A Surface Reflectance Model and Applications from Image Sequences

Véronique Prinet with Dani Lischinski and Michael Werman

The Hebrew University of Jerusalem, Israel

April 16th 2015, CASIA

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のへ⊙

Table of contents

Introduction & Background

Illuminant Chromaticity from Image Sequence [ICCV 2013]

One global illuminant Two dominant illuminants Results

Specularity Enhancement from Image Sequence [ICIP 2013]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Approach Results

Conclusions and Future Work

Motivation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Motivation

Most scenes are illuminated by several (global or local) illuminants (*eg.* outdoor scene at sunset).

 Color cast or strong specularities can cause vision algorithms (*eg.* segmentation, recognition) to produce erroneous results.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Related work

[Shafer 85], [Klinker & al. 88], [Lee & Bajcsy 92], [Tan & al. 2003], [Robles-Kelly & al. 2010], [Yang & al. 2011]

Fig. 1. Reflection models

Related work

- Gray-Edge [Weijer & al. 2007], Generalised Gamut Mapping [Gijsenij & al. 2010],
- Multi-illuminant [Gijsenij & al. 2012, Ebner 2004],
- ▶ White balance correction [Hsu & al. 2008].
- Illuminant in video sequences [Wang & al. 2011],

Image Formation Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Image Formation Model

Introduction & Background

Illuminant Chromaticity from Image Sequence [ICCV 2013]

One global illuminant Two dominant illuminants Results

Specularity Enhancement from Image Sequence [ICIP 2013] Approach Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions and Future Work

Dichromatic reflection model for dieletric objects [Shafer 85] in time

space.

$\mathsf{J}(\mathsf{p})=\mathsf{D}(\mathsf{p})+\mathsf{S}(\mathsf{p})$

Dichromatic reflection model for dieletric objects [Shafer 85] in time

space.

$\mathsf{J}(\mathbf{p}) = \mathsf{D}(\mathbf{p}) + m_s(\mathbf{p})\mathsf{L}(\mathbf{p})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dichromatic reflection model for dieletric objects [Shafer 85] in time space.

$\mathsf{J}(\mathsf{p}, \underline{t}) = \mathsf{D}(\mathsf{p}, \underline{t}) + m_s(\mathsf{p}, \underline{t})\mathsf{L}(\mathsf{p})$

Dichromatic reflection model for dieletric objects [Shafer 85] in time space.

$\mathsf{J}(\mathsf{p}, t) = \mathsf{D}(\mathsf{p}, t) + \mathit{m_s}(\mathsf{p}, t)\mathsf{L}(\mathsf{p})$

Hypothesis

Incident light L is uniformly distributed over time.

• Object body reflectance **D** is time invariant.

Single Global Illuminant Γ

$$\mathsf{J}(\mathbf{p},t)=\mathsf{D}(\mathbf{p},t)+m_{s}(\mathbf{p},t)\mathsf{L}$$

$$\Rightarrow \quad \mathbf{J}(\mathbf{p} + \Delta \mathbf{p}, t + \Delta t) - \mathbf{J}(\mathbf{p}, t) = \Delta m_{s}(\mathbf{p}, t) \mathbf{L}$$

$$\Rightarrow \qquad \frac{L_c}{\sum_c L_c} = \frac{\Delta J_c(\mathbf{p}, t)}{\sum_c \Delta J_c(\mathbf{p}, t)} \qquad c \in \{r, g, b\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

with
$$\mathbf{L} = (L_r, L_g, L_b), \mathbf{J} = (J_r, J_g, J_b)$$
 and
 $\Delta \mathbf{J}(\mathbf{p}, t) = \mathbf{J}(\mathbf{p} + \Delta \mathbf{p}, t + \Delta t) - \mathbf{J}(\mathbf{p}, t).$

Single Global Illuminant **F**

$$\mathsf{J}(\mathsf{p},t)=\mathsf{D}(\mathsf{p},t)+m_{s}(\mathsf{p},t)\mathsf{L}$$

$$\Rightarrow \quad \mathbf{J}(\mathbf{p} + \Delta \mathbf{p}, t + \Delta t) - \mathbf{J}(\mathbf{p}, t) = \Delta m_s(\mathbf{p}, t) \mathbf{L}$$

$$\Rightarrow \qquad \frac{L_c}{\sum_c L_c} = \frac{\Delta J_c(\mathbf{p}, t)}{\sum_c \Delta J_c(\mathbf{p}, t)} \qquad c \in \{r, g, b\}$$

with
$$\mathbf{L} = (L_r, L_g, L_b), \mathbf{J} = (J_r, J_g, J_b)$$
 and
 $\Delta \mathbf{J}(\mathbf{p}, t) = \mathbf{J}(\mathbf{p} + \Delta \mathbf{p}, t + \Delta t) - \mathbf{J}(\mathbf{p}, t).$

The dispacement field, $\Delta \mathbf{p}$, is assumed to be known.

Single Global Illuminant F

Define
$$x_c(\mathbf{p}) = \frac{\Delta J_c(\mathbf{p},t)}{\sum_c \Delta J_c(\mathbf{p},t)}$$
, $\mathbf{x} = \{x_c(\mathbf{p}), c \in \{r, b, g\}, \forall \mathbf{p} \in \mathcal{E}\}$.

We observe empirically that $h(x_c)$ has the following (Laplace) distribution:

This suggests to cast the problem of $\mathbf{\Gamma} = \{\Gamma_c\}$ estimation in a MAP framework, where:

$$\hat{\mathbf{\Gamma}} = rg\max_{\mathbf{\Gamma}} P(\mathbf{\Gamma}|\mathbf{x})$$

Two Dominant Illuminants $\{\Gamma_1, \Gamma_2\}$

Assume now:

$$\mathbf{L}(\mathbf{p}) = k_1(\mathbf{p}) \, \mathbf{\Gamma}_1 + k_2(\mathbf{p}) \, \mathbf{\Gamma}_2.$$

For locally uniform incident light L(p) = cst = L^s, ∀p ∈ s, where s is a small space-time patch, then:

$$\Gamma_c^s = \frac{L_c^s}{\sum_c L_c^s} = \alpha^s \, \Gamma_{1,c} + (1 - \alpha^s) \, \Gamma_{2,c}.$$

with $\alpha^{s} = k_{1}^{s} / (k_{1}^{s} + k_{2}^{s}).$

Re-parametrisation:

$$\alpha^{s} = b_{c} + a_{c}\Gamma_{c}^{s} \quad \forall c \in \{r, g, b\},$$

with $a_{c} = \frac{1}{\Gamma_{1,c} - \Gamma_{2,c}}$ and $b_{c} = \frac{-\Gamma_{2,c}}{\Gamma_{1,c} - \Gamma_{2,c}}.$

Two Dominant Illuminants $\{\Gamma^1, \Gamma^2\}$

► Define the quadratic cost function:

$$E(\alpha, \mathbf{a}, b) = \sum_{s} (\alpha^{s} - \sum_{c} a_{c} \Gamma_{c}^{s} - b)^{2} + \epsilon ||\mathbf{a}||^{2}$$

$$E(\alpha, \mathbf{w}) = ||\bar{\alpha} - K\mathbf{w}||^{2}$$
with $\bar{\alpha} = (\alpha^{1}, ..., \alpha^{S}, 0)$, $\mathbf{w} = (a_{r}, a_{g}, a_{b}, b)^{t}$,

$$K = \begin{bmatrix} \Gamma_{r}^{1} & \Gamma_{g}^{1} & \Gamma_{b}^{1} & 1 \\ \\ \epsilon^{1/2}a_{r} & \epsilon^{1/2}a_{g} & \epsilon^{1/2}a_{b} & 0 \end{bmatrix}$$

Solve for ā. We can show that, for the optimal value of w ([Levin & al. 2008]):

$$E(\alpha) = \bar{\alpha}^t M \bar{\alpha}.$$

• Solve for $\hat{\mathbf{\Gamma}}_1, \hat{\mathbf{\Gamma}}_2$. Finally:

$$(\hat{\mathbf{\Gamma}}_1, \hat{\mathbf{\Gamma}}_2) = \arg\min \sum ||\alpha_s \mathbf{\Gamma}_1 + (1 - \alpha_s) \mathbf{\Gamma}_2||^2$$

Experimental setting

- Dataset :
 - One illuminant : benchmark dataset (GrayBall) and in-house datasets (13 sequences, acquired under normal and extrem lighting conditions);

- Two illuminants : in-house dataset (3 sequences).
- Ground truth : from gray-card placed in the scene during acquisition.
- Temporal window : 3-5 frames ; Tiles size (2 illuminants): 100×100 pixels.
- Evaluation : $err = \arccos(\mathbf{\Gamma}^{Est}.\mathbf{\Gamma}^{GT})$

Results : Single Illuminant

Figure : Video dataset recorded under normal lighting conditions.

	Average	Best 1/3	Worst 1/3
GE-1 [Weijer & al. 2007]	6.572	2.1787	11.271
GE-2 [Weijer & al. 2007]	7.150	2.958	11.723
GGM [Gijsenij & al. 2010]	7.013	6.208	9.166
IIC [Tan & al. 2003]	8.303	3.984	12.540
Our approach	5.389	2.402	8.784

Table : Average angular errors (in degrees) .

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の < @

Figure : Video dataset simulating extreme lighting conditions: reddish and bluish.

	Reddish	Bluish				
GE-1 [Weijer & al. 2007]	8.907	13.052				
GE-2 [Weijer & al. 2007]	10.246	13.657				
GGM [Gijsenij & al. 2010]	15.544	25.505				
IIC [Tan & al. 2003]	_	19.675				
Our approach	7.708	6.236				

 Table : Average angular errors (in degrees).

Figure : Sample frames from the Grayball database (out of a total of 11,136 images).

	Mean	Median
GrayWorld	7.9	7.0
GGM [Gijsenij & al. 2010]	6.9	5.8
GE-2 [Wang & al. 2011]	5.4	4.1
Ours	5.4	4.6

Table : Angular errors.

(日)、(四)、(E)、(E)、(E)

Application: White balance correction

(c) Ground truth

(a) Input sequence (b) Our approach

Two illuminants

Figure : Three sequences captured with two lights sources.

	Ours		[Gijsenij & al. 2012]		Local GW	
	Γ ₁	Γ2	Γ ₁	Γ ₂	Γ ₁	Γ ₂
Seq. (a)	9.65	5.14	31.69	4.8	12.94	10.49
Seq. (b)	5.74	4.76	9.69	9.82	5.89	8.81
Seq. (c)	7.35	6.49	17.9	5.65	7.63	5.74

Input $\mathbf{J}(\mathbf{p}, t)$

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application: Color cast correction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application: Relighting

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

< □ > < 同 >

Introduction & Background

Illuminant Chromaticity from Image Sequence [ICCV 2013]

One global illuminant Two dominant illuminants Results

Specularity Enhancement from Image Sequence [ICIP 2013]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Approach Results

Conclusions and Future Work

Specularity map $m(\mathbf{p}, t)$

Recall:

$$egin{aligned} &J_c(\mathbf{p}+\mathbf{\Delta}\mathbf{p},t+\Delta t)-J_c(\mathbf{p},t)\ &=m(\mathbf{p}+\mathbf{\Delta}\mathbf{p},t+\Delta t)-m(\mathbf{p},t) \end{aligned}$$

Displacement \Delta p is known or estimated accurately,

- White illuminant: $L(\mathbf{p}, t) = L = (1, 1, 1)$,
- Body reflectance D is invariant over time.

Approach 1: a 1^{rst} order integration

 $\Delta \bm{p} \neq 0$

$$rac{d}{dt}m(\mathbf{p}(t),t) = rac{d}{dt}J_c(\mathbf{p}(t),t)$$

$$\Rightarrow m(\mathbf{p}(t),t) = J_c(\mathbf{p}(t),t) - D_{t_0,c}$$

with initial conditions: $D_{t=0,c}(\mathbf{p}) = J_c(\mathbf{p}(t_0), t_0) - m(\mathbf{p}(t_0), t_0).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Approach 2: a 2nd order integration

Minimise:

$$\int_t \int_{\mathbf{p}} d\mathbf{p} \ dt \ \{\Delta J_c(\mathbf{p}, t) - (m(\mathbf{p} + \Delta \mathbf{p}, t + \Delta t) - m(\mathbf{p}, t))\}^2$$

with respect to m(.).

$$\Rightarrow \Delta^2 J_c(\mathbf{p}, t) = \\ m_{pp}(\mathbf{p}, t) \Delta \mathbf{p}^2 + m_{tt}(\mathbf{p}, t) \Delta t^2 + 2 m_{pt}(\mathbf{p}, t) \Delta \mathbf{p} \Delta t$$

- discretize using (central) finite differences
- appropriate boundary/initial conditions \Rightarrow solve a linear system of the form: $A \bar{\mathbf{m}} = B$.

・ロト ・四ト ・ヨト ・ヨト 三日

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

・ロト ・四ト ・ヨト ・ヨト 三日

・ロト ・四ト ・ヨト ・ヨト 三日

イロト イヨト イヨト イヨト

イロト イロト イヨト イヨト

ж

・ロト ・四ト ・ヨト ・ヨト 三日

< 口 > < 同

Introduction & Background

Illuminant Chromaticity from Image Sequence [ICCV 2013]

One global illuminant Two dominant illuminants Results

Specularity Enhancement from Image Sequence [ICIP 2013] Approach

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Results

Conclusions and Future Work

Conclusion

Summary

- *Physically-based model* for illuminant estimation or specularity detection,
- Leverage temporal information.

Limitations

- Physically-based model is an *approximation* of the real world,
- *Displacement flow accuracy* is a limiting factor for local estimation of incident light,
- Light sources should not be too close (in space and spectral domain).

Future work

 Improvement of the white balance correction task (two light sources),

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Extension to multiple light sources,
- Estimation of scene structure and intrinsic images.

Thanks for your attention.