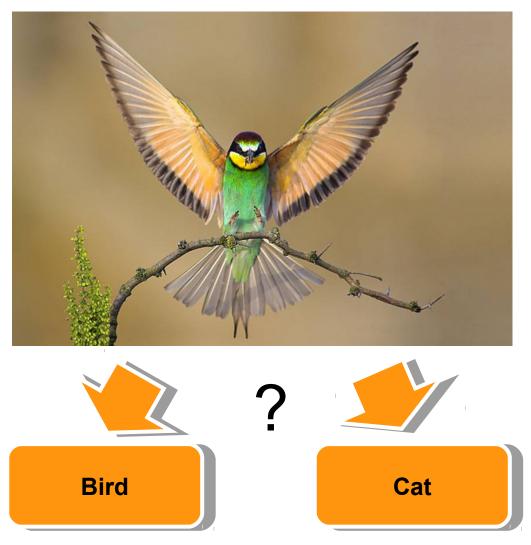
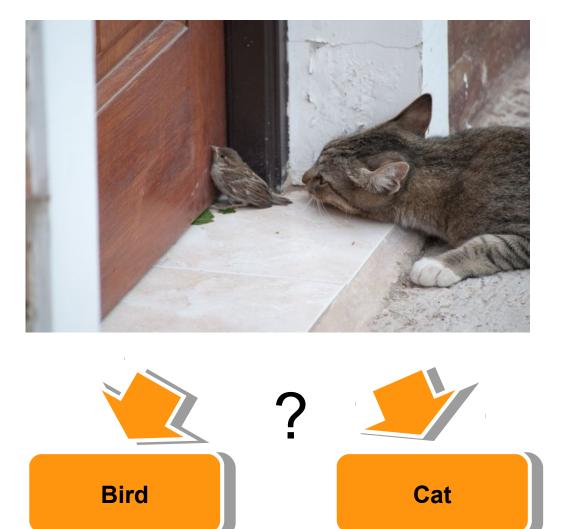


Towards Optimal Naive-Bayes Nearest Neighbor for image classification

Régis Behmo , Paul Marcombes, Arnak Dalayan*, Véronique Prinet Institute of Automation, Chinese Academy of Sciences (*) with Ecole Ponts-ParisTech, France





About supervised learning ...

Given ...

1

Some Applications

Image *indexing*

- Huge quantity of data recorded daily
- Indexed by date and location only
- \rightarrow index them by visual content

Visual search

 Tags as defined by users, if any, do not necessary reflect the visual content of the image.

Tags by user: Milou, Sydney

Categories: dog, sea

Challenges

- Low inter-class variability
- High intra-class variability
- Semantic gap : image \rightarrow concepts

Classification tasks

- Description & representation
 - Descriptors (local) : SIFT (Lowe99), HOG [Dalal05], Shape Context [Belongie]...

- Representation : Bag of Feature [Schmid01], proximity distribution [Ling07],....

Classifier

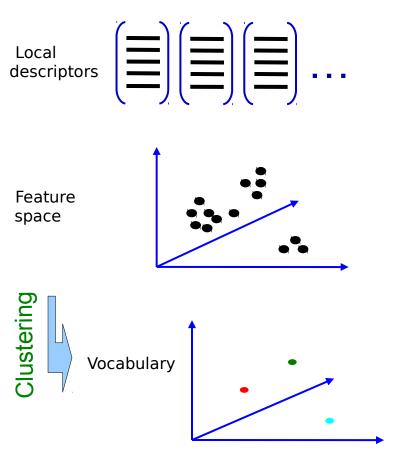
...

- Generative models (e.g: MRF/CRF [Lafferty01], pLSA [Hofmann01], ...)
- Discriminative models (e.g.: SVM [Vapnik95], Boosting[Viola01], ...)

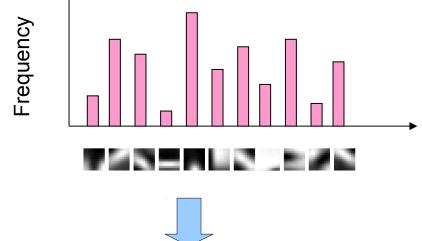
Learning

BoF + SVM pipeline

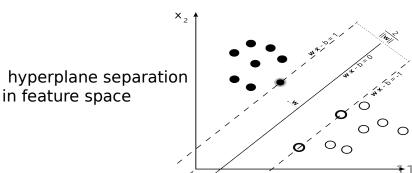
1- Learning a visual vocabulary from image (training) set



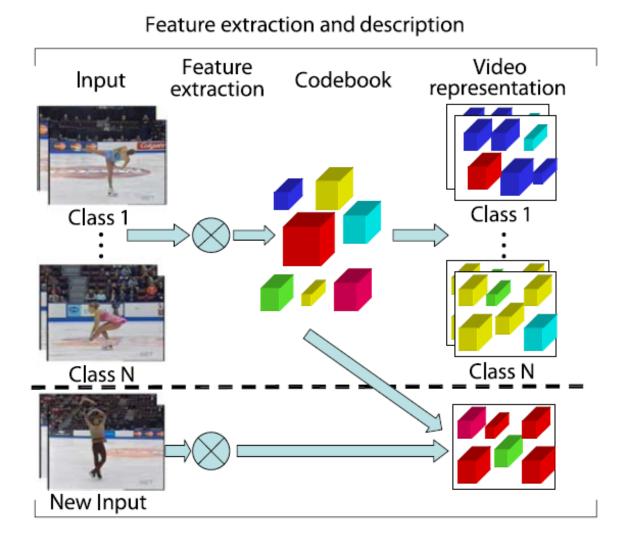
2- Representing each image by a histogram (bag) of word







Bags of features for action recognition



Source : Niebles, Wang, Fei-Fei, Unsupervised learning of Human action category using spatio-temporal words, IJCV 2008.

In defense of Nearest Neighbor based image classification (Boiman, Shechtman, Irani. CVPR 2008)

BOF + SVM : drawback

- Quantization (codebook creation)
 - descriptors discriminative power drop
 - rare but discriminative information is lost
 - \rightarrow no quantization
- Image-to-image classification (SVM)
 - → Image-to-class classification

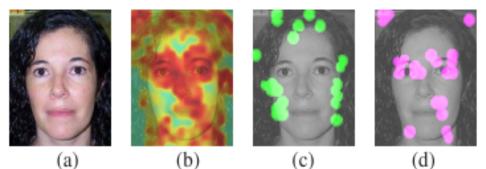
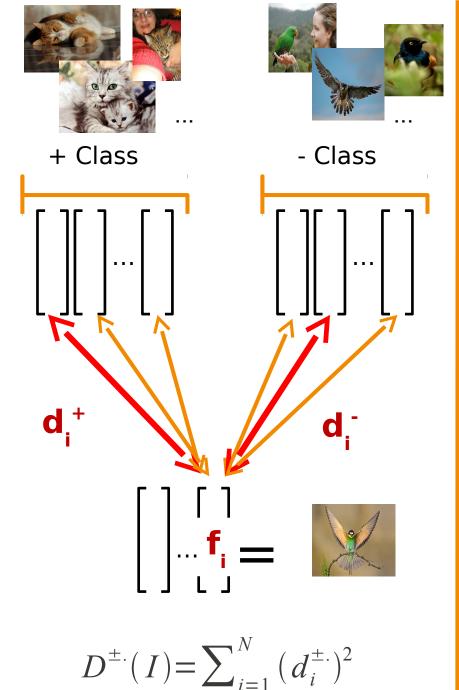


Figure 1. Effects of descriptor quantization – Informative descriptors have low database frequency, leading to high quantization error. (a) An image from the Face class in Caltech101. (b) Quantization error of densely computed image descriptors (SIFT) using a large codebook (size 6,000) of Caltech-101 (generated using [14]). Red = high error; Blue = low error. The most informative descriptors (eye, nose, etc.) have the highest quantization error. (c) Green marks the 8% of the descriptors in the image that are most frequent in the database (simple edges). (d) Magenta marks the 8% of the descriptors in the image that are least frequent in the database (mostly facial features).



Compute features from all images from the training set ; create a "feature space" for class +, and for class - .

Given a new image *I*, compute its feature points $\{f_i\}_{i=\{1...N\},}$ and find nearest neighbor $NN(f_i)$ in each class pool.

• Compute *feature-to-class* distance

 $d_{i}^{\pm \cdot} = \|f_{i} - NN^{\pm \cdot}(f_{i})\|$

· Classifying rule :

 $arg_{\pm} \min(\sum_{i=1}^{N} (d_i^{+.})^2, \sum_{i=1}^{N} (d_i^{-.})^2)$

Why does it work ok ?

- No quantization
- * "NBNN" classifier approximates the optimal MAP Naive-Bayes classifier

Improvement of NBNN

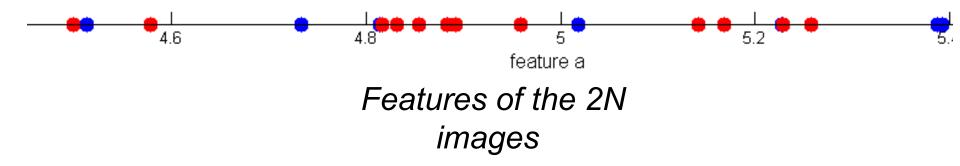
> New (parametric) distance

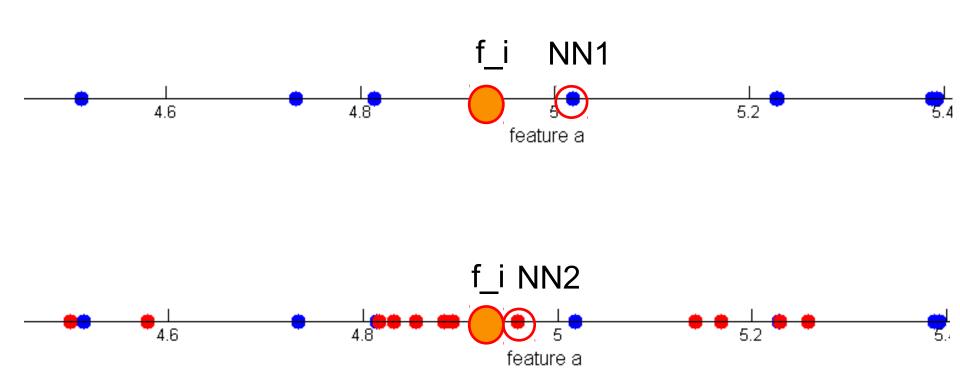
 Generalises to multi-channel (features)

Parameters estimation by hinge loss minimisation

> Applies to object detection

Impact of data sample size ...





Basic NN *distance* depends on the number of 'training' feature points

=> *Classification* is biased toward the most densely sampled class in the training set.

Distance correction

 $d_{i}^{\pm \cdot} = \|f_{i} - NN^{\pm \cdot}(f_{i})\|$

 $d_{i}^{\pm \cdot} = \alpha^{\pm \cdot} \|f_{i} - NN^{\pm \cdot} (f_{i})\| + \beta^{\pm \cdot}$

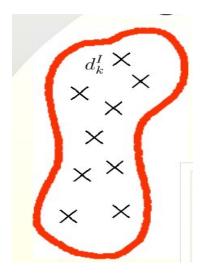
How do you:	Represent an image?	Classify an image?
Bag of Words (BoW)	Set of quantised features	Linear/Kernel SVM
Naive Bayes NN (NBNN)	Set of unquantised features	Linear classifier, 0 parameter
Optimal NBNN (oNBNN)	Set of unquantised features	Linear classifier, 2 parameters/class
Multi-channel oNBNN	Multiple sets of unquantised features	Linear classifier, 2N parameters/class

	$I \in \blacksquare$?		
NBNN	$\sum_{x \in F(I)} (x \leftrightarrow \blacksquare)$	<	$\sum_{x\in F(I)} (x \leftrightarrow \blacksquare)$
Optimal NBNN	$\sum_{x\in F(I)} \left[\alpha_{\blacksquare}(x \leftrightarrow \blacksquare) + \beta_{\blacksquare} \right]$	<	$\sum_{x\in F(I)} \left[lpha_{\blacksquare}(x \leftrightarrow \blacksquare) + eta_{\blacksquare} ight]$
Multichannel	$+\sum_{x\in F'(I)} \left[lpha_{\blacksquare'}(x {\leftrightarrow} \blacksquare') + eta_{\blacksquare'} ight]$		$+\sum_{x\in F'(I)}\left[lpha_{\blacksquare'}(x\leftrightarrow \blacksquare')+eta_{\blacksquare'} ight]$

Basic

Classification rule

$$\tilde{c}(I) = \arg \max_{c \in \gamma} p(I|c), \quad \text{for} \quad p(c) = cst$$
$$. = \arg \max_{c \in \gamma} \prod_{i=1}^{N_{I}} p(f_{i}|c)$$



Density approximation

$$p(f|c) = p_{c}(f) = \frac{1}{Z} \sum_{e \in \chi^{c}} \phi(||f-e||, \sigma), \quad \forall f \in \mathbb{R}^{d}$$
$$\chi^{c} = \{f_{j}^{I} \in \mathbb{R}^{D} | c = c(I), \forall I \in D^{t}, 1 < j < N_{I}\}$$
$$\mathsf{Training set}_{23}$$

[Boiman & al. 08] Density approximation

$$p_{c}(f) \approx \frac{1}{Z} \max_{e \in \chi^{c}} \exp(-\|f - e\|^{2}/2(\sigma)^{2})$$

- Kernel density : exp()
- SUM approximated by MAX

Define *feature-to-class* distance

$$-\log p_c(f) \approx \min_{e \in \chi^c} \|f - e\|^2$$

Underlying hypothesis : density parameters are class independant

... and classification rule

$$\tilde{c}(I) = argmin_{c} \sum_{i=1}^{N_{I}} ||f_{i} - NN^{c}(f_{i})||^{2}$$

- Naïve bayes assumption

NN distance revisited

Density approximation

$$p_{c}(x) \approx \frac{1}{Z^{c}} \max_{e \in \chi^{c}} \exp(-||x - e||^{2}/2(\sigma^{c})^{2})$$

- Density parameters are class dependent !!!

Define *feature-to-class* <u>distance</u>

$$\pi^{c}(f) = -\log p_{c}(f) = \alpha^{c} \min_{e \in \chi^{c}} ||f - e||^{2} + \beta^{c} \quad \text{-Reparametrisation}$$

... and Image-to-Class distance

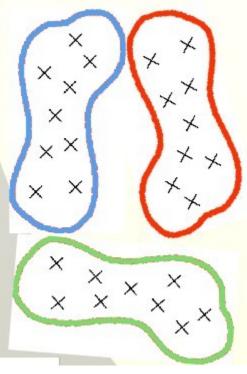
$$\tau^{c}(I) = \sum_{i=1}^{N_{I}} \alpha^{c} \|f_{i} - NN^{c}(f_{i})\| + \beta^{c}$$

- Linear in the model parameters

Multi-channel

Image = multiple points cloud
 More descriptors → better results

 $\widetilde{\mathcal{C}}$



$$I \sim (\chi_n(I))_n$$
 $n \in \mathbb{N}$
 $\chi_n(.)$: nth feature channel

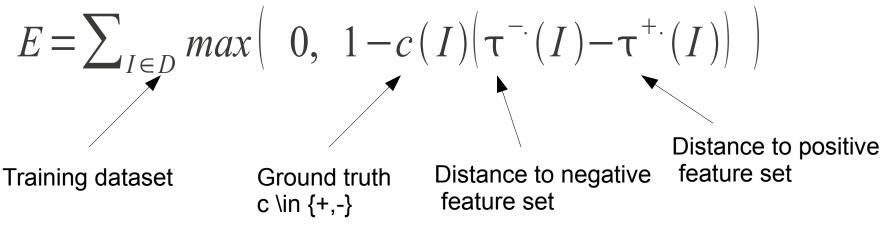
$$(I) = \arg \min_{c} \sum_{n} \sum_{f_{i} \in \chi_{n}(I)} \underbrace{-\log p(f_{i}|c)}_{\checkmark}$$

$$\tau_{n}^{c}(f_{i}) = \alpha_{n}^{c} ||f_{i} - NN^{c}(f_{i})|| + \beta_{n}^{c}$$

'measure' of channel discriminative power

Parameter estimation

- Binary classification : c={+,-}
- Hinge loss minimisation
- Cross-validation



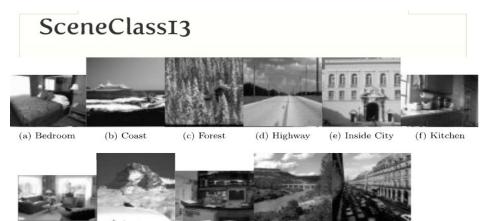
Parameter estimation

- Constrained linear program (using off-the-shell library)
- Distance correction parameters are 'optimal'
- Overfitting if number of channels is large

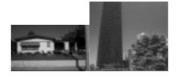
Results

Experimental setting

- Dataset : Caltech101, Gratz02, SceneClass13
- Rate of good classification (per class or averaged)
- Locality-sensitive hashing for NN search



(g) Living room (h) Mountain (i) Office (j) Open country (k) Street



Single-channel classification (using SIFT)

	BoW/SVM	BoW-Chi2/SVM	NaiveBayes [Boiman08]	oNBNN
SceneClass 13	67.85 (±0.78)	76.7 (±0.60)	48.52 (±1.53)	75.35 (±0.79)
Graz02	68.18 (± 4.21)	77.91 (±2.43)	61.13 (± 5.61)	78.98 (± 2.37)
Caltech101	59.2 (± 11.89)	89.13 (±2.53)	73.07 (± 4.02)	89.77 (± 2.31)

Correct classification rate and associated variance

Caltech 105 (detail per class)

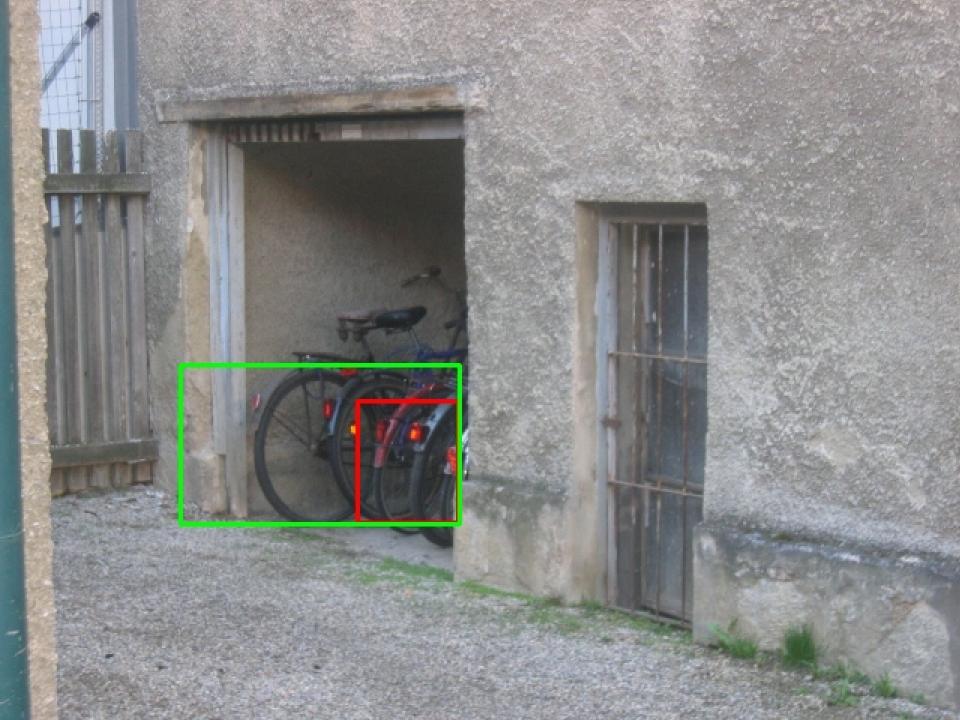
Class	BoW/χ^2 -SVM	[Opelt 2004]	NBNN	Opt. NBNN
Airplanes	91.99 ± 4.87	97.5	34.17 ± 11.35	95.00 ± 3.25
Car-side	96.16 ± 3.84	100.0	97.67 ± 2.38	94.00 ± 4.29
Faces	82.67 ± 9.10	100.0	$85.83 {\pm} 9.02$	89.00 ± 7.16
Motorbikes	$87.80{\pm}6.28$	94.3	$71.33{\pm}19.13$	91.00 ± 5.69
Background	87.50 ± 6.22	-	$76.33{\pm}22.08$	$78.93{\pm}10.67$

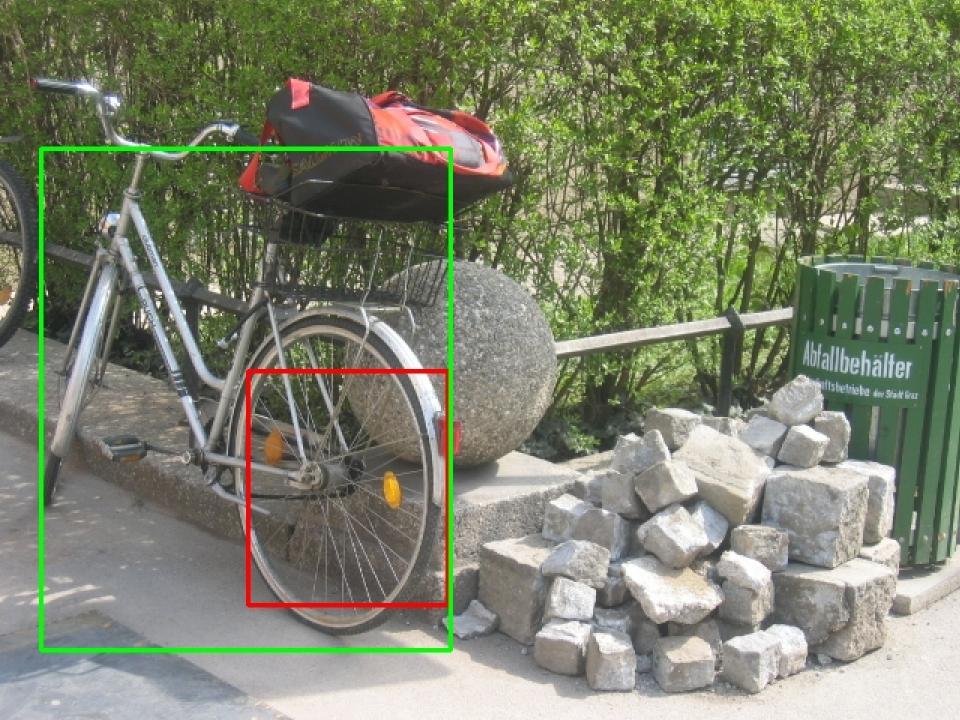
Caltech 105 (color features)

Feature	BoW/χ^2 -SVM	NBNN [1]	Optimal NBNN
SIFT	88.90 ± 2.59	73.07 ± 4.02	89.77 ± 2.31
OpponentSIFT	89.90 ± 2.18	72.73 ± 6.01	91.10 ± 2.45
rgSIFT	86.03 ± 2.63	80.17 ± 3.73	85.17 ± 4.86
cSIFT	86.13 ± 2.76	75.43 ± 3.86	86.87 ± 3.23
Transf. color SIFT	89.40 ± 2.48	73.03 ± 5.52	90.01 ± 3.03

Classification by detection (Gratz02)

Class	NBNN	Optimal NBNN	Optimal NBNN (classif. detect.)
bike	$68.35 {\pm} 10.66$	$78.70{\pm}4.67$	83.60
people	45.10 ± 12.30	$76.20{\pm}5.85$	_
car	$42.40{\pm}15.41$	$82.05 {\pm} 4.88$	





Conclusion

[•] Optimal nearest neighbor distance

- generalises to multi-channel classification
- 'optimal' parameters estimation
- nearest neighbour search using multi-probe LSH
- classification by detection.

[.] Limitations

- → model overfitting
- → NN search
- → spatial dependency between feature points

References

In Defense of Nearest-Neighbor Based Image Classification, Boiman, Shechtman, Irani, CVPR 2008

Learning The Discriminative Power_Invariance Trade-Off, Varma, Debajyoti, ICCV 2007

Discriminative Subvolume Search for Efficient Action Detection, Yuan, Liu, Ying, CVPR 2009

Beyond Sliding Windows: Object Localization by Efficient Sub-window Search Lampert, Blaschko, Hofmann, CVPR2008

Modeling LSH performance tuning (multi-probe LHS index), Dong & al., CIKM 2008

GNU linear programming kit: http://www.gnu.org/software/glpk/

Unsupervised Learning by Probabilistic Latent Semantic Analysis Hofmann, Machine Learning. 2001

Scene Classification via pLSA Anna Bosch , Andrew Zisserman , Xavier Muoz, ECCV 2006

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data J. Lafferty, A. McCallum, and F. Pereira, ICML-2001

Efficient Piecewise Learning for Conditional Random Fields, Karteek Alahari, Chris Russell, Philip H.S. Torr, CVPR 2010

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

Proximity Distribution Kernels for Geometric Context in Category Recognition H. Ling and S. Soatto. In Proceedings of the International Conference on Computer Vision, 2007

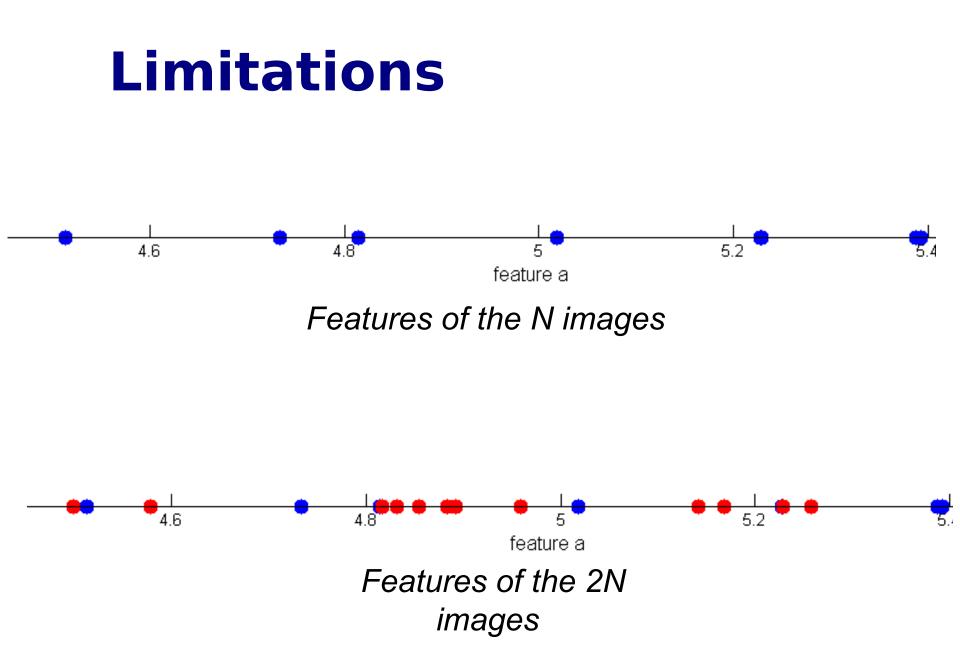
Object recognition with informative features and linear classification D. Lowe, ICCV99

Local Features and Kernels for Classification of Texture and Object Categories: a Comprehensive Study

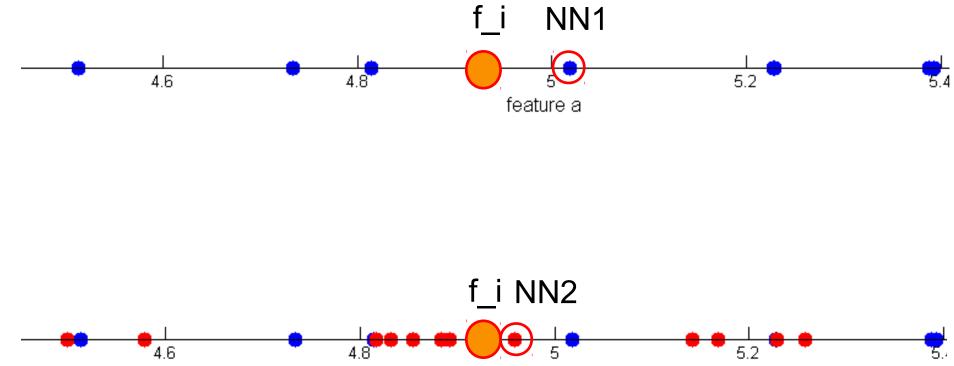
Zhang, Marszałek, Lazebnik, Schmid, IJCV 2001

Histograms of Oriented Gradients for Human Detection Dalal, Triggs, CVPR 2005

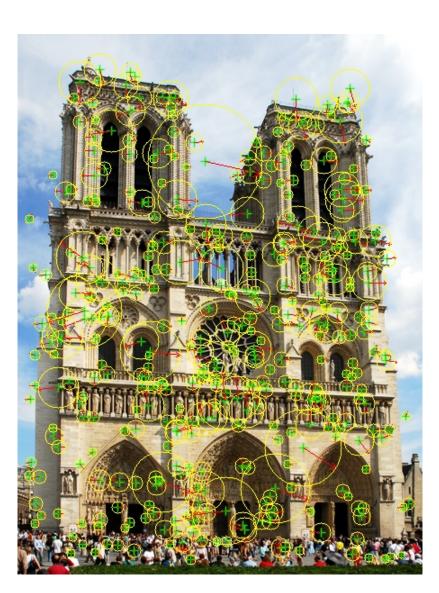
Viola, Jones: Robust Real-time Object Detection, IJCV 2001



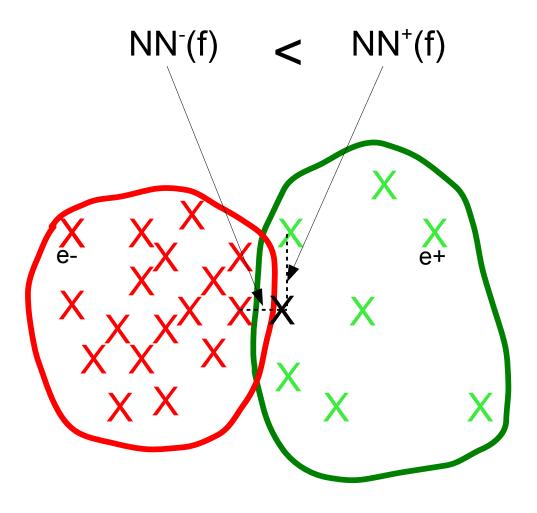
12/30/20

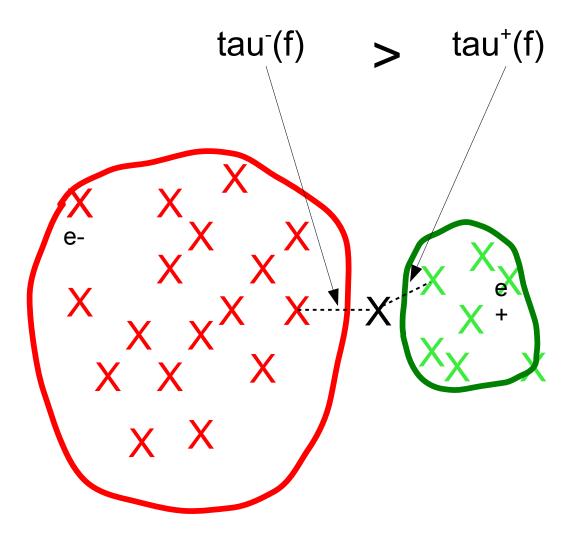


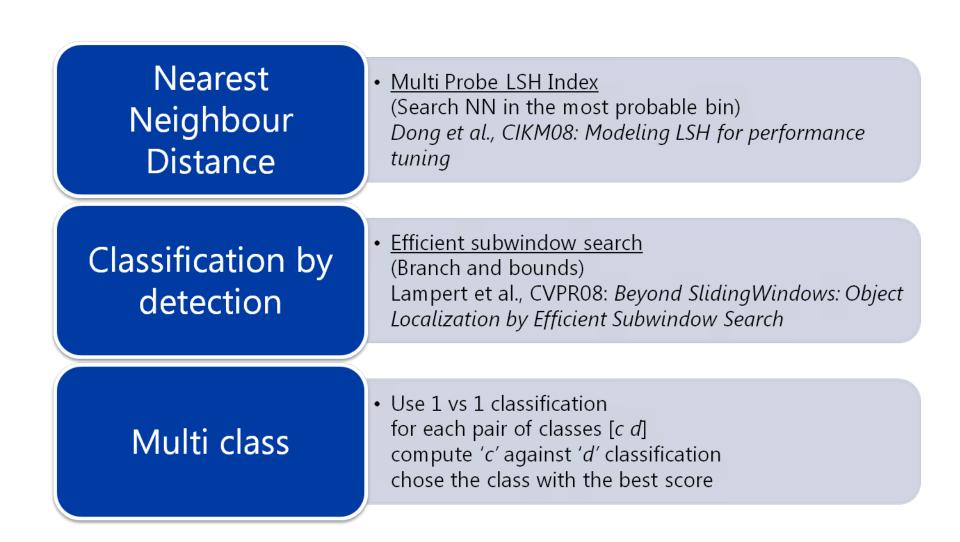
A new channel



- · Oriented graph
 - Features (SIFTs) as nodes
 - Connectivity rule







Multi-class classifier

$$\tilde{c}(I) = \arg \max_{c} \sum_{c' \neq c} H(E^{(c,c')}(I))$$

Multi-class classifier decision rule

$$E^{(c,c')} = \tau^{c}(I) - \tau^{c'}(I) \qquad \qquad H(x) = \begin{vmatrix} 1 & \text{if } x > 1 \\ -1 & \text{if } x < -1 \\ x & \text{otherwise} \end{vmatrix}$$

Score function

Binary prediction function

Classification by detection

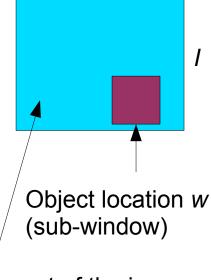
 Goal : finding *position w* and *class c* of an object

• Prediction rule

object class

'non-object' class

$$\frac{\prod_{f_i \in \omega} p(f_i | c, \omega) \prod_{f_i \in \bar{\omega}} p(f_i | c, \omega)}{\prod_{i \in I} p(f_i | background)}$$



 $\overline{\boldsymbol{\varpi}}$: rest of the image