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Abstract

Meteorological forecasting is a typical and fundamental problem in the re-
mote sensing field. Although many brilliant forecasting methods have been
developed, long-term (a few days ahead) meteorological prediction still relies
on traditional Numerical Weather Prediction (NWP) that is not competent
for the oncoming flood of meteorological data. To improve the forecasting
ability faced with meteorological big data, this article adopts the Automated
Machine Learning (AutoML) technique and proposes a deep learning frame-
work to model the dynamics of multi-modal meteorological data along spatial
and temporal dimensions. Spatially, a convolution based network is devel-
oped to extract the spatial context of multi-modal meteorological data. Con-
sidering the complex relationship between different modalities, the Neural
Architecture Search (NAS) method is introduced to automate the designing
procedure of the fusion network in a purely data-driven manner. As for the
temporal dimension, an encoder-decoder structure is built to exhaustively
model the temporal dynamics of the embedding sequence. Specializing for
the numerical sequence representation transformation, the multi-head atten-
tion module endows the proposed model with the ability to forecast future
data. Generally speaking, the whole framework could be optimized with the
standard back-propagation, yielding an end-to-end learning mechanism. To
investigate its feasibility, the proposed model is evaluated with four typical
meteorological modalities including temperature, relative humidity, and two
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components of wind, which are all restricted under the region whose lati-
tude and longitude range from 0° to 55° N and 70° E to 140° E, respectively.
Experiments on two datasets with different resolutions verify that deep learn-
ing is effective as an operational technique for the meteorological forecasting
task.

Keywords: Meterological forecasting, deep learning, neural architecture
search, AutoML.

1. Introduction

Playing an essential role in transportation [1, 2], manufacture [3, 4, 5],
and human safety [6, 7], multi-modal meteorological forecasting has been at-
taching growing attention in recent years [8, 9]. Thanks to the development
of remote-sensing technologies, a variety of sensors measuring high precision
meteorological status continuously provide high-precision observation of mul-
tiple atmospheric data. As a consequence, a deluge of data that describes
the whole environment along spatial and temporal dimensions is available
with increasing transmission rates exceeding petabytes per day [10]. Based
on the flood of meteorological data, humans keep making new achievements
with various kinds of remote sensors including radar, infrared sensor, multi-
spectral scanner, and their combinations [11, 12, 13, 14].

Notwithstanding the success of the collection of meteorological data, the
assimilation and prediction ability in the last few decades has not increased
apace with the acquisition ability of meteorological data [15]. Nowadays,
weather prediction relies extensively on massive numerical simulation sys-
tems, which consist of complex coupled partial differential equations describ-
ing the atmosphere in terms of momentum, mass, and enthalpy [16]. To ob-
tain a higher resolution of weather prediction, the dynamical core of weather
prediction models has witnessed several re-formulations. For example, to
meet the demand of a highly parallelizable algorithm, icosahedral [17] and
cubed-sphere [18] grids have been developed to realize finite-difference and
finite-volume discretization. Taking conservation laws into consideration, re-
markable achievements have also been achieved in designing discretization
approaches [19]. Although these methods are brilliant, the complexity of
physical models and required expert knowledge make it almost impossible
to exploit and adapt to the burst of meteorological data and be applied
in real-time. Another promising direction is model ensemble. Consider-



ing the nonlinear complexity of the meteorological system, the ensemble of
different complete physical nonlinear models provides better prediction re-
sults [9, 20, 21]. Unfortunately, the number of ensemble members is restricted
to a relatively small number subjecting to the computational cost [22]. In
summary, it remains an issue to make use of the flood of meteorological data
effectively and efficiently.

On the other hand, thanks to the advances in statistical modeling, ma-
chine learning methods have achieved remarkable results and provide a new
perspective on geoscience and remote sensing problems [23, 24]. To explore
the potential of machine learning for the meteorological service field, various
machine techniques have been applied, including Support Vector Machine
(SVM) [25, 26], random forecast [27, 28, 29|, cluster [30], and neural net-
work [31, 32]. Specifically, in the urban air temperature estimation task,
considering the Land Surface Temperature (LST) is affected by many fac-
tors and the correlation is hard to model with numerical simulation system,
Yoo. et. al [27] adopted a random forest model to model the multi-factor
correlation and estimate daily maximum and minimum air temperatures
based on different climate characteristics. For the flood monitoring task,
Tong. et. al [33] proposed a monitoring approach based on optical imagery
and radar imagery. To effectively extract the underlying mapping between
multi-modal information and flood inundation, an SVM method was applied
and demonstrated remarkable effectiveness in terms of noisy reduction, com-
putation efficiency, and effect. To reconstruct the Surface Air Temperature
(SAT) with a high spatio-temporal resolution, Zhang. et. al [28] proposed
to blend the geostationary information captured by satellites. In this work,
the random forest model is utilized to model the relationship between rela-
tionships between the input variables and large-scale SAT observations. In
reality, LST is hard to derive accurate estimation directly due to the com-
plexity of the energy processes and the massive parameters involved. To
address this issue, Weng. et. al proposed a least square support vector ma-
chine method to fuse the information from different sources in a data-driven
method. Although all these methods are brilliant, the required expert expe-
rience and prior knowledge for extracting handcrafted features prevent them
from being more wildly applied in practice.

Recently, benefiting from the development of Graphics Processing Units
(GPUs) that allow massive computation, deep learning techniques and Deep
Neural Networks (DNNs) have become the engine for Artificial Intelligence
(AI) [34]. In the last decade, DNN based methods have refreshed the records
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for many traditional challenging tasks including visual perception [35, 36, 37],
speech recognition [38, 39], and Go Game [40, 41]. Combined with the del-
uge of high-precision remote sensing data, deep learning has also demon-
strated remarkable performances in many traditional remote sensing tasks,
such as the retrieval of atmospheric profiles [42], atmospheric correction [43],
remote sensing image classification [44, 45, 46] and flood detection [47],
demonstrating the superiority of deep learning for multisource meteorologi-
cal data [48, 22]. Considering the convolution operation is essentially a spa-
tial operation and incompetent for extracting temporal information, ConvL-
STM [49] and its variants [50, 51, 52] incorporate the convolution operation
into the LSTM framework, rendering deep learning models with the abil-
ity to extract context from both spatial and temporal dimensions. For a
representation with global receptive filed, Yao et. al [53] applied the atten-
tion module to extract the context along both spatial and temporal dimen-
sions. To capture the spatio-temporal dependency, Li et. al [54] proposed
a spatio-temporal network based on the 3D convolution that extends the
traditional convolution network by appending an extra channel along the
temporal dimension. Similarly, to explicitly model the correlation of differ-
ent locations and modalities, Huang et. al [55] proposed the context-LSTM
module and pattern-fusion attention module to capture the inter-region and
cross-category correlations. Although these methods are brilliant, they focus
on spatio-temporal dynamics and do not take the essential physical charac-
teristics into consideration. Besides, they all adopt handcraft architectures
that could be far from optimal for specific tasks. Designing a suitable neu-
ral network also requires considerable amounts of expertise and experience,
leading to another tedious work - “network engineering”.

To democratize the technique, Neural Architecture Search (NAS), or more
broadly, AutoML has been proposed to automatize the design of DNN archi-
tecture in a purely data-driven manner. NAS methods could roughly be di-
vided into two categories, the sampling-based NAS method and the gradient-
based NAS method [56]. Sampling-based NAS methods sample child archi-
tectures from designed search spaces and apply nested optimization based
on the performance of sampled architectures. A well-investigated algorithm
is evolution that has been applied in generating neural networks [57, 58]
and CNNs [59, 60]. Another stream of research utilizes an RNN as the
agent to generate architectures and applies reinforcement learning to train
the agent [61, 62, 63]. Despite their high interpretability and feasibility,
sampling-based methods are computationally expensive as numerous archi-
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tectures are required to be validated during searching. To this end, gradient-
based NAS methods are subsequently introduced with the aim to improve
the searching efficiency. Though relaxing the discrete search space to be
continuous, DARTS [64] builds a supernet with architecture parameters and
optimizes them with back-propagated gradients. Considering the discrete
essence of architecture, several works attempt to reduce the impact brought
by discretizing architecture parameters. Some researchers formulate NAS
as a pruning process and apply compression methods such as sparse regu-
lation [65] and binarization [66]. Others combine the search process with
discrete gradient estimators such as Gumbel-Softmax [67, 68]. Benefiting
from such efforts, searching cost is reduced remarkably and significant suc-
cesses have been achieved in a multitude of fields [69, 70, 71].

In this paper, a deep learning based framework that respects meteoro-
logical laws is presented for the meteorological forecasting task. Though ex-
ploiting multi-modal meteorological data (humidity, wind, temperature), the
proposed method suffices to model the dynamics along spatial and temporal
dimensions. Spatially, a convolution based network is proposed to extract
the spatial information. Inspired by the recently thriving NAS technique,
we propose an architecture searching framework to learn the optimal scheme
to fuse multi-modal information in a purely data-driven manner. As for the
temporal dimension, we formulate the meteorological forecasting problem
as a sequence-to-sequence prediction problem and apply an encoder-decoder
framework to capture the temporal context. Moreover, the periodicity of
meteorological data is explicitly modeled with a physical indicator, which
further improves the long-term forecasting ability of our model. Experiments
on two datasets with different resolution ratios demonstrate the effectiveness
of the proposed method.

This article is organized as follows. Section 2 introduces our problem
formulation. Section 3 presents the study area and data sets. Section 4 recalls
some background knowledge relevant to this work. Section 5 describes our
methodology, which includes a general overview and details regarding every
component. Section 6 introduces the experimental design, illustrates results,
and provides some experimental analyses. Finally, this article is concluded
in Section 7.



2. Problem Formulation

Due to the resolution and interval of meteorological observation and re-
analysis, the meteorological observation could be formulated as a sequence
of meteorological data with specific spatial and temporal resolution [72].
For the ¢-th meteorological modality i.e., temperature, humidity, and wind,
the meteorological observation over a spatial region of temporal index ¢
could be represented by a grid matrix G! € RP*7*W that consists of H
rows and W columns divided according to the latitude-longitude resolu-
tion. Every grid contains P variables for the observation of P pressure
levels. The whole observation could be represented by the concatenation of
all meteorological modalities M! = (GI,Gl, ..., GE) € REXPXHXW - where
E is the number of modalities. Benefiting from this modeling, the me-
teorological forecasting task can be formulated as a sequence prediction
problem [73], which aims to generate the sequence of prospective meteo-
rological states Y = (MTH1 MT+2  MTHTr) ¢ RTr*EXPXHXW guer the
next 7'y time steps based on recent historical observed meteorological data
X = (MITTt MT-Tet2 ) MT) € RTP*EXPXHXW gyer previous T, time
slices, where T is the current temporal index. It should be noted that the
input sequence and output sequence are of the same spatio-temporal resolu-
tions. Specifically, the length of input sequence 7, and the length of output
sequence T are set to 6, the time interval is set to 12 hours in this work,
which means the proposed model targets to forecast as long as three days’
meteorological state based on previous three days’ observation.

Empirically, the characteristics of meteorological big data could be sum-
marized as the following four aspects:

Multi-modal relationship The relationship between meteorological modal-
ities is extremely complex. For example, the formation of wind is mainly
caused by the difference of temperature, while heat can also be transferred
through the convection caused by wind. Generally speaking, different mete-
orological modalities contribute to the forecasting task in particular meth-
ods, the fusion mechanism should be deliberately designed in the prediction
framework.

Spatial correlation Spatially, meteorological data at a particular location
have an obvious correlation with its neighbors. The absolute correlation
commonly decreases with the distance between two points. A prediction
framework is expected to explicitly and effectively model this correlation.
Temporal dependency Observed data at a specific point in time is con-



ditioned by earlier meteorological states at the same location. As this de-
pendency may span over a long period, explicit modeling along the temporal
dimension is essential for long-term meteorological prediction.

Periodicity Driven by the cyclical solar action, meteorological data essen-
tially follows a regular cycle [74]. Figure 3 clearly shows the meteorological
data periodical pattern aligned with the cyclical changes of solar altitude.
As an indicator of the state of solar action, solar altitude (the angle between
the sun’s rays and the horizontal plane) could then be exploited to drive
the forecasting task. Driven by the cyclical solar action, meteorological data
essentially follows a regular cycle.

To elaborately exploit the dependencies between meteorological data and
to facilitate long-term forecasting, these main characteristics are taken into
consideration in the proposed forecasting model. Specifically, the spatial
correlation is captured by a convolution based architecture with various re-
ceptive fields [75, 76]. The multi-modal dependencies are accounted for in
a fusion scheme, optimized in a NAS framework. The temporal dynamic
is modeled by an encoder-decoder structure. As for periodicity, the solar
altitude is integrated into the position encoding of every element in the se-
quence. All in all, the whole model is differentiable and could be optimized
end-to-end with back-propagation gradients.

3. Study Area and Data Sets
3.1. Study Area

As shown in Figure 1, we study an area that covers China and South-
East Asia, from 0° to 55° N and 70° E to 140° E in latitude and longitude
respectively. In this region, the altitude is high in the West and low in the
East, producing a three-step elevation distribution with the highest altitude
at 8848.86 meters and the lowest altitude point at -154.31 meters. Due to the
complex terrain and huge span of latitude, the area is featured with diverse
climatic conditions, including cold plateau climate, temperate continental cli-
mate, monsoon climate of medium latitudes, subtropical monsoon climate,
and tropical monsoon climate. Typically, a visualization of the meteorolog-
ical observation of a specific time, i.e., June 1%, 2020 00:00 AM GMT, is
illustrated in Figure 2. It could be observed that the variety of climatic
conditions and complex geography patterns lead to a huge distinction be-
tween different areas, bringing considerable challenges to the meteorological
forecasting task.
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Figure 1: Visualization of the study area, which covers China and South-East Asia.

3.2. DataSets

Based on our formulation of the meteorological forecasting problem, we
evaluated the proposed method on two meteorological datasets with hourly
gridded meteorological observation.

3.2.1. LAPS Fusion Data

Local Analysis and Prediction System (LAPS) [77] is a local analysis
and forecasting system developed by NOAA. It aims at analyzing three-
dimensional and high-resolution grid meteorological data from different data
sources'. We use a meteorological dataset based on LAPS, provided by the
China Meteorological Administration (CMA). It covers a period from 2018
to 2021. Data have originally been pre-processed and discretized on a spatial
grid of 3 km x 3 km resolution (around 0.03° x 0.03° for latitude-longitude
resolution) and temporal resolution of 1 hour. As for vertical resolution, all
modalities are stratified by atmospheric pressure into 37 layers.

3.2.2. FRAS

ERA5 [72] is a new-generation atmospheric reanalysis of the global cli-
mate developed by the European Center for Medium-Range Weather Fore-
casts (ECMWF). The spatial resolution and temporal resolution of the ERA5

more detailed can be found at http://laps.noaa.gov/.
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Figure 2: Visualization of the four meteorological modifies, i.e., (a) temperature, (b)
relative humidity, (¢) U-component of wind, and (d) V-component of wind. For better
visualization of wind, wind speed and wind direction are also illustrated in (e) and (f),
respectively.

dataset are 0.25° x 0.25° for latitude-longitude resolution and 1 hour respec-
tively?. Similar to the LAPS dataset, all meteorological modalities in the
ERA5 datasets are stratified into 37 layers according to atmospheric pres-
sure. Although the spatial resolution of the ERA5 dataset is lower than the
LAPS dataset, the time span of the ERA5 dataset covers 1979 to 2021, a
time range that is much larger compared with the LAPS dataset.

In this work, four classical meteorological modalities are applied, i.e.,
temperature, relative humidity, U-component of wind, and V-component of
wind. As for the vertical dimension, we select three typical atmospheric
pressure levels 500, 850, 925 hPa. As a supplement of meteorological data,
terrain data from the digital elevation model [78] are also exploited in our
experiments to facilitate the prediction by providing geographical informa-
tion. In experiments, all data are normalized by their corresponding mean
and standard deviation.

2 Available at the Climate Data Store (CDS) https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-erab-pressure-levels?tab=overview.
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Figure 3: The relationship between solar altitude and the four meteorological modalities,
i.e., temperature, humidity, two component of the wind. The solar altitude is shown in
blue and the meteorological modalities are shown in yellow. It could be noticed that trends
of different meteorological modalities roughly follow the trend of solar altitude.

4. Preliminaries

4.1. Neural Architecture Search

Signifying structure components and connections as nodes and edges re-
spectively, the topology of architecture could be represented as a Directed
Acyclic Graph (DAG). Representing the whole search space as a super-graph,
the process of NAS can be regraded as obtaining a sub-graph from the super-
graph. To make the procedure differentiable, the search process is typically
conducted in a continuous space. To achieve this goal, the architecture search
parameter « that scales the information flow in the super-graph is intro-
duced [64]. For a specific architecture, it always corresponds to an architec-
ture coding a and could be represented as N (o, w) with network weights w.
Consequently, the NAS optimization is significantly simplified: it boils down
to estimating the optimal o* with minimum validation loss L,q;, while the
corresponding convolutional layers weights w are optimized from a training
loss Lirqin. Formally, the NAS optimization can be formulated as a bilevel
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optimization problem [64]:

min L,q (N (a,w")),
acA <1>
s.t. w* = arg min Ly qin (N (a, w)).

This nested optimization problem could be computationally complex due to
its expensive inner optimization. To solve this problem, a popular solution is
to apply the weight sharing strategy [63] and a simple approximation scheme
to approximate w* with a single training step [64, 65]:

W W — Ve Livain(N (o, w)). (2)

Technically, the training dataset is split into two parts, one is adopted to
optimize architecture weights w and the other performs as the validation set
for a. Combined with the one-step approximation, architecture parameters
« and architecture weights w are optimized in an iterative fashion. After
optimization, the final discrete architecture is derived by selecting the edge
with the highest a for every node [64].

Although brilliant, this modeling fails to bridge the gap between searching
and training. As the architecture is essentially sparse, directly discretizing
a may destroy the completeness of the original network, leading to the dis-
crepancy of performances between the searching and validating process. To
address this problem, DSO-NAS [65] applies the Ll-regulation on the ar-
chitecture parameters to obtain a spare representation of the architecture.
Taking L1-regulation for a and L2-regulation for w into consideration, the
objective function can be transformed to:

gleiil Loa(N(a,w")) + vlall,

3
s.t. w* = arg min Lyqin (N (a, w)) + 0||w||2, ®

where v and ¢ are the weights of the L1 and L2 regulations that prevent over-
fitting and determine the sparsity of connections, respectively. These hyper-
parameters could be roughly estimated referring to previous methods [65, 76]
and tuned empirically based on the performance on the validation set. After
optimization, the architecture parameters are discretized and the final archi-
tecture is constructed using the edges with nonzero o*. Intuitively, an edge
whose corresponding architecture parameter o is zero can be pruned safely
after the search process as it brings no contribution. Once the architecture
is learned, the obtained architecture is re-trained on the target task.
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4.2. Attention Mechanism with Transformer

Another fundamental operation in the proposed model is the attention
module [79]. The aim of the attention is to weight the contribution of dif-
ferent ‘elements/tokens’ before combining them and generating an ‘output’.
This is done by computing akin of correlation factors between these tokens.
Specifically, based on a given query, as well as keys and values of these to-
kens, the output of the attention module is calculated by a weighted sum
of all values, where the weight assigned to each value is determined by the
correlation between the query and corresponding keys. Formally, a set of
queries, keys, and values are packed together into matrices Q, K, and V to
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compute the attention weights according to the following equation:

T
ven

where Q, K € RV*% V € RN*% are all vectors that denote queries, keys,
and values, respectively, N represents the number of tokens, d; and d, are
the feature dimensions of each individual query/key and value. Based on the
attention mechanism, multi-head attention [80] is one of the wildest applied
attention modules in practice due to its ability to jointly attend to infor-
mation from different representation subspaces. Technically, the multi-head
attention first projects the queries, keys, and values into different representa-
tion subspaces and calculates attention value parallelly. Finally, the obtained
values are concatenated and further projected linearly. Formally,

Attention(Q, K, V) = softmax(

WV, (4)

MH(Q, K, V) = Concat(head,, heads, ...head,)W?,

; Q K 1% (5)

where head; = Attention(QW, KW, , VW, ),
where h is the number of attention heads, W2 WK ¢ R%*% and WY e
R%*% are projection matrices for queries, keys, and values respectively,
WO ¢ RMvxdo g the final linearly transform matrix that projects the con-
catenated representation into final embedding with dimension d,. Through
calculating the weighted sum of all values according to corresponding dis-
tances between keys and queries, the multi-head attention module is capable
of modeling the dependencies without regard to their distance. As a con-
sequence, the multi-head attention module is wildly applied in the encoder-
decoder framework to build the correlation between the input and output
sequence for the sequence-to-sequence forecasting task [80, 81].

5. Method

5.1. Overview

The proposed model consists of three parts, the multi-modal fusion net-
work, the encoder-decoder network, and the spatial regression module, as
shown in Figure 4. The pipeline works as follows and detailed information
could be found in the following subsections. Denoting current time slice as

T', to forecast the meteorological data of the i-th time step in the future, i.e.
MTHE ¢ REXPXHXW “oyvery meteorological raw data M? € REXPXHXW i the
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observed sequence (MT=T+1 MT=T+2  MT) and generated data M* €
REXPXHXW in the previous prediction sequence (MT+1, MT+2 MT+H-1)
are projected into their respective latent representations by the multi-modal
fusion network. Considering the output stride [37, 82] s and output dimension
C} of the multi-modal fusion network, the latent representations of M" and
Mt can be denoted as Ft, F! e Rcfxgx¥, receptively. Based on the latent
representations, the encoder-decoder structure is adopted to capture the dy-
namic along the temporal dimension. Specifically, the input observed meteo-
rological sequence F = (FI=Tr 1 FT-To+2  FT) is passed into the encoder

that is constructed with a stack of L. identical attention layers, generating
w

the encoded representation Y = (UT-TetL UT-Tpt2  UT) g RTpxCexTx T
where C, is the embedding channel of the transformer module in the en-
coder network. Along with U, the decoder takes the representations of all
previously generated meteorological data F = (FT+1, FT+2  FT+i-1) a5 in-
puts to generate the final representation of target data at time step T + 1,
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7T ¢ R@x%x%) where Cy is the embedding channel of the transformer
module in the decoder network. Finally, a spatial regression module trans-
forms the representation Z7+ into the predicted result M7+ € REXPxHxW

The training process consists of two stages. Firstly, the NAS allows elabo-
rately exploring the relationship between different meteorological modalities
and to search for the architecture of the multi-modal fusion network. Sec-
ondly, along with the encoder-decoder network and spatial regression module,
the whole network is optimized end-to-end.

5.2. Searching for The Multi-modal Fusion Network

In order to capture the relationship between different modalities, we pro-
pose a convolution network that fuses multi-modal meteorological data at
each time step independently. As shown in Figure 5, the fusion network
consists of (i) E independent modality branches for £ input modalities and
(ii) a fusion branch to fuse the obtained features. Every modality branch
is a ResNet-18 network. For specific time slice ¢, the i-th modality branch
takes the data of the i-th meteorological modality, GI € RF*#*W " ag input.
Considering the effect of terrain information, we fuse the meteorological data
with terrain information through concatenating them along the channel di-
mension, yielding a new representation G'* € REHV*H*W = After that, G
is delivered to the modality branch to obtain the embedding of the corre-
sponding modality:.

Similarly, the fusion branch is also based on a ResNet-18 network while
its target is to combine the features issued from different modalities. Specifi-
cally, the output of a specific layer in the fusion branch contains three parts:
a skip connection, the convolution projection of the previous layer, and the
issued features from all modality branches. Obviously, determining the opti-
mal way of fusing features at different levels is a challenge. Different layers
in the DNN network capture varying levels of semantic information [35] and
do not necessarily contribute in the same way from one layer to another. Be-
sides, the relationship between different meteorological modalities could be
extremely complicated, it requires massive experiments and empirical prac-
tice to manually fix the optimal way to fuse the information extracted by
different layers.

To effectively exploit the relationship between different meteorological
modalities and effectively decide which modalities to be applied in the fusion
network for every layer, we propose to apply a NAS technique to search for
the optimal fusion scheme depending on the input modalities. Following the
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methodology proposed by [65], we apply a group of architecture parameters
a to scale the fusion connections and the feature from the previous layer,
yielding a flexible search space containing various fusion methods and depths
for the fusion branch. Formally, the output of the n-th layer of fusion branch
F! can be defined by the following equation:

F! =F! | +al0 )+ Z arC(H: ) (6)

where O signifies the convolution branch of the residual block, C represents
a convolution layer with kernel size 1 x 1, H., is the output of the n-th
layer of the c-th modalities branch. Spe(nﬁcally, the original data of the c-th
modality is represented by Gf. Following [65], we divide the training dataset
into two equal parts, one to optimize weights w and the other to optimize
architecture parameters «. Then, the APG-NAG optimizing algorithm [65]
is applied to iteratively and alternatively optimizes the weights w and «
on two independent datasets. Specifically, « is optimized under the sparse
regulation, as shown in Equation 3. After the searching process, the final
architecture is generated by deleting the connections whose « is zero and
setting non-zero « to 1.

Prior to applying NAS, we pre-train the whole network, excluding the
fusion branch to improve the expressive ability of the multi-modal network,
following [65]. To achieve this goal, we define a proxy task: to learn to fore-
cast each modality independently of others. Specifically, the i-th modality
branch is equipped with an independent encoder-decoder described in the fol-
lowing section, the whole network is then optimized in a classical way, with
auxiliary losses L, - the error between the predicted of the i-th modality G =
(GT+1, GT*2 . G and the ground-truth G = (GT+', GT*2 .. G ™).
This constitutes our pre-training step. We observe experimentally that the
pre-training step is essential for the stability of the searching process and
contributes to better performance [65].

To account for the large scale spatial dependencies existing in meteoro-
logical data, we propose to fuse embeddings at different spatial distances.
To this end, a multi-scale feature fusion module is applied behind the fusion
branch and every modality branch. Illustrated in Figure 6, the multi-scale
feature fusion module consists of a series of atrous convolutions with dif-
ferent atrous rates. As the relevance with different spatial distance become
prominent for the atrous convolution layer with a specific receptive field,
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Figure 6: In the multi-scale fusion module, atrous convolution layers with different atrous
factors are applied to extract information with different receptive fields, the obtained
features are then concatenated along the channel dimension and transformed by an extra
1 x 1 convolution layer to retain the number of channels.

the multi-scale feature fusion module is in a position to fuse the long-range
meteorological features into the local representation.

5.8. Encoder-decoder Structure Based on Transformer

Based on spatial features extracted by the multi-modal fusion network, we
further model the temporal dependency between data with attention based
encoder-decoder architecture. The model works in an auto-regressive man-
ner, every data in the target sequence (M7+1, MT+2 | MT+7r) is generated
iteratively. In the i-th forecasting step where M7+ in generated, the encoder
takes the embedding of observed data F = (FT-T»+l FI-T+2  'FT) as in-
put, while the decoder is fed with the embedding of previously generated
meteorological data, namely, F = (FT*1, F7+2 _ FT+i-1). As shown in
Figure 4, the encoder’s and decoder’s structures are composed of two ba-
sic elements: (i) the multi-head attention module that extracts temporal
dependencies in the sequence and (ii) the point-wise convolution layer that
integrates local information at every temporal slice individually. Around
each of these two basic operators, a residual connection is attached, followed
by a layer normalization [80]. The inputs of the multi-head attention module
consist of three parts, query Q, key K, and value V. Specifically, for the
multi-head attention module in the decoder, K and V are features generated
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by the encoder module, i.e., Y = (UT-Te+t UT-1+2  UT) while Q comes
from the previous decoder layer. In this way, the information extracted by
the encoder module could attend over every position in the decoder. On the
contrary, as the purpose of the encoder is to extract the temporal dynamic
from the observed input, the query, key, and value vectors in the temporal
module all come from the previous encoder layer, i.e., Q = K =V, yielding
the typical self-attention mechanism.

Without loss of generality, denoting the inputs of the multi-head attention
module could be represented as four-dimension tensors Q, K,V € Rixexhxw,
where [, ¢, h, w represent the temporal length, feature dimension, height, and
width respectively. Specifically, as the forecasting module works in an auto-
regressive manner, the temporal length [ varies according to the specific fu-
ture time step in the decoder module. In the multi-head attention module,
the tensor is firstly permuted to fit a shape of [ x h x w x ¢ and then flattened
to a two-dimension representation with shape N X ¢, where N =1 X h X w.
Subsequently, the attention function is performed parentally as defined in
Equation 5. Finally, the obtained results are reshaped and permuted with
inverse operations to the original size [ x ¢ X h x w. Although effective, the
computational cost of the attention mechanism could be extremely high, as
the attention weights are calculated on every pair of elements in the target
tensor, resulting in O(N) = O(l x h x w) multiplications for every grid point.
To tackle this issue, instead of applying the traditional attention module to a
flattened string of tensor elements, axial attention mechanism [83] where the
attention computation is performed along a single axis of the tensor is ap-
plied. As shown in Figure 7, in the axial attention mechanism, the attention
operation is performed along each of the three dimensions independently,
yielding to O(l + h + w) multiplications for every grid. Compared with the
computation cost O(l x h x w) of the traditional attention model, the axial
attention enjoys a significant saving in computation complexity while main-
taining a global receptive field.

Despite its capacity to model interdependencies, including along the tem-
poral domain, the attention mechanism is essentially agnostic to the order
of data in the sequence since the dependency between inputs and output is
built entirely with a weighted sum function. However, accounting for the
order of the sequence is essential for any forecasting task, especially for me-
teorological data which are highly periodic and spatial correlated. In order
to equip our model with the ability to properly exploit the order informa-
tion, every element representation F! is augmented with a position encoding,
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Figure 7: Ilustration of the axial attention mechanism. As for a single grid (shown in
red) in the three-dimension-tensor, the attention computation is performed along different
dimensions and the results are summed up together.

Figure 8: Illustration of the computation of deconvolution operation with input feature
size 3 x 3 and output feature size 5 x 5.

where ¢ is the temporal slice. This guarantees that different elements that
are spatially close or at the same time-point in different periods tend to be
closer. As changes of meteorological modalities are intrinsically caused by
the solar action, a position encoding method based on the solar altitude that
could be regarded as a natural indicator for the solar action is applied to
every feature. For specific element with location (x,y) in F*, the position
encodings for features with even dimension index (2¢) and odd dimension
index (2¢ + 1) are presented as follows:

PE(z,y,t,2i) = sin(SA(z,y,t) /10002 dreat), (7)

PE(x,y,t,2i + 1) = cos(SA(z,y,t)/1000%/dseat), (8)

where df.q: is the dimension of features, SA(z,y,t) represents the solar alti-
tude calculated based on the latitude, the longitude, and actual time which

are inferred with x, y, and ¢. Finally, the resulting position encoding PFE is
added to the original representation F?.

5.4. Spatial Regression Module
At the last stage of our framework, a spatial regression module adopted
to convert the coarse map generated by the decoder to a dense and fine
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Figure 9: Spatial distribution of the MSE loss of the prediction of different meteorological
modalities, i.e. (a) Temperature (b) Humidity (c) U-component of wind (d) V-component
of wind. The experiments are conducted on the ERA5 dataset.

output. The spatial regression module consists of a series of deconvolution
layers [82] and ReLU activation functions. Mathematically, the deconvolu-
tion operation is a local computation operation inverse to ordinary convolu-
tion operation since it simply reverses the forward and backward passes of
convolution. Therefore, the upsampling operation is performed in-network
for end-to-end learning by backpropagated gradients from the pixelwise loss.
The calculation process of deconvolution is illustrated in Figure 8. With a
stack of deconvolution layers and activation functions, the spatial regression
decoder is capable of reconstructing the predicted embedding into a larger
spatial ratio both effectively and efficiently. To generate the forecast result
M, € REXPXHXW ot moment ¢, the spatial regression module upsamples the
output of decoder module Z, € R%*%*% spatially to Z] € RE*H*W where
C, = E x P. Finally, the forecast output M, is obtained through reshaping
Z, to the original shape F x P x H x W.

After obtaining the predicting result, the loss function could be defined
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by the L2 distance between the forecasting sequence Z and ground truth
sequence Z. Formally:

1 -
L= N Z (It@p,h,w - It,e,p,h,w)27
t,e,p,h,w (9)

where N =Ty x Ex Px HxW,

where T} is the length of forecasting time, £ is the number of modalities,
P represents the number of atmosphere pressure levels, H and W signify
height and width, respectively. Z,Z € RIH*EXPxHXW qp6 the predicted
and ground-truth data respectively. For the proxy task used to initialize
the network before applying the architecture search process, the modality
dimension is set to £ = 1 as only one modality is applied in the forecasting
task at this stage. Based on the loss function, the whole model could be
optimized with backpropagated gradients.

6. Experiments

6.1. Ezperiment Design

In this work, a series of experiments are conducted to verify the per-
formance of the proposed method, which can be mainly classified into the
following categories:
Overall Performance of Our Method Firstly, we evaluate our model’s
performance to long-term weather forecasting. Data prior to 2020 are used
for training, data of 2020 is applied for validating and the resulting model is
tested on the data of 2021.
Transferability of Our Method Secondly, we investigate the transferabil-
ity of our method to different seasons and regions. Specifically, our model
is optimized on the data of a specific season or region while evaluated on
another one.
Investigation on Major Elements of Our Method Thirdly, experiments
are conducted to explore the effectiveness of major components, including the
application of NAS method, the multi-scale feature fusion module, and the
pre-training strategy in the architecture searching process.
Ablation Study Finally, extensive ablation studies are conducted to sys-
temically and comprehensively analyze the major hyper-parameters of the
proposed method, i.e., the number of training epochs, the scale of training
data, the effectiveness of solar altitude, terrain information, and the length
of the input sequence.
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Table 1: Overall performance of the proposed method. For specific forecast time, the
mean value of the metric of all meteorological modalities is reported.

Dataset  Method

12 h

24 h

36 h

48 h

60 h

72 h

LAPS EC LAPS EC LAPS EC LAPS EC LAPS EC LAPS EC

Pers. 0.50 0.48 0.63 0.60 0.77 0.76 0.86 0.84 0.93 0.91 0.98 0.96

Clim. 1.12 110 112 110 1.12 1.10 1.12 1.10 1.12 1.10 1.12 1.10

W-Clim. 0.80 0.77 0.80 0.77 0.80 0.77 0.80 0.77 0.80 0.77 0.80 0.77
Conv-LSTM 0.25 0.24 0.38 0.38 0.52 0.50 0.61 0.60 0.69 0.66 0.73 0.72

MSE  ST-A3DNet* 0.23 0.20 0.36 0.33 0.49 0.45 0.58 0.56 0.65 0.63 0.71 0.68
MVSTGN  0.22 0.20 0.36 0.33 0.49 0.45 0.58 0.55 0.64 0.62 0.70 0.67
PredRNN  0.24 0.22 0.38 0.35 0.50 0.48 0.59 0.58 0.66 0.64 0.72 0.70
TrajGRU  0.23 0.21 0.36 0.34 0.49 0.47 0.58 0.56 0.65 0.63 0.71 0.69

MIM 0.23 0.20 0.37 0.33 0.49 0.46 0.59 0.56 0.65 0.62 0.71 0.68

Ours. 0.14 0.11 0.27 0.25 0.39 0.37 0.49 0.47 055 0.53 0.62 0.59

Pers. 0.51 0.50 0.57 0.56 0.62 0.62 0.65 0.65 0.67 0.66 0.68 0.67

Clim. 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74

W-Clim. 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60
Conv-LSTM 0.36 0.35 0.44 0.44 0.51 0.51 0.56 0.54 0.58 0.58 0.59 0.59

MAE ST-A3DNet* 0.35 0.32 0.42 0.41 0.50 0.48 0.55 0.53 0.56 0.55 0.58 0.57
MVSTGN 0.34 0.31 042 041 0.50 0.48 0.54 0.53 0.58 0.55 0.58 0.56
PredRNN  0.36 0.34 0.44 0.41 0.50 0.50 0.55 0.54 0.57 0.57 0.59 0.58
TrajGRU  0.35 0.32 0.43 0.42 0.49 0.48 0.54 0.54 0.57 0.56 0.58 0.57

MIM 0.35 0.32 0.44 041 0.50 0.47 0.55 0.53 0.57 0.56 0.58 0.57

Ours. 0.27 0.24 0.37 036 0.45 044 0.49 048 0.53 0.52 0.54 0.53

Pers. 0.84 0.83 0.89 0.88 0.94 0.93 0.96 0.96 0.98 0.98 0.99 0.99

Clim. 1.06 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.06 1.05

W-Clim. 094 094 094 094 094 094 094 094 094 094 094 0.94
Conv-LSTM 0.50 0.49 0.62 0.62 0.72 0.71 0.78 0.77 0.83 0.81 0.85 0.85
RMSE ST-A3DNet* 0.48 0.45 0.60 0.57 0.70 0.67 0.76 0.75 0.81 0.79 0.84 0.82
MVSTGN 047 0.45 0.60 0.57 0.70 0.67 0.76 0.74 0.80 0.79 0.84 0.82
PredRNN 049 0.47 0.62 0.59 0.71 0.69 0.77 0.76 0.81 0.80 0.85 0.84
TrajGRU 048 0.46 0.60 0.58 0.70 0.69 0.76 0.75 0.81 0.79 0.84 0.83

MIM 0.48 045 0.61 0.57 0.70 0.68 0.77 0.75 0.81 0.79 0.84 0.82

Ours. 0.37 033 0.52 0.50 0.62 0.61 0.70 0.69 0.74 0.73 0.79 0.77

* Our reimplementation.

Considering the target of the meteorological forecasting task is to regress
meteorological data in the future, we use standard metrics for quantitative
evaluation, such as the Mean Square Error (MSE), the Root Mean Square
Error (RMSE), and the Mean Absolute Error (MAE). Given prediction result
y and ground truth y, these metrics are calculated according to the following
equations:

N

MSE = %Z(yi — )% (10)

=1
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1 X
RMSE = ||+ > (i —9i)%, (12)

i=1

A lower error value on each of these three metrics represents better per-
formance. To validate the effectiveness of our model, all experiments are
conducted on the LPAS and ERA5 datasets introduced in Section 3, er-
ror values of all meteorological modalities are reported. In the architecture
searching process, the training set is divided into two equal parts: for the
optimization of network weights and for the architecture parameters. Ev-
ery modality branch is firstly equipped with an encoder-decoder structure
and pre-trained for 10 epochs with a learning rate 0.01 and weight decay
3 x 1074, After that, the network weights and architecture parameters in the
multi-modal fusion network are optimized iteratively on two divided datasets
for 20 epochs. In this phase, the learning rate is set to 0.01 and weight de-
cay is set to 3 x 107%. It should be noted that in the pre-train stage, only
the data for optimizing network weights is applied. After the architecture
searching process, the connections with o = 0 are pruned, all others are set
to 1, and the whole architecture is optimized from scratch for nepoer, = 20
epochs. The weight decay is fixed to 3 x 10~% while the learning rate is ini-
tialized to 0.01 and follows a linear decay scheduler with the minimum value
1 x 10™*. In our experiments, two forecast baselines are applied for compar-
ison following [84]. a) Persistence forecast where recently observed data are
directly applied as forecasts (“tomorrow’s weather is today’s weather”), b)
climatological forecast where two different climatologies are computed from
the training data, i.e., a single mean overall times and mean values com-
puted for each of the 52 calendar weeks. Besides, several spatio-temporal
forecasting methods like Conv-LSTM [49], ST-A3DNet [54], MVSTGN [53],
PredRNN [50], TrajGRU [52] and MIM [85] are compared with the proposed
method.
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Table 2: Performance of different meteorological modalities. For a specific meteorological
modality, the error metrics of the prediction of 72 hours are reported.

Tem. Hum. U-wind. V-wind.
Metric — Method  75¢™ B TAPS EC LAPS EC LAPS EC
Pers. 035 032 086 083 106 105 164 1.63
Clim. 101 097 102 100 117 L11 139 133
W-Clim. 0.25 0.21 0.75 0.72 0.94 0.91 1.26 1.25

Conv-LSTM 021 020 070 0.69 087 086 1.15 1.13

MSE ~ ST-A3DNet* 0.19  0.15 0.67 0.64 085 082 112 1.09
MVSTGN 0.18 0.14 068 065 086 083 1.08 1.06
PredRNN 0.19 018 070 0.68 088 0.84 1.11 1.10
TrajGRU 0.19 018 070 0.66 0.8 0.83 1.09 1.07

MIM 0.18 0.14 0.68 0.66 087 0.83 1.11 1.09
Ours 0.14 0.10 0.62 058 0.77 0.76 0.93 0.92
Pers. 043 041 064 063 072 0.72 0.87 0.86
Clim. 0.69 0.67 070 0.70 0.75 0.74 0.80 0.79
W-Clim. 036 032 061 061 068 0.66 0.78 0.77

Conv-LSTM  0.33 031 059 059 065 0.65 075 0.74

MAE  ST-A3DNet* 032 028 058 057 064 063 0.73 0.73
MVSTGN 030 027 059 058 0.64 0.63 072 0.72
PredRNN 032 030 059 059 065 064 074 0.74
TrajGRU 031 030 059 057 064 063 073 0.73

MIM 031 027 058 057 065 065 073 0.73
Ours 026 023 056 054 061 0.62 0.67 0.67
Pers. 0.59 057 093 091 1.03 1.02 1.28 1.28
Clim. 1.00 098 1.01 100 108 1.06 1.18 1.15
W-Clim. 0.50 046 087 0.8 097 095 1.12 1.12

Conv-LSTM 046 045 084 083 093 093 107 1.06

RMSE ST-A3DNet* 044 039 0.82 080 092 091 1.06 1.04
MVSTGN 042 037 082 081 093 091 1.04 1.03

PredRNN 044 042 084 082 094 092 1.05 1.05

TrajGRU 044 042 084 081 092 091 104 1.03

MIM 042 037 082 081 093 091 105 1.04

Ours 037 032 079 07 088 0.87 096 0.96

* Our reimplementation.

6.2. Overall Performance of the Proposed Method

First, the overall performance of the proposed method is evaluated. All
models are trained on the meteorological data from 2016 to 2019 and vali-
dated on the data of 2020. After that, the obtained model is tested on the
data of 2021. Performances of different forecasting times and different meteo-
rological modalities are reported in Table 1 and Table 2 respectively. For con-
venience, the results of persistence forecast, overall climatological forecast,
and weekly climatological forecast are simplified as “Pers.”, “Clim.”, and
“W-Clim.” respectively. We also report the parameters of all deep learning
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based models in Table 3. It could be noted that the proposed method out-
performs other methods consistently on the meteorological prediction task
with different forecast periods, demonstrating the effectiveness of the pro-
posed method. Compared with other spatio-temporal forecasting methods,
the proposed method also achieves better results with comparable number
of parameters, owing to the explicitly modeling of the characteristic of me-
teorological data. Figure 9 shows the spatial distribution of the MSE metric
on different meteorological modalities. It could be noted that the difficulty
of forecasting a specific modality varies from region to region. Specifically,
considering that temperatures change more dramatically than that over the
ocean as water has a larger specific heat capacity, it is more difficult to fore-
cast the temperature on the land. On the contrary, forecasting the wind over
the ocean is harder as influencing factors are more complex [86].

Table 3: The model size of the spatio-temporal forecasting models.

Method Model Size (MB)
Conv-LSTM 53.47
ST-A3DNet* 52.16
MVSTGN 58.24
PredRNN 64.56
TrajGRU 54.72
MIM 73.55
Ours 62.72

* Our reimplementation.

6.3. Transferability of the Proposed Method

Considering that the difference of meteorological state between different
regions or seasons is unnegligible, the transferability of the meteorological
prediction model is important in reality. To investigate the transferability
of the proposed method, we conducted experiments to explore whether the
proposed method is capable of generalizing to different seasons or regions.
Empirically, the meteorological difference between the source data (training
data) and target data (validation data) should be large enough to guarantee
the credibility of experiments. Therefore, summertime (from June to August)
and wintertime (from December to February) are selected in the experiments
that explore seasonal transferability. As for regional transferability, the North
China area (NCN) whose latitude and longitude range from 31° N to 43° N
and 109° E to 124° E, and the Central China area (CCN) whose latitude and
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Conv-LSTM

(b) Evaluated on the wintertime.

Figure 10: Spatial distribution of MSE loss of the evaluating models on (a) summertime
and (b) wintertime while optimizing on the other season.

longitude range from 22° N to 36° N and 108° E to 124° E are selected. For
simplicity, the spatial distribution of the MSE loss of all combined modalities,
computed for the seasonal transfer and the regional transfer, is illustrated in
Figure 10 and Figure 11 respectively. It could be observed that the proposed
method exhibits better performance than Conv-LSTM when evaluated on
independent seasons and regions, indicating the proposed method is in a
position to handle the distribution bias and generalize better when faced with
severe data distribution gaps between the training dataset and validation
dataset.

6.4. Investigation on The Elements of Our Method

To verify the effectiveness of every element of our approach, i.e., the ap-
plication of the NAS technique, the multi-scale feature fusion module, and
the pre-training strategy in the searching process, a series of experiments
with and without these elements are conducted. All experiments applied the
same hyperparameters directly inherited from the statements in Section 6.1
if not stated otherwise. For every component we firstly illustrate the overall

26



Conv-LSTM

(b) Evaluated on the NCN region.

Figure 11: Spatial distribution of MSE loss of the evaluating models on (a) CCN region
and (b) NCN region while optimizing on the other region.

performance which is calculated by averaging the performances of all modal-
ities, then we show visualizations of the metrics of every single modality.

6.4.1. The application of NAS technique

To explore the effectiveness of the NAS technique, we compare the pro-
posed method with two baselines: a) random fusion where every learnable
connection is kept randomly, b) full fusion where all learnable connections
are kept. The results are shown in Figure 12. Note that the fusion network
obtained with the NAS technique surpasses other baselines by a significant
margin. The obtained architecture with the NAS technique is also informa-
tive. Every modality branch is connected with the fusion branch only 4 to
5 times while the two components of wind are always incorporated. Besides,
in the first and last layers, most modalities are fused. As for the depth of the
fusion branch, all the optional convolution layers are preserved in the fusion
branch, owing to the consensus that deeper networks typically have better
expressive ability [37].

27



LAPS EC

NAS NAS
0.9 full 0.9 full
. random . random
0.7 0.7 1
a j J ) J
MSE MAE RMSE MSE MAE RMSE

Figure 12: The effectiveness of the NAS technique. The experiments are carried on (a)
the LAPS dataset and (b) the EC dataset.

6.4.2. The multi-scale feature fusion module

To investigate the effectiveness of the multi-scale feature fusion module,
experiments are conducted to evaluate models with and without the multi-
scale feature fusion module. The results are shown in Table 4. It is notable
that The multi-scale feature fusion module improves the forecasting results.
As the traditional convolution operation is in essence a local operation with
a limited receptive field, the multi-scale feature fusion module introduces a
learnable method to model the long-distance relevance, which contributes to
the long-term forecasting task.

Table 4: The effectiveness of the multi-scale fusion module.
Tem. Hum. U-wind. V-wind.

LAPS EC LAPS EC LAPS EC LAPS EC

MSE With 0.14 0.10 0.62 058 0.77 0.76 0.93 0.92
Without 0.16 0.13 065 0.62 0.82 081 098 0.96

MAE With 026 023 056 054 0.61 0.62 0.67 0.67
Without 028 025 057 056 063 063 070 0.69

RMSE With 037 032 079 076 088 087 096 0.96
Without 040 036 081 079 091 090 099 0.98

Metric  Method

6.4.3. The effect of the pre-training strateqgy

As shown in [65], a good initialization is essential for the searching pro-
cess. To explore the effect of the pre-training strategy, we conduct the fusion
network searching process with and without the pre-training step and evalu-
ate the obtained architecture. As the results in Tab. 5 show, equipped with
the proxy task that aims to forecast specific modality for every modality
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Table 5: The effectiveness of the pre-training strategy in the network searching process.
Tem. Hum. U-wind. V-wind.

LAPS EC LAPS EC LAPS EC LAPS EC

Pre-train 0.14 0.10 0.62 0.58 0.77 0.76 0.93 0.92
Random 0.15 0.12 062 059 081 078 1.01 0.99

MAE Pre-train 026 023 056 054 0.61 0.62 0.67 0.67
Random 028 026 055 054 064 062 070 0.70

RMSE Pre-train 037 032 0.79 0.76 088 0.87 0.96 0.96
Random 039 035 079 077 090 088 1.00 0.99

Metric  Method

MSE

branch, the pre-training strategy provides a better initialization, which is
favorable to obtain a suitable architecture.

6.5. Ablation Study

As the proposed method is in essence a data-driven method that may be
sensitive to the training procedure, extensive ablation studies are conducted
to analyze some typical designs of the proposed method. Specifically, all
hyper-parameters inherit directly from the statements in Section 6.1, if not
stated otherwise. Similar to experiments in Section 6.4, for every element,
we compare the overall forecasting performance as well as the forecasting
metrics of every modality.

6.5.1. Number of training epochs

In order to analyze the sensitivity with respect to the number of train-
ing epochs, we vary the number of training epochs nep., and visualize the
performance of the proposed model in Figure 13 (a). It could be noted that
a larger number of training epochs contribute to higher performance, but
the effect becomes less apparent as the number of training epochs increases.
Inadequate searching epochs may cause under-fitting of architecture distri-
bution while excessive training epochs may lead to over-fitting and damage
the generalize ability of the proposed method.

6.5.2. Scale of training dataset

To explore the influence of the scale of training data, the proposed method
is optimized on the training dataset with different numbers of years nycq,,
and results are visualized in Figure 13 (b). It could be observed that the per-
formance of the proposed model improves steadily as the scale of the training
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Figure 13: The ablation studies of major hyperparameters in the proposed method, i.e.,
(a) the number of training epochs, (b) scale of the training dataset, (c) whether terrain
and solar altitude are applied, (d) the length of the input sequence. For every experiment,
we first visualize the overall performance in the first column and then illustrate three
metrics of every meteorological modality. For simplicity, “U-wind” and “V-wind” signify
the U-component of the wind and the V-component of the wind receptively.

data increases, indicating that large training data is crucial for improving the
generalization ability of the proposed method.

6.5.3. Terrain information and solar altitude

To investigate the effect of terrain information and solar altitude, we carry
out experiments with or without these two variables. Results are shown in
Figure 13 (c). Obviously, as terrain information and solar altitude explic-
itly model the geographical condition and the periodicity of meteorological
data, they endow the proposed method with higher representative ability and
benefit the improvement of performance.
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6.5.4. Length of input sequence

To investigate the influence of the length of the input sequence, we vary
the number of input time slices T,, and conduct experiments to observe their
influences. Specifically, the time interval is changed correspondingly to main-
tain the overall period. Results shown in Figure 13 (d) indicate that the
proposed method achieves better performance as the length of the input se-
quence increases. It demonstrates that the proposed method is capable of
making more accurate predictions based on more detailed information con-
tained in the longer input sequence.

7. Conclusions

To tackle the multi-modal meteorological forecasting task with the on-
coming meteorological big data, this article adopts the AutoML technique
and proposes a deep learning framework to model the dynamics of meteo-
rological data along spatial and temporal dimensions. In this framework, a
deep learning based model is developed to capture the spatial correlations
of meteorological data. To model the relationship between different modali-
ties, the NAS technique is applied to search for the optimum fusion network.
As for the temporal dimension, we design an encoder-decoder structure for
the sequence-to-sequence prediction task to adaptively capture the relation
between every sample. Moreover, the periodicity of the meteorological data
is elaborately modeled according to physical prior knowledge for better per-
formance. The proposed method is evaluated on the forecasting task of four
meteorological modalities, i.e., temperature, humidity, U-component of wind,
and V-component of wind. With the China area whose latitude and longi-
tude range from 0° - 55° N, 70° E - 140° E respectively as the study area,
experiments on the ERA5 dataset and the LAPS fusion dataset demonstrate
the effectiveness of the proposed method. Generally speaking, the proposed
method exhibits potential for the application of deep learning methods in
meteorological service fields and provides a new perspective for the meteo-
rological forecasting task. Considering its effectiveness and representational
ability, the proposed model exhibits the capacity to perform the meteorolog-
ical forecasting task based on more meteorological modalities on the global
scale, which could be left for future work.
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