t′), (1)

where the first frames of the time-series are observed, i.e.,
x̃0:δ = x0:δ = x<δ (x refers to the ground-truth image, and
x̃ is a generated one). We use a δ-order markovian assump-
tion: predictions are independent conditionally of the past few

Fig. 1. Sample frames from our video-clip dataset.

frames. Future frames can be generated recursively one by
one, each newly generated frame, x̃t, feeding the model for
the next time step. The set of parameters ζ = {Φ, θ} defines
the model. We learn Pζ by minimizing the negative loga-
rithm of equation (1), so that: ζ = − arg minζ logL(ζ) =
arg minζ E(ζ).

Our predictive model, Pζ , is based on two nested modu-
les: (i) a transformation model Gθ (or transformer), which
generates the next frame x̃t, by transforming the previous
ones, xt−δ:t, via a series of elementary motion kernels, W l

.,n.
The size, orientation and activation amplitude of those kernels
determine the transformation to be applied to the input. This
encompasses both object displacement (similar to local image
warping), and new pixel generation (that uncover occluded re-
gions). (ii) a selection model SΦ (or selector), whose role is
to choose, at each time step, which subset amongst the avail-
able motion kernels of Gθ is the most efficient to perform the
desired transformation, conditioned on the input data. Specif-
ically, the selection model outputs a probability mass function
over the kernels indices of the transformation model.

Our image prediction model can thus be written as fol-
lows:

Tζ : xt−δ:t 7→ x̃t+1 = Gθ,SΦ(xt−δ:t) (2)
= Gθ(xt−δ:t;SΦ(xt−δ:t)).

3.2. Direction selective motion kernels

The transformation model Gθ and selection model SΦ are
nested deep networks, represented by a U-shaped encoder-
decoder for the former [15], an encoder for the latter.

Given an input clip xτ , τ = [t−δ, t], lets define the matrix
α̂(xτ ) = SΦ(xτ ) so that α̂ ∈ [0, 1]L/2×N and

∫ N
n=1

α̂ln = 1

. Each element α̂ln ∈ α̂, inferred from SΦ, is a weighting
scalar that will act upon the convolutional filters ofGθ. L and
N are respectively the total number of hidden layers and the
number of channels per layer of the decoder in Gθ. Hence, at
each layer l of the decoder of the transformation model, we



define the linear transformation applied to an hidden feature
map Y l−1, as follows:

αl−1
n ← Nα̂l−1

n (xτ )

Z ln′ =

2N−1∑
n=0

[YL−l; αl−1 Y l−1]n ∗W l
n,n′ (3)

=

N−1∑
n=0

YL−ln ∗W l
n,n′ +

2N−1∑
n=N

Y l−1
n ∗W l

n,n′ αl−1
n ,

where ∗ denotes the convolution operation, l ∈ {L/2, ..., L−
1} and n′ ∈ {0, ..., N − 1}. [Aa;Bb] refers to the concatena-
tion of feature maps A originating from the encoder at layer
a of the net, via the skip-connection, with feature maps B at
layer b, along the depth/channel dimension. W l

n,n′ ∈ Rf2

is the weights matrix of the f × f motion kernels. In the
above equations and the subsequent ones, we omit the bias
term (here +bn on the RHS), for the sake of compactness
and simplicity. The input- and time-dependent behaviour of
the transformer’s kernels appears in the second term of the
RHS of equation (3): W l

n,n′αl−1
n = N W l

n,n′ α̂l−1
n (xτ ). The

scalars α̂l−1
n (xτ ) modulate and modify the behaviour of the

convolutional kernels at each time step, hence confer to the
network a greater flexibility.

For the sake of completeness, we finally write down the
expression of the very first and very last building blocks of
the transformer network:

Z0
n′ =

t∑
t′=t−δ

xt′ ∗W 0
t′,n′ , Y0

n′ = ρ0(Z0
n′),

ZLn′ =

2N−1∑
n=0

[Y0; αL YL−1]n ∗WL
n,n′ , x̃t+1 = ρL(ZL).

where ρ() is the non-linearity function.

3.3. Loss function

We use the L1 norm as reconstruction loss, in addition to
which we introduce a motion loss, minimizing for the total
variation in the time domain:

`L1(xt) = |x̃t − xt| (4)
`motion(xt) = ||x̃t − x̃t−1| − |xt − xt−1|| (5)

The motion loss explicitly forces the network to account
for the temporal changes between consecutive frames. Hence
the total per-batch loss function can be written:

E(ζ) =

t′+K∑
t=t′

(
`L1(xt) + µmotion1t>t′`motion(xt)

)
, (6)

where µmotion is a factor weighting the two terms, 1 is the
indicator function and K is the time-range prediction in the

future at training time. Note that we do not impose any direct
constraint on the output of the selector, α(x) = SΦ(x).

We learn the model end-to-end in a fully unsupervised
manner. We employ training in stages with tasks of increasing
difficulty [30].

4. EXPERIMENTAL RESULTS

Videos and additional results are available online1. Please re-
fer to our website and long version arXiv paper [20] for the
complete specifications regarding architecture, training pro-
cedure and data.

We quantitatively and qualitatively evaluate our approach
on several video-clips in-the-wild. The accuracy of the re-
construction is measured in terms of PSNR and SSIM [29],
averaged over the length of the predicted sequence. We run
and compare:

B0 Baseline-0. Reference baseline, no prediction. We
compute the error between the last input frame, and the
next frame.

B1 Baseline-1. Encoder-encoder. The sole transformation
model Gθ() is trained, the selection model is inactive;
we set µmotion = 0.

M1 DN w/o motion loss. Our dual net model —Gθ() and
S()Φ are trained jointly; we set µmotion = 0.

M2 FDN. Our dual net model, trained with motion loss. We
set µmotion = 10, unless specified otherwise.

Quantitative results are given in Table 1. Visual illustra-
tions are shown on Figure 2 for the Bird sequence, on our
website for the other clips.

Bird. The sequence was downloaded from Youtube,
cropped and resized to 256 × 256 pixels. It comprises 80
frames, 50 of which being used for training. Motion is
learned with a conditioning of four frames. For testing, we
input to the net four frames that it has not seen at training,
and predict 25 future frames. Figure 2 shows that our ap-
proach synthesises correctly motion and appearance, while
the baseline tends to introduce color artefact.

Boy on a bicycle. This example illustrates a sequence with
cluttered textured background. The video was acquired with
a Canon EOS camera, with a resolution of 1280 × 720, then
cropped and resized to 100×320 pix. It comprises 57 frames,
30 of which being used for training. Motion is learned with
a conditioning of three frames. To illustrate the results, we
feed the net with three frames of the sequence unseen at train-
ing time, and predict future frames until the boy leaves the
camera’s field of view. While competitive methods reproduce
correctly the translational motion, our approach tends to be
more faithful in terms of foreground details and object shape
contours.

1https://cs.huji.ac.il/˜prinet/project_pages/
VideoPredict/

https://cs.huji.ac.il/~prinet/project_pages/VideoPredict/
https://cs.huji.ac.il/~prinet/project_pages/VideoPredict/
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Fig. 2. Bird sequence. Blue frames: input conditioning frames and six frames (three first and three last frames, out of 25)
ground-truth (that the model has not seen at training). Yellow frames: prediction results from B1. Orange frames: prediction
results from M1. Green frames: prediction results from M2 (our FDN). Gray frames: L2 error between ground-truth and our
full model (FDN) prediction.

B0 B1 M1 M2 (FDN)
Bird 22.2 23.1/0.913 23.6/0.922 24.2/0.923
Garden 19.5 20.3/0.682 20.5/0.70 20.42/0.695
Ocean 25.6 26.1/0.943 27.06/0.963 27.7 /0.955

Table 1. Quantitative analysis (average PSNR/SSIM over the
predicted sequence length), for the Bird, Garden and Ocean.

Ocean sequence. We selected a sequence from the
YUP++ dataset [11] depicting ocean waves and a boat mov-
ing (static camera # 28, Ocean category), that we cropped
to 2002 pix and down-sampled in the time domain, to even-
tually get a sequence of 50 frames. The boat displacement
is uniform, while the waves are characterized by harmonic
oscillations. The colors are tern, without good contrast be-
tween the boat’s hull and the sea. We learn the model from
20 frames, using three frames for conditioning. We predict
over the next 26 frames. The motion loss, accounted for only
in our full model, allows our model to distinguish correctly
the sea from the boat’s hull.

Cat sequence. The Cat sequence was downloaded from
Youtube, and subsampled in time and space by a factor of two.

It comprises 32 frames (105×320 pixels). The motion reflects
the global translational displacement and the local movement
of the cat’s legs. To illustrate the results, we feed the net
with three frames that have been seen during training (no 25
and onward), and predict over thirty frames (with no ground
truth available for most of the predicted sequence). The visual
results (see our project web page) shows sharper contour and
better motion forecast from our model, in comparison to the
baselines (B1, M1).

5. CONCLUSION

We have introduced a model for future frame synthesis from a
single video-clip in-the-wild. Inspired initially by the mecha-
nism of Direction Selective cells in the retina (see [6, 24]), our
motion representation is based on a dual network: one that
learns kernels, and a second one which dynamically selects
the best subset for next frame prediction. Our approach com-
pares favourably with respect to baseline methods on chal-
lenging videos. Future research directions include video ma-
nipulation and motion (de)composition.
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