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Abstract

Despite recent progress, pedestrian detection still suffers from the troublesome

problems of small objects, occlusions, and numerous false positives. Intuitively,

the rich context information available from urban scenes could help determine

the presence and location of pedestrians. For example, roads and sidewalks

are good cues for potential pedestrians, while detections on buildings and trees

are often false positives. However, most existing pedestrian detectors ignore or

inadequately utilize semantic context. In this paper, in order to make full use of

the urban-scene semantics to facilitate pedestrian detection, we propose a new

method called Semantical Modulation based Pedestrian Detector (SMPD). First,

for efficiency, a semantic prediction module is jointly learned with a baseline

detector for semantic predictions. Second, a semantic integration module is

designed to exploit the urban-scene semantic context for detection. Specifically,

we force it to be an independent detection branch based solely on semantic

information. In this way, together with the baseline detector, the fused detection

results explicitly depend on both the learned appearance features and the scene

context around pedestrians. In addition, while existing methods cannot be

applied to the datasets where semantic annotations are not available for training,

we introduce a semi-supervised transfer learning approach to make our method
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suitable for more scenarios. We demonstrate experimentally that, thanks to the

integration of semantic context from urban scenes, SMPD can accurately detect

small and occluded pedestrians, as well as effectively remove false positives. As

a result, SMPD achieves the new state of the art on the Citypersons and Caltech

datasets.

Keywords: Pedestrian Detection, Semantic Context, Urban Scene

1. Introduction

Pedestrian detection is a key component in intelligent video analysis and

has wide applications in surveillance systems, intelligent transportation, driving

assistance, etc. However, it is still a difficult task in complex scenarios, with

many challenges such as small objects, occlusions of various levels, numerous5

false positives, etc.

In recent years, convolutional neural network (CNN) models [1, 2, 3, 4, 5]

have made great progress in generic object detection. Along this line, various

pedestrian detectors [6, 7, 8, 9, 10] have been designed based on CNN and

demonstrated improved performance. However, most of these methods localize10

objects merely using learned appearance features, which may be insufficient for

addressing the above challenges.

Considering the value of context, several methods [8, 11, 12] have been pro-

posed to incorporate features of larger regions as context for object detection.

However, the context used in these methods lacks clear semantic meaning, thus15

also insufficient to facilitate detection. Lately, motivated by the close connection

between detection and segmentation, various works [13, 14, 15, 16, 17] focus on

improving the detection accuracy using auxiliary object semantics. However,

these methods only exploited semantic pixels of various foreground instance

objects while regarded background as a single class, ignoring the rich scene20

information in the background that can be used as detection cues.

In contrast to the foreground semantics, the urban-scene semantics around

pedestrians do provide rich context information, which could be helpful for
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(a) suppress false detections

(b) recall missed detections

Figure 1: Two examples of how scene semantics predicted in SMPD can help detection. Red

and green boxes represent the groundtruth and detection results, respectively. The images at

the four corners represent original images, detections of the baseline detector, semantic maps,

and detections of SMPD, respectively, from top left to bottom right. The middle of the two

subgraphs shows probability maps for detection, where the maps in the first column are from

the baseline detector and the semantic maps, respectively, and that in the second column are

the semantical modulation results by multiplying these two probability maps.

pedestrian detection if utilized properly. For example, streets and sidewalks

are good cues for potential pedestrians, while detections on the sky and trees25

are typically false positives. With this in mind, Zhang et al. [7] proposed to

facilitate detection by introducing an additional segmentation map containing

scene semantics as the fourth channel of the image. However, the segmentation

maps were produced by an independent network, requiring heavy additional

computation. Mao et al. [18] and Chen et al. [19] further proposed to jointly30

learn semantic segmentation and detection in a single network. However, in

these two methods, regardless of the predicted semantics, the CNN features
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of the semantic branch were used and simply concatenated with features of

the backbone to improve detection. This feature-level fusion processing makes

it ambiguous that how much useful semantic information is contained in the35

features used for final detection. In other words, it is unable to intuitively and

fully utilize semantic information for detection. Actually, the complementary

detection clues contained in the scene semantics are sufficient, so that networks

can explicitly and directly use the semantic context to guide detection. And

we do show in this work that implicitly using CNN features from the semantic40

branch and the simple feature concatenation do not fully exploit the rich urban-

scene context, while explicitly utilizing the semantic class probability predictions

as complementary detection cues to directly guide detection is a better choice.

Therefore, motivated by the rich detection cues contained in the background

scene, and for addressing the problem that most existing pedestrian detectors45

ignore or inadequately utilize semantic context, we propose a novel method to

facilitate pedestrian detection through an intuitive and effective use of scene

semantics with explicit semantic meanings, denoted as Semantical Modulation

based Pedestrian Detector (SMPD). Specifically, in SMPD, the semantic pre-

dictions are independently used to perform pedestrian detection through a se-50

mantic integration module. The final detection results are determined by fusing

the outputs of semantic integration module and the baseline detector, which

forms a dual detection structure. We call this procedure semantical modulation.

For efficiency, the semantic predictions are generated by a semantic prediction

module, which is jointly learned with the detection network. The two modules55

are laterally included into an existing detector, requiring few additional pa-

rameters and little computational cost. Through the dual detection structure,

the detection results explicitly depend on both the learned appearance features

and the scenes in which the objects are located. It fully utilizes the constraint

and complementary functions of scene semantics. In addition, semantic labels60

are not available for most pedestrian detection datasets and existing pedes-

trian detectors using semantic information cannot be effectively applied to the

datasets without semantic labels. Therefore, considering the low requirement of
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the proposed network for the segmentation precision, a semi-supervised transfer

learning approach for generating pseudo semantic labels is further introduced.65

Experimentally, our method can be successfully trained with the pseudo seman-

tic labels generated by this approach, without the requirement of additional

semantic annotations. It makes our method suitable for more scenarios and

distinct from existing methods always requiring semantic annotations.

Thanks to the effective use of urban-scene semantics, SMPD achieves high70

performance in detecting small and occluded pedestrians, as well as removing

false positives. As can be seen from the two examples in Fig. 1, the baseline

detector introduces false positives and fails to detect a pedestrian. In contrast,

when integrating the detection results obtained from the predicted semantic

maps, the probabilities of the false positives and the missed pedestrian are sup-75

pressed and enhanced, respectively. Thus, pedestrians are successfully detected

by SMPD. In a quantitative evaluation, the proposed SMPD achieves new state

of the art on the Citypersons [7] and the Caltech [20] datasets.

2. Related Work

Object detection: With recent development of CNNs, generic object de-80

tection has gained great success. In general, various CNN-based detectors can

be roughly divided into multi-stage, single-stage and anchor-free methods. The

multi-stage methods [1, 3, 21, 22, 23] first generate object proposals, and then

refine these proposals using sub-networks for classification and regression. In-

spired by these, numerous methods have tried to improve detection performance85

by focusing on the network architecture [21, 22, 24], training strategy [23, 25],

etc. The single-stage methods [4, 5, 26] aim at speeding up the detection process

by directly classifying and regressing anchor boxes. Though faster, the detection

accuracy of single-stage detectors often lags behind the two-stage methods. To

improve the detection accuracy, Dssd [27] focused on enhancing the feature rep-90

resentation, while RetinaNet [28] paid attention to the extreme positive-negative

imbalance problem during training. Recently, anchor-free methods [29, 30, 31]
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attract more attention due to their simple structures without parameter set-

tings of anchors and achieve high performances. For example, CornerNet [29]

proposed to classify the upper left and lower right corners of objects in a pixel-95

wise manner and match the corners through embedding. FCOS [31] proposed

to locate the sample points in the center area of each object and regress the

distances from the sample to the boundaries, thus replacing the pre-defined

anchors. However, when applied directly to the field of pedestrian detection,

all above methods have not presented competitive performances, especially on100

small or heavily-occluded pedestrians.

Pedestrian detection: Traditional pedestrian detectors, such as ACF [32]

and LDCF [33], exploited various filters on Integral Channel Features [34] to

localize objects. Recently, inspired by the success of CNNs in generic object

detection, various methods [35, 9, 6, 36] have been designed for pedestrian de-105

tection. For example, DeepParts [37] first applied traditional method [33] to

generate proposals, and then employed a CNN for classification. In contrast,

NeuralFeatures [38] combined neural features from FCN [39] with a traditional

AdaBoost classifier. RPN+BF [6] applied a stand-alone RPN for proposal gen-

eration, and a boosted decision forest for classification. And HCD [40] further110

extended RPN+BF framework to combine handcrafted features and CNN fea-

tures for detection. To address the multi scale problem, SA-FastRCNN [9]

jointly trained two networks to detect large and small pedestrians, respectively.

MS-CNN [8] exploited different layers to generate proposals corresponding to

different scale ranges. MHN [41] proposed a multi-branch network to generate115

multiple similarly high-level feature maps of different resolutions. AMS [42]

utilized asymmetric rectangular convolution kernels for capturing the compact

features of pedestrians. SML [43] enhanced the features of small objects through

forcing the feature representations of small-scale pedestrians to approach those

of large-scale pedestrians. For the occlusion problem, RepLoss [10] designed120

a regression loss to make predictions belonging to different groundtruths far

away from each other. HBAN [44] conducted head detection in parallel with

traditional body branch. Zhang et al. [45] further introduced body part detec-
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tion. Adaptive-NMS [46] assigned different Non-Maximum Suppression (NMS)

thresholds for objects according to densities. PBM [47] further utilized the pre-125

dicted visible boxes in the process of NMS. Considering the speed, ALFNet [48]

proposed to directly regress anchor boxes in a multi-step process. CSP [49] was

further proposed as an anchor-free detector, which only predicted the center

and scale maps, achieving state-of-art results on Citypersons [7]. Due to the

advantages of CSP in both speed and accuracy, we utilize it as the baseline130

detector in our experiments

Object detection with semantic segmentation: Due to the complemen-

tary information in object semantics, various works [50, 15, 17, 14, 51, 13, 52]

focus on the effectiveness use of the object semantics for detection. F-DNN [50]

segmented pedestrians through an independent network to refine the detection135

results in a post manner. Brazil et al. [15] exploited foreground and back-

ground information, which was combined with the features from the backbone.

SSA-CNN [53] explored pedestrian segmentation results as self-attention cues

to boost pedestrian detection. MGAN [17] and MDFL [16] further proposed

to segment the coarse visible parts of objects as foreground for filtering fea-140

tures through attention. Mask R-CNN [13] achieved instance segmentation from

shared feature maps on top of Faster R-CNN. However, these methods regard

the background as a single class, ignoring the rich scene information that could

be used as detection cues. There are also various works [54, 55, 7, 18] that do

use scene semantics for pedestrian detection. For example, Zhang et al. [7] and145

Sheng et al. [55] improved detection by combining the segmentation maps with

the original images and traditional hand-crafted features, respectively. However,

the segmentation maps were predicted by an independent network [39], thus in-

troducing extra computational burdens. Mao et al. [18] jointly learned segmen-

tation and detection, combining features learned by segmentation with feature150

maps in higher layers. However, the simple feature concatenation in these meth-

ods prevented the semantic context from being fully exploited. Different from

these works, SMPD pays more attention to how the urban-scene semantics can

be used for pedestrian detection, which performs individual detections based on
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Figure 2: The overall architecture of SMPD is based on a baseline detector that consists

of a feature processing module and a detection head. Apart from the baseline detector,

SMPD consists of two main components, i.e. the Semantic Prediction Module (SPM) and

the Semantic Integration Module (SIM). The SPM generates semantic response maps of size

w/4 × h/4 × c, where c is the number of semantic categories. The SIM produces a center

heatmap by feeding detection features exploited from semantic response maps to the detection

head. The final detection results are determined by the outputs of the two detection heads.

the semantic information exploited from urban-scene semantic maps for con-155

straining and supplementing the detection results. In addition, existing works

all require semantic annotations for training. In contrast, we present a solution

in Section 3.4 when no semantic labels are available for training.

3. Approach

3.1. Overall Architecture160

The overall architecture of the proposed SMPD is illustrated in Figure 2.

ResNet-50 [56] is chosen as the backbone for extracting features. Since the

resolution of feature maps in the final stage of the backbone are too low for

small objects, as is common practice, dilated convolutions are adopted in the

last stage to make the feature maps downsample to 1/16 the size of the input165
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Figure 3: The structure of the SE+BN module used in SIM.

images. Considering accuracy and speed, SMPD uses CSP[48] as the baseline

pedestrian detector, which is an anchor-free detection framework. CSP first

fuses multi-scale feature maps, and for object detection, a detection head is

appended on the concatenated features to produce the center heatmap and

scale map. For a fair experimental comparison and better performance, SMPD170

selects the feature maps from stage 3-5 in ResNet-50 as the multi-scale feature

maps, which is consistent with the best performing model of CSP.

As depicted in Figure 2, apart from the baseline detector, SMPD has two key

modules, namely Semantic Prediction Module (SPM) for generating semantic

response maps from the shared feature maps, and Semantic Integration Module175

(SIM) for independent detections based on the semantic context. The SPM

is connected to the final outputs of the backbone while the SIM is applied on

the semantic response maps. The final classification results are determined by

the product of the classification maps from the SIM and the basic detector,

and we call this procedure semantical modulation. In the following sections, we180

will present the details and design principles of the SPM and the SIM. And for

showing the structure of the proposed modules more clearly, the detailed param-

eters of the proposed SPM and SIM are listed in Table 1 of the supplementary

materials.
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3.2. Semantic Prediction Module (SPM)185

The semantic prediction module is utilized to produce pixel-level semantics,

which can provide useful information to facilitate pedestrian detection. Gener-

ally speaking, high-level feature maps have more semantic information. There-

fore, SPM is appended upon the final feature maps of the backbone, which are

1/16 the size of the input images.190

The structure of the SPM is depicted in Figure 2, where two buffering con-

volutional layers are first used to prevent the gradients of the SPM branch from

being back-propagated directly to the backbone and causing instability during

joint training. After the buffering layers, the number of feature channels is re-

duced to c, where c is the number of semantic categories, which is not usually195

very large. Second, for further detection with requirements on small objects,

semantic response maps are enlarged to 1/4 size of the input images via a de-

convolutional layer. As the outputs of SPM, the semantic response maps are

supervised by the semantic labels during training. In contrast to other detectors

that only use two categories (foreground and background) for facilitating detec-200

tion, SMPD utilizes various semantic scene categories (20 classes in Cityscapes

[57]), and can thus fully exploit the rich context. Finally, the semantic response

maps are fed into the SIM.

3.3. Semantic Integration Module (SIM)

The semantic integration module aims at fully exploiting and using the scene205

information from the semantic response maps for pedestrian detection. Intu-

itively, scene semantics contain rich detection clues, the semantic predictions

can be directly used to make decisions on the existence probability of objects.

Motivated by this, different from the implicit feature fusion scheme in previous

works [19, 18], the SIM branch individually estimates pedestrian bounding box210

candidates directly from the feature maps exploited from the semantic response

maps with explicit semantic meanings. Figure 2 shows the structure of the SIM.

In the design of SIM, a channel-wise attention is first appended upon the se-

mantic response maps. It has a structure similar with the existing Squeeze-and-
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Excitation (SE) module [58] and assigns different weights for different channels.215

This is done for two reasons. On the one hand, in order to make correct decisions

of detection based on the semantic context, SIM should learn the relationship

between the semantics of different categories and the pedestrian semantic. Tak-

ing the 20 categories in Cityscapes as an example, in addition to the pedestrian,

the road and sidewalk are scenes positively related with pedestrians, while the220

sky and traffic signs are negatively correlated. In contrast, the presence of wall

or fence is not correlated with pedestrians. On the other hand, if using deeper

stacks of convolutional layers instead, the difference in importance of different

categories may also be implicitly learned, but this would increase the computa-

tional cost. Therefore, a SE module for channel-wise attention should be useful225

to endue different weights to different semantic categories and reduce the learn-

ing difficulty, as well as the network complexity. However, since the input of SIM

contains explicit semantic meaning rather than unconstrained features, and the

total pixels of different semantic categories are usually imbalanced. And due to

the global average pooling in the SE module, the channels with larger response230

pixels will dominate the weight calculation. Therefore, the learning difficulty

will be significantly increased if using the original SE module. In addition, only

1/16 channels are left after the first FC layers in the original SE module, which

is harmful to the relation extraction between few semantic categories. Thus,

as shown in Figure 3, after the first FC layer, 1/4 channels are reserved, which235

allows the SE module to better extract relations between different semantic cat-

egories. Besides, BN layer is introduced after the Global Pooling to handle the

trouble of imbalanced semantic categories. Because this operation can ensure

that the pooled values of different categories are normalized to the same range.

We denote this adapted module ’SE+BN’.240

For further detection, after ’SE+BN’, we attach a residual block to the ad-

justed semantic maps to increase its dimension to 256 and then append a 3x3

conv layer to generate the semantic-based features for detection. The obtained

semantic-based feature maps are finally fed into the detection head to produce

the center heatmap. In this way, the detection heads in the baseline detector245
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generate predictions using only the appearance features, while the SIM gener-

ates detection scores according to the rich urban-scene semantics surrounding

the predicting points. And the final detection results are determined by the

product of the two center heatmaps. Therefore, this semantical modulation

detection approach makes it easier for the network to detect pedestrians, espe-250

cially in ambiguous cases like small or occluded objects, or person-like blobs in

unreasonable places. When training, the product of probability maps from the

two detection heads is supervised by the classification labels.

3.4. Training

Loss functions. SMPD is optimized in a joint training manner with two

main objectives for semantic prediction and detection. For semantic prediction,

the loss function ls is formulated as:

ls =
∑
i,j

C∑
c=1

−wcŶ cij log Y cij , (1)

where Ŷ cij and Y cij are the groundtruth and the predicted semantic probability,255

respectively, for the cth category at location (i, j). Y cij is obtained by applying

the softmax function on the outputs of SPM along the category channels. Fol-

lowing [59], wc is the weight of the cth category to balance the segmentation

loss contribution of different categories, which is inversely proportional to the

ratio of positives in the cth category to the total number of pixels. Note that260

the original semantic labels should be downsampled to the size of the semantic

response maps that is supervised by the ls.

For object detection, following most methods [7, 48, 49], the classification

loss lcls and the regression loss lloc are applied. The focal loss [28] used for lcls

is defined as follows:

lcls = −α
∑

(i,j)∈S+

(1− pij)γ log(pij)− (1− α)
∑

(i,j)∈S−

pij
γ log(1− pij) (2)

where pij is the classification probability of pedestrian center at location (i, j),

S+ is the classification positive set containing all the points where the centers of
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pedestrians are located, S− is the negative set containing rest points, and α and265

γ are focusing parameters, set to 0.25 and 2, respectively, as suggested in [28].

In this way, the loss contributions of easy samples are down-weighted. During

training, lcls is applied to supervise the product of the two center heatmaps

from the SIM and baseline detector.

Generally, the pedestrian bounding box can be regarded as having a fixed

aspect ratio. And in the baseline detector CSP, positive samples for classification

are the object centers. Therefore, CSP directly regresses the height of the object.

Following CSP, the proposed SMPD also regresses the height and sets the aspect

ratio as 2.4. For supervising the height predictions, we adopt the smooth L1

loss as the regression loss lloc:

lloc =
1

K

K∑
k=1

SmoothL1(hk, tk), (3)

where hk and tk represents the predicted and groundtruth height at the center270

point of the kth bounding box, respectively. Note that the Equation 3 is only

used to supervise the height predictions of positives.

To sum up, the total loss function is formulated as:

Ltotal = λclcls + λllloc + λsls, (4)

where λc, λl, λs are the weights of the classification loss, regression loss and

semantic prediction loss, respectively. Following CSP, λc, λl are set as 0.02 and

1. λs is set as 0.1. These weights keep the three losses on the same magnitude.275

Gaussian map. In general, all pixels with semantic pedestrian labels are

positives for segmentation, while for CSP, only the pedestrian centers are posi-

tives for detection. Thus when the segmentation loss in Equation 1 is appended,

all positive pedestrian pixels around object centers are treated equally for seg-

mentation. This will introduce more difficulties for the network to learn the

salient features of center. This feature interference will reduce the benefits of

multi-task learning for the center-based detectors. As can be seen in the Fig-

ure 4(b) and 4(c), the features of the baseline detector can clearly highlight the

object center. However, when only introducing SPM, the features of the object
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(a) input image (b) baseline (c) baseline+SPM (d)baseline+SPM+GM

Figure 4: Two examples of features of different models before the final 1x1 conv layer in the

detection head. The images from (b) - (d) represent the features of the baseline, baseline+SPM

and baseline+SPM+GM, respectively. The features visualized here are obtained by norming

the feature map along the channels, in which brighter means larger response.

center become fuzzy and have low response. To address the feature interference,

we design a Gaussian Map (GM) that enables to gradually decrease segmenta-

tion responses for pedestrian pixels located away from centers. The semantic

pedestrian prediction Y pij in Equation 1, where p represents the pedestrian cat-

egory, can be weighted as Ỹ pij = gijY
p
ij , where gij is the weight at location (i, j)

in the Gaussian Map. It is formulated as follows:

gij =


2−max

k
G(i, j, xk, yk, σwk , σhk), (i, j) ∈ S,

1, otherwise,

(5)

where (xk, yk) are the center coordinates of the kth bounding box, S is the union

area of all the bounding boxes, (σwk , σhk) are the variances of the Gaussian dis-

tribution, which are proportional to the height and width of individual objects.

G(i, j, xk, yk, σwk , σhk) is the density value at location (i, j) in the Gaussian dis-

tribution centered at (xk, yk) with variances (σwk , σhk), which adopts the same
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setting as the Gaussian mask in [49] and can be formulated as:

G(i, j, x, y, σw, σh) = e
−( (i−x)2

2σ2w
+

(j−y)2

2σ2
h

)
, (6)

Finally, Y pij in Eq. 1 will be replaced by Ỹ pij for training. Note that this is

done only in the pedestrian channel, but not in channels of other categories. In

this way, larger weights are given to pedestrian pixels further away from their

centers for segmentation, resulting in a lower response of these points, and thus

avoiding interference with the center detection in CSP. As shown in Figure 4(d),280

introducing GM can be competent to alleviate the feature interference. It makes

the features used for detection brighter and more concentrated than that of the

baseline+SPM, while retaining the semantic information.

Semi-supervised transfer learning. Existing methods that use seman-

tic information for pedestrian detection can not be applied to datasets where285

semantic annotations are not available. To tackle this issue, we introduce a

semi-supervised transfer learning approach which generates pseudo semantic la-

bels for training. Specifically, in this method, the detection labels are also used

to help revise the pseudo semantic labels of the pedestrian channel. The process

of the semi-supervised transfer learning approach to generate pseudo semantic290

labels can be described by the following four steps:

(1) For an image, an additional pre-trained segmentation model firstly generates

semantic predictions with the size of W ×H × C, where C is the number

of semantic categories.

(2) To make the pedestrian segmentation more accurate, we generate a fore-295

ground and background mask (W × H × 1). In this mask, all the pixels

within the pedestrian boxes are regarded as foreground and set to the same

value (larger than 1), and all other pixels are set to 0.

(3) The pedestrian channel of the semantic predictions is multiplied by the mask

to produce adjusted semantic predictions.300

(4) Finally, the pseudo semantic labels are obtained through arg max on the

channel dimension of the adjusted semantic predictions.
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In Section 4.4, we show the success of this learning approach. Theoretically, the

success of this method is inseparable from the low requirement of the proposed

SMPD for segmentation precision. There are two reasons for the low require-305

ment. Firstly, the baseline detector and SIM perform detection separately and

only interact on the final center heatmaps. In this way, the detection results of

the baseline detection head can still mainly depend on the learned appearance

features. This reduces the interference caused by the low-precision segmentation

map to the features used for detection of the baseline detector. Secondly, SIM is310

a detection branch, and the detection task mainly needs salient features which

integrate local context information. And due to the use of multi-layer 3x3 con-

volution in SIM, the receptive field for detection is expanded. Therefore, SIM

relies on the recapitulative semantic context to preform detection, rather than

the semantic of a single pixel.315

Caltech Citypersons

Train Val. Train Val.

# images 42782 4024 2975 500

# persons 13674 1358 19654 3938

# ignore regions 50363 6238 6768 1631

# person/image 0.32 0.34 6.61 7.88

Table 1: Statistics on CityPersons and Caltech dataset.

4. Experiments

4.1. Datasets

The performance of SMPD is evaluated on Citypersons [7] and Caltech [20]

datasets. The detailed statistics on the two dataset are listed in Table 1.

Citypersons. Citypersons is annotated on the fine annotation images in320

Cityscapes [57] dataset. The dataset contains 2975 images and approximately

20000 pedestrians in the training subset. The proposed model is trained on this
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subset, with corresponding semantic labels from Cityscapes and evaluated on the

validation subset with 500 images. Cityscapes is a segmentation dataset of urban

scenes, which is recorded across 50 different cities in Germany with 3 different325

seasons and various weather conditions. The dataset contains 5000 images with

fine annotations and defines 19 semantic categories for evaluation. In training,

we choose these 19 semantic categories and an additional background class for

the loss calculation.

Caltech. The Caltech pedestrian dataset consists of approximately 10 hours330

of 640x480 30Hz video taken from a vehicle driving in an urban environment.

The dataset contains 11 sets of videos, in which the sets 0-5 are used for training

and the sets 6-10 are for testing. Following [49, 17, 48, 46, 7, 18], we use the 10x

set (42782 images) as the train subset which samples the frames at 10Hz, and

the test subset (4024 images) for evaluation. Our SMPD is trained and tested335

with the new annotations [60] on the original image size.

Evaluation Metric. The evaluation follows the standard Caltech evalua-

tion metric [20], that is the log-average Miss Rate over False Positive Per Image

(FPPI) ranging in [10−2, 100] (denoted as MR−2). The lower value of MR−2

reflects better detection performance. Results on ignored regions will not be340

considered in the evaluation.

4.2. Training details

We choose the ResNet-50 pretrained on ImageNet [61] for backbone. All

other layers are randomly initialized with the ’Xavier’ method. For fair com-

parison, SMPD applies the same positive-negative definition as CSP [49]. In ad-345

dition, following CSP, the training strategy of moving average weights proposed

in [62] are also applied to achieve more stable training. To increase the diversity

of the training data, the standard data augmentation techniques including ran-

dom color distortion, random horizontal flip, random scaling and random crop

are adopted. Since there are no semantic annotations for Caltech, the pseudo350

labels generated by the semi-supervised transfer learning approach are used for

training, as described in Section 3.4. In the transfer learning approach, the
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Method SPM
SIM

GM
MR−2(%) Parameters Speed

w/o SE+BN w SE w SE+BN IoU=0.5 IoU=0.75 (MB) (s/img)

Baseline 11.02 41.76 38.1 0.15

SMPD

X 11.30 37.86 42.6 0.16

X X 10.69 36.82 42.6 0.16

X X 10.64 37.51 44.3 0.17

X X 11.06 39.31 44.3 0.17

X X 10.01 35.99 44.4 0.17

X X X 10.28 36.37 44.3 0.17

X X X 9.89 34.58 44.4 0.17

gain +1.13 +7.18

Table 2: Contribution of each component, evaluated on Citypersons [7]. In the SIM column,

w/o SE+BN, w SE and w SE+BN represent the SIM equipped without SE module, with

original SE module and with the ’SE+BN’, respectively.

segmentation model [63] used for producing the semantic predictions is trained

on Cityscapes. In the following experiments, unless otherwise stated, models

are trained and tested on the original image size. For more details regarding355

the configurations on Citypersons and Caltech, please refer to [49].

We implement SMPD on Pytorch platform. For Citypersons, the network is

trained for 40k iterations by the Adam optimizer on two Tesla V100 GPUs with

8 images per GPU. The initial learning rate is 2×10−4 and decreases to 2×10−5

after 30k iterations. For Caltech, the network is trained for 10k iterations on360

one GPU with a batchsize of 16 by the Adam optimizer. The learning rate is set

to 2×10−4. Following [48, 49, 45], we also conduct experiments on Caltech with

the model pretrained on Citypersons. And the model is trained for 5k iterations

with a learning rate of 10−4.

4.3. Ablation Study365

In this section, we report ablation studies on the Citypersons dataset [7].

Component evaluation. To evaluate the effectiveness of each component

of SMPD, we train the models with different components starting from the

baseline CSP. As shown in Table 2, CSP achieves 11.0% MR−2 under IoU=0.5,
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Figure 5: ROC curves of the baseline CSP (black), CSP with SPM (blue), and SMPD (red)

under IoU = 0.5 and 0.75, evaluated on Citypersons.

which is still a leading result on Citypersons under the original image size. Based370

on it, jointly training SPM results in a small performance decrease at IoU=0.5,

but an improvement at IoU=0.75, These results are consistent with the ROC

curves in Figure 5. Empirically, the evaluation metric under IOU=0.5 is more

concerned with the ability of the model to distinguish between positives and

negatives. Because in this case, if one positive point is classified correctly, it will375

be regarded as a true positive as long as the IOU between its box prediction and

corresponding gt is greater than 0.5. In contrast, the evaluation metric under

IOU=0.75 emphasizes the regression quality of the positive samples. Therefore,

the most intuitive explanation of these results is that jointly training baseline

with SPM leads to a better regression ability, but worse classification ability. As380

discussed in Section 3.4, the positive pedestrian pixels for segmentation degrade

the shared feature being discriminative for center localization, but the scale

regression is more accurate due to the boundary information involved from the

semantic predictions. To address the feature interference in learning, adding

Gaussian Map enables to reduce the MR−2 to 10.69%. When only the SIM is385

added without ’SE+BN’, the MR−2 is reduced to 10.64%, which indicates the

effectiveness of the dual detection scheme in using the scene semantics. However,
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Method [50,75] [75,100] [100,∞]

Baseline 16.0 3.7 6.5

SMPD 14.8 2.6 5.6

improvement +1.2 +1.1 +0.9

Table 3: Comparison on MR−2 between the baseline and SMPD in different object scales

under IoU = 0.5 on Citypersons.

Method Categories Integration IoU=0.5 IoU=0.75

Baseline - - 11.02 41.76

SMPD

- dual detection 10.93 38.14

2 dual detection 10.70 39.32

20 feature concat 10.71 38.68

20 dual detection 10.28 36.37

Table 4: MR−2 performance on Citypersons of SMPD with different numbers of semantic

categories and different methods in integrating scene semantics. For a fair comparison, all the

SMPD models here are without ’SE+BN’ module, except the model without segmentation

supervision in the second line.

when the original SE module is used in SIM, the performance degenerates due

to the imbalanced total number of pixels in different categories. And when

’SE+BN’ is further enabled, the MR−2 is reduced to 10.01%, which indicates390

that, upon the semantic predictions, the proper use of the SE module with BN

layers can reduce the difficulty of the SIM learning and exploit more effective

features from the scene semantics for detection. Finally, all the effective modules

are appended together, which achieves 9.89% MR−2 with a 1.13% improvement

than the baseline. Under a stricter IoU of 0.75, SMPD achieves an even larger395

performance gain of 7.18% MR−2, which indicates that it is capable of achieving

a better localization quality with little additional computational cost.
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(a) detection results of CSP

(b) detection results of SMPD

(c) prediction results of semantic segmentation from SMPD

Figure 6: Detection examples of the baseline CSP and SMPD on Citypersons. Red, green and

white rectangles represent groundtruth, true positives and false positives, respectively. (a)

detection results of CSP, (b) detection results of SMPD, (c) segmentation results produced

by SMPD.

Different object scales. To demonstrate the performance on various ob-

ject scales, we evaluate SMPD in three object scales according to [7]. As shown

in Table 3, SMPD improves the results on all three scales. Specifically, the400

improvements on small ([50,75]) objects and medium ([75,100]) objects are en-

couraging, with MR−2 reduced by 1.2% and 1.1%, respectively, which indicates

that the context information exploited from urban-scene semantics is quite ben-

eficial to detect smaller objects.
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False positive rate. SMPD aims at fully exploiting the semantic depen-405

dencies between pedestrians and the surrounding scenes, which can indicate

whether there is a high probability of pedestrians. To verify this view, an ex-

periment is conducted to demonstrate the ability of our SMPD model to reduce

false positives. As shown in Figure 5, under both IoU=0.5 and 0.75, SMPD per-

forms consistently better than CSP. It means that SMPD can achieve a clearly410

lower false positive rate.

To further demonstrate the effectiveness of SMPD in reducing false positives,

we visually illustrate detection examples of CSP and SMPD in Figure 6. It

can be observed that SMPD has fewer false positives. In the second and third

images, SMPD does not generate false positives on buildings or between crowds,415

thanks to the contextual semantics in the corresponding semantic maps shown

in Figure 6(c). Moreover, SMPD also reduces false positives with similar shapes

to pedestrians such as the poles in the first image. It can also be observed that

SMPD obtains better performance on occluded objects, such as the detected

pedestrian on the right of the second image by means of the semantic context420

of the occlusion scenes.

Multi-category scenes. To verify how much the improvement in detection

performance comes from the effectiveness of multi-category scene semantics,

we compare the method with foreground-only and multi-category semantics.

Foreground-only means that only the pedestrian and background categories are425

utilized in the SPM. As shown in Table 4, compared with CSP, SMPD with

foreground-only semantics has a small performance gain under IoU=0.5. In con-

trast, with multi-category semantics, the MR−2 is largely improved. These re-

sults indicate that various semantic categories not only provide fore-background

constraints but also enable the network to learn the relations between pedes-430

trians and the semantic scenes around them. In order to verify whether the

performance gain comes from the effective use of the scene semantics by SMPD

or from the model with more parameters, we add an experiment. In this ex-

periment, all the modules of SMPD are kept, but during training, there are no

segmentation labels to supervise the outputs of SPM. As shown in the second435
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line in Table 4, the result of this model is only 10.93% MR−2. The result stems

from the fact that, without the supervision of semantic labels, the combination

of SPM and SIM can not exploit supplementary clues for the baseline detector.

This result illustrates the importance of various semantic categories to the pro-

posed SMPD again. From another aspect, it also confirms that the structure440

design of SMPD and the multi-category scene semantics complement each other.

Detection branch based on semantic predictions. The major perfor-

mance gain brought by SMPD lies in using the semantic predictions as detection

cues for additional detection. And compared with the simple feature concate-

nation commonly used in other works, this dual detection structure can exploit445

semantic context more sufficient for detection. To demonstrate this, an addi-

tional comparison is shown in Table 4, where the features exploited in the SPM

are concatenated with the features learned in the baseline detector, instead of

the dual detection scheme. As can be seen, the MR−2 of the simple feature con-

catenation is only 10.71%, indicating that the dual detection scheme in SMPD450

is more effective.

4.4. Comparison with the State of the Art

Citypersons. Table 5 shows a comparison with the state of the art on

Citypersons [7]. In addition to the reasonable subset, SMPD is also evaluated

on three subsets with different occlusion levels. It is worth noting that there455

are two division standards for the heavy occlusion subset. The visible range of

pedestrians corresponding to the two standards is [0, 0.65] and [0.2, 0.65], respec-

tively. On the reasonable subset, SMPD achieves the best performance, with

an improvement of 0.6% MR−2 compared with the closest competitor MGAN,

under the ×1 image scale. This is even better than all methods tested on the460

×1.3 image size. On various occlusion levels, SMPD also performs quite well.

Specifically, under the two standards for heavy occlusion and the partial occlu-

sion subset, SMPD achieves 45.6%, 36.6% and 9.0% MR−2, even better than

RepLoss and OR-CNN which are specifically designed for the occlusion cases.

These results demonstrate the ability of SMPD in handling occlusion issues, due465
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Method Scale Backbone Reasonable
Heavy

Partial Bare
vis=[0,0.65] vis=[0.2,0.65]

Adapted Faster R-CNN [7] ×1 VGG16 15.4 - - - -

Adapted Faster R-CNN+Seg [7] ×1 VGG16 14.8 - - - -

Adapted Faster R-CNN [7] ×1.3 VGG16 12.8 - - - -

TLL [64] ×1 ResNet-50 15.5 53.6 - 17.2 10.0

TLL+MRF [64] ×1 ResNet-50 14.4 52.0 - 15.9 9.2

Repulsion Loss [10]
×1 ResNet-50 13.2 56.9 - 16.8 7.6

×1.3 ResNet-50 11.6 55.3 - 14.8 7.0

Bi-box [65] ×1.3 VGG16 11.2 - 44.2 - -

OR-CNN [45]
×1 VGG16 12.8 55.7 - 15.3 6.7

×1.3 VGG16 11.0 51.3 - 13.7 5.9

ALFNet [48] ×1 ResNet-50 12.0 51.9 - 11.4 8.4

PBM [47] ×1 VGG16 11.1 - 53.3 - -

FRCN+A+DT [66] ×1.3 VGG16 11.1 - 44.3 11.2 6.9

Adaptive-NMS [46] ×1.3 VGG16 10.8 54.0 - 11.4 6.2

CrowdDetect [67] ×1.3 ResNet-50 10.7 - - - -

CSP [49] ×1 ResNet-50 11.0 49.3 - 10.4 7.3

SML [43] ×1 ResNet-50 10.6 - - 9.6 7.0

MGAN+OR-CNN [17]
×1 VGG16 10.5 - 47.2 - -

×1.3 VGG16 9.9 - 45.4 - -

SMPD [ours]
×1 ResNet-50 9.9 45.6 36.6 9.0 6.5

×1.3 ResNet-50 9.1 45.9 36.6 7.9 6.5

Table 5: Comparison with the state of the art on Citypersons. Scale indicates the scaling of

the original image (1024x2048 on Citypersons) for the input. Red and blue represent the best

and the second best results on the corresponding subset, respectively.

to its capability in exploiting rich semantic context to assess ambiguous cases

instead of merely relying on the CNN features learned from images. Moreover,

when tested on the ×1.3 image size, SMPD achieves a new state of the art with

9.1% MR−2.

Caltech. Figure 7 shows comparisons with the state of the art on Caltech470

[20]. To compare the performance under different challenges, SMPD is also eval-

uated on three subsets, Heavy, Medium and All. Compared with CSP, SMPD

achieves improvements in all subsets. On the reasonable setting, SMPD achieves

4.2% MR−2, outperforming all previous state of the art. On the heavy occlu-
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Figure 7: Comparisons of the state of the art on three Caltech subsets: Reasonable, Heavy

occlusion, Medium and All.

sion, medium object ([30-80]) and ’all’ subsets, SMPD achieves 44.8%, 35.2%475

and 55.2% MR−2, respectively. Since SMPD are trained with pseudo seman-

tic labels in Caltech, the result indicates that the transfer learning approach is

feasible, and SMPD has great robustness and the ability to facilitate detection

in various scenarios. When models are pretrained on Citypersons, SMPD also

achieves a new state of the art with 3.3% MR−2. In addition, on the heavy480

occlusion, medium object and ’all’ subsets, compared with CSP pretrained on

Citypersons, SMPD achieves a large improvement of 5.5%, 3.0% and 3.2%, re-

spectively. The substantial performance gain indicates the excellent ability of

SMPD to detect occluded and small pedestrians again.

25



5. Discussion485

It should be noted that the comparison on Citypersons is not entirely fair

because we introduce additional semantic labels from Cityscapes for training.

However, what we would like to share is that the proposed SPM and SIM are

general auxiliary modules complementary to most detectors, and we do show

a success that a leading detector can still be improved by 1.1% when scene490

semantics are fully exploited and used. What’s more, we do show another

success on Caltech without groundtruth semantic annotations. SMPD is able

to use pseudo semantic labels generated by a pre-trained segmentation model

to supervise training. In this case, although the pre-trained semantic predictor

may have some issues in generalizing to different datasets, SMPD still improves495

the baseline detector by a clear margin on Caltech.

6. Conclusion

In this paper, we present the possibility that baseline pedestrian detectors

could be further improved when effectively integrating rich detection cues con-

tained in urban-scene semantics. On top of the CSP detector, the proposed500

SMPD achieves state-of-art results on the Citypersons and Caltech datasets.

Moreover, SMPD performs especially well on small objects and occlusion cases,

as well as effectively removes false positives. Due to the general structure of

SMPD, it would be interesting to further examine its ability to improve other

advanced pedestrian or object detectors. And because of the success in the505

urban scene, we are looking forward to the performance of the method in more

other application scenarios. In addition, further integrating multimodal infor-

mation besides semantics into the proposed model is also worth studying.
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