Towards Intelligent Transportation Urban traffic forecasting and Autonomous parking

Véronique Prinet Visiting Associate Professor Chinese Academy of Sciences, Institute of Automation

> April 29th 2021 University of Paris (remote)

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Table of contents

Introduction

Urban traffic forecasting [T-ITS'2021]

Introduction Problem statement Method Results

Towards autonomous parking [T-ITS'2019] Motivation Method Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Perspectives

Introduction

Urban traffic forecasting [T-ITS'2021]

- Introduction
- Problem statement
- Method
- Results

Towards autonomous parking [T-ITS'2019]

- Motivatior
- Method
- Results

Perspectives

Motivation: connected cities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Introduction

Urban traffic forecasting [T-ITS'2021] Introduction Problem statement Method

Results

Towards autonomous parking [T-ITS'2019] Motivation Method Results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Perspectives

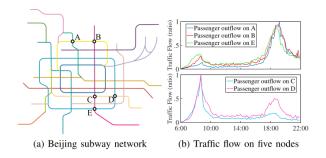
Urban traffic forecasting

IEEE Trans. on Intelligent Transporation Systems, 2021

Shen Fang Jianlong Chang Michael Werman ChunHong Pan Shiming Xiang

Objective

Objective: Given past observed data, we want to infer the future traffic state in the forthcoming X minutes/hours/days (typically X=1h).

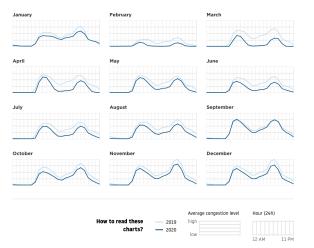


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Beijing traffic

WORKING DAY TRAVEL PATTERNS BY MONTH

How did the travel patterns look like during working days in 2020 and 2019?



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

https://www.tomtom.com/en_gb/traffic-index/beijing-traffic/

Sensors and data

- flow (in / out)

(日)

- speed
- occupancy

- ...

Why is it hard?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why is it hard?

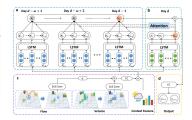
Related work (1/3)

Deep spatio-temporal residual net- works for citywide crowd flows prediction, Zhang & al., AAAI 2017

Modeling Spatial-Temporal Dynamics for Traffic Prediction , Yao & al., arxiv:1803.01254 2018

(a) Grid-based map segmentation

(b) Inflow matrix



ヘロト ヘヨト ヘヨト ヘヨト

э

Related work (2/3)

Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting, Guo & al., AAAI 2019

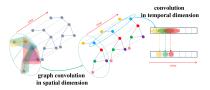
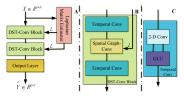


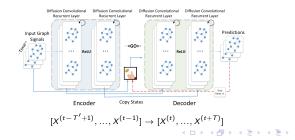
Figure 5: The architecture of spatial-temporal convolutions of ASTGCN.

Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting, Diao & al. AAAI 2019

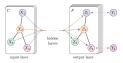


э

Diffusion convolution RNN: data driven traffic forecasting, Li and al, ICLR 2018



Related work (3/3)



- Spectral graph convolution [Bruna'13, Defferrard'17, Kipf'17] $g_{ heta} \star x = U g_{ heta} U^T x$

U: eigenvectors of the Laplacian $L = I_N - D^{-1/2}AD^{-1/2} = U\Lambda U^T$

- Graph convolution on the spatial domain [Hamilton'18]

$$y_i = f_{\theta}(x_i, \{x_j | \forall v_j \in \mathcal{N}(v_i)\}),$$

AGGREGATION: $\tilde{y}_i = \sum_{j \in \mathcal{N}(i)} x_j W$ UPDATE: $y_i = g(\tilde{y}_i, x_i)$

 Permutation invariance, independant of neigbor size, spatially invariant (weight sharing)

Contributions

Our contributions:

- (Dilated attention) graph convolution operator, accounting for short and long range spatial correlations,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contributions

Our contributions:

- (Dilated attention) graph convolution operator, accounting for short and long range spatial correlations,
- Temporal integration, accounting for short and long range time dependencies,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contributions

Our contributions:

- (Dilated attention) graph convolution operator, accounting for short and long range spatial correlations,
- Temporal integration, accounting for short and long range time dependencies,
- Data fusion scheme, accounting for external (exhogenous) factors.

Problem statement

Given a graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
,
 $\mathcal{V} = \{v_i\}$, $\mathcal{E} = \{e_{ij} \in [0, 1] | e_{ij} = 1 \text{ if } v_j \in \mathcal{N}(v_i)\}$
and nodes attribute $\mathcal{X} = \{x_i\}$:

$$\begin{aligned} \mathcal{F}_{\Theta}(\mathcal{G}) &: \quad \left(\{\mathcal{X}^{(p)}\}_{p=0}^{P-1}, \mathbf{E} \right) &\longrightarrow \quad \hat{\mathbf{X}}_{\mathbf{t}} \\ \Theta &= \arg\min_{\tilde{\Theta}} \mathcal{L}_2(\hat{\mathbf{X}}_{\mathbf{t}}, \mathbf{X}_{\mathbf{t}}) \end{aligned}$$

Problem statement

Given a graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
,
 $\mathcal{V} = \{v_i\}, \ \mathcal{E} = \{e_{ij} \in [0, 1] | e_{ij} = 1 \text{ if } v_j \in \mathcal{N}(v_i)\}$
and nodes attribute $\mathcal{X} = \{x_i\}$:

Observed historical traffic flow $\mathcal{X}^{(p)}, p = 0, \dots, P-1, \mathcal{X}^{(p)} \in \mathbb{R}^{N \times T \times M}$ External factors $\mathbf{E} = \{\mathbf{e}_t^w, \mathbf{e}_t^h, \mathbf{E}^p\}$ at future time t, $\mathbf{E} \in \mathbb{R}^{D^w} \times \{0, 1\}^{D^h} \times \mathbb{N}^{N \times D^p}$ Output the traffic flow on all nodes at the next time step t, $\hat{\mathbf{X}}_t \in \mathbb{R}^{N \times M}$

Given $x_i \in \mathbb{R}^C$, a feature of dimension *C* on node v_i , the attention graph convolution, for a given *I*, is defined as follows,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given $x_i \in \mathbb{R}^C$, a feature of dimension *C* on node v_i , the attention graph convolution, for a given *I*, is defined as follows,

for a one order neighborhood (single hop):

$$m{y}_i = \sum_{m{v}_j \in \mathcal{N}(m{v}_i,l)} m{x}_j m{W}_a + g(m{x}_i),$$

Given $x_i \in \mathbb{R}^C$, a feature of dimension *C* on node v_i , the attention graph convolution, for a given *I*, is defined as follows,

for a one order neighborhood (single hop):

$$oldsymbol{y}_i = \sum_{oldsymbol{v}_j \in \mathcal{N}(oldsymbol{v}_i,l)} f_\psi(oldsymbol{x}_i,oldsymbol{x}_j) \cdot oldsymbol{x}_j oldsymbol{W}_a + g(oldsymbol{x}_i),$$

$$egin{aligned} & ilde{f}_\psi(m{x}_i,m{x}_j) = m{h}_\psi(m{x}_i)^{\mathrm{T}} \cdot m{h}_\psi(m{x}_j) \ & f_\psi(m{x}_i,m{x}_j) = \textit{softmax}(ilde{f}_\psi(m{x}_i,m{x}_j)) \end{aligned}$$

Given $x_i \in \mathbb{R}^C$, a feature of dimension *C* on node v_i , the attention graph convolution, for a given *I*, is defined as follows,

for a L order neighborhood (L-hop) with dilation d:

$$\mathbf{y}_i' = \sum_{l=1}^L heta_l \sum_{\mathbf{v}_j \in \mathcal{N}(\mathbf{v}_i, l \cdot d)} f_{\psi}(\mathbf{x}_i, \mathbf{x}_j) \cdot \mathbf{x}_j \mathbf{W}_a + g(\mathbf{x}_i),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

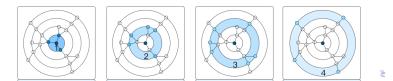
 $\mathbf{y}_i = \sigma(\mathbf{y}_i')$

Given $x_i \in \mathbb{R}^C$, a feature of dimension *C* on node v_i , the attention graph convolution, for a given *I*, is defined as follows,

for a L order neighborhood (L-hop) with dilation d:

$$m{y}_i' = \sum_{l=1}^L heta_l \sum_{m{v}_j \in \mathcal{N}(m{v}_i, l \cdot d)} f_\psi(m{x}_i, m{x}_j) \cdot m{x}_j m{W}_a + g(m{x}_i),$$

$$\mathbf{y}_i = \sigma(\mathbf{y}_i')$$



Space and time integration

Space integrator: Given input traffic record $\mathbf{X}^{(p)} \in \mathbb{R}^{N \times TM}$:

$$\mathbf{Y}^{(p)} = \mathcal{H}^{(p)}(\mathbf{X}^{(p)}, \mathcal{G}), \quad p = 0, \cdots, P-1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Space and time integration

Space integrator: Given input traffic record $\mathbf{X}^{(p)} \in \mathbb{R}^{N \times TM}$:

$$\mathbf{Y}^{(p)} = \mathcal{H}^{(p)}(\mathbf{X}^{(p)}, \mathcal{G}), \quad p = 0, \cdots, P-1$$

<u>Time integrator</u>: Given $\mathbf{Y}^{c} = [\mathbf{Y}^{(0)}, \cdots, \mathbf{Y}^{(P-1)}] \in \mathbb{R}^{N \times PF}$:

 $\mathbf{Y}^{\tau} = \mathcal{H}^{\tau}(\mathbf{Y}^{c}, \mathcal{G}),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

External factors embedding

Time varying factors: Weather (discrete and real-valued variables):

$$\hat{e}^w_t = \mathcal{FC}^w(e^{w,d}_t,e^{w,r}_t) \qquad \quad \hat{e}^w_t = (\hat{e}^{w,d}_t,\hat{e}^{w,r}_t),$$

Holiday (categorical variable):

$$\hat{m{e}}^h_t = FC^h(m{e}^h_t) \qquad \quad \hat{m{e}}^h_t \in \mathbb{N}^{F^h},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

External factors embedding

Time varying factors: Weather (discrete and real-valued variables):

$$\hat{e}^w_t = \mathcal{FC}^w(e^{w,d}_t,e^{w,r}_t) \qquad \quad \hat{e}^w_t = (\hat{e}^{w,d}_t,\hat{e}^{w,r}_t),$$

Holiday (categorical variable):

$$\hat{m{e}}^h_t = FC^h(m{e}^h_t) \qquad \quad \hat{m{e}}^h_t \in \mathbb{N}^{F^h},$$

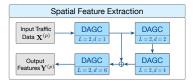
Space varying factors: Points of interest (categorical variable):

$$\hat{\mathsf{E}}^{p} = \mathit{FC}^{p}(\mathsf{E}^{p}) \qquad \quad \hat{\mathsf{E}}^{p} \in \mathbb{N}^{N imes \mathit{F}^{p}}$$

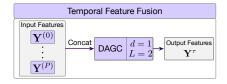
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What do we have so far

Space integration

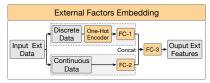


Time integration



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

External (weather) factors embedding



Overall fusion

1- Traffic flow and Pols features are first fet into a DAGC module:

$$\mathbf{Y} = \mathcal{H}([\mathbf{Y}^{ au}, \hat{\mathbf{E}}^{p}], \mathcal{G}).$$

2- Weather features and holiday notifications, expanded to space domain, are then fed into an multilayer perceptron:

$$\hat{\mathbf{X}}_{\mathbf{t}} = MLP([\mathbf{Y}, \hat{\mathbf{E}}_{t}^{w}, \hat{\mathbf{E}}_{t}^{h}])$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

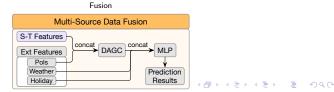
Overall fusion

1- Traffic flow and Pols features are first fet into a DAGC module:

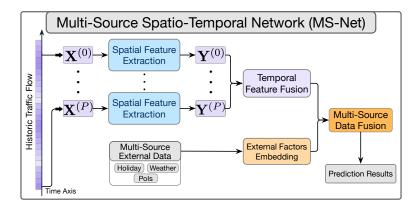
$$\mathbf{Y} = \mathcal{H}([\mathbf{Y}^{ au}, \hat{\mathbf{E}}^{p}], \mathcal{G}).$$

2- Weather features and holiday notifications, expanded to space domain, are then fed into an multilayer perceptron:

$$\hat{\mathbf{X}}_{\mathbf{t}} = MLP([\mathbf{Y}, \hat{\mathbf{E}}_{t}^{w}, \hat{\mathbf{E}}_{t}^{h}])$$



Overall pipeline



Experiments: Data

Table: Dataset meta information

Properties	Datasets			
Fioperties	Subway Bus		Taxi	
# traffic nodes	278	4219	300	
time interval	10 mins	1 hour	20 mins	
time span	2016/6/1 - 2016/6/29		2015/11/28 -	
			2016/1/26	
# train days	15 days		32 days	
# valid & test	7 days		14 days	
days				
daily range	6:00-22:00			

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Experiments: Data

Table: Pols categories.

ID	Pols categories	ID	Pols categories
0	food & beverage service	7	automobile service
1	shopping center	8	education
2	hotel	9	medical treatment
3	public transportation service	10	tourism service
4	entertainment	11	enterprises and institutions
5	residence	12	finance & insurance
6	living service	13	government agency

Table: Weather categories.

ID	categories	ID	categories
0	cloudy	4	thunder
1	partly cloudy	5	fog
2	mostly cloudy	6	snow / hail
3	light rain	7	sunny

Experiments: Data - Beijing subway

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

[Inflow weekday] [Inflow weekend] [Outflow weekday] [Outflow weekend]

Experiments: Results and comparison with SOTA

Table: Experimental results of the subway (top) and bus (bottom) evaluation datasets.

	MAE	MAPE (%)	RMSE
HA	45.08	31.02	94.94
GAT	36.68 ± 2.58	28.97 ± 2.29	65.35 ± 6.31
GRU	23.33 ± 0.20	20.29 ± 0.67	41.92 ± 0.33
ChebNet	22.91 ± 0.59	19.38 ± 0.39	40.02 ± 0.98
DCRNN	22.49 ± 0.22	19.50 ± 1.08	38.63 ± 0.47
STGCN	21.69 ± 0.62	19.13 ± 1.74	36.49 ± 0.48
STGCNAction	21.65 ± 0.27	18.97 ± 1.32	37.06 ± 0.39
GSTNet	21.33 ± 0.13	18.63 ± 0.72	36.08 ± 0.22
MS-Net	19.44 ± 0.14	16.97 ± 0.30	32.19 ± 0.17

	MAE	MAPE (%)	RMSE
НА	35.93	55.47	73.54
GAT	26.40 ± 0.29	46.88 ± 3.00	52.73 ± 0.38
GRU	24.07 ± 0.22	40.73 ± 1.59	53.46 ± 0.25
ChebNet	27.06 ± 1.10	42.89 ± 2.67	56.01 ± 2.73
DCRNN	27.06 ± 0.12	43.95 ± 0.47	55.23 ± 0.09
STGCN	23.42 ± 0.31	39.01 ± 1.57	48.80 ± 2.64
STGCNAction	21.05 ± 0.72	36.12 ± 1.01	40.93 ± 1.90
GSTNet	N / A	N/A	N / A
MS-Net	$\textbf{19.15} \pm \textbf{0.28}$	$\textbf{33.12} \pm \textbf{1.19}$	$\textbf{36.42} \pm \textbf{0.39}$

Metrics: MAE (Mean average error), MAPE (Mean average percentage error), RMSE (root mean square error) =

Experiments: Results and comparison with SOTA

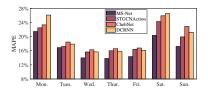
Table: Experimental results of the taxi evaluation datasets.

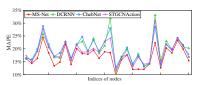
	MAE	MAPE (%)	RMSE
HA	26.18	40.24	55.95
GAT	22.05 ± 1.01	35.27 ± 1.47	45.44 ± 1.66
GRU	20.24 ± 0.19	32.77 ± 1.73	40.04 ± 0.15
ChebNet	19.81 ± 0.07	31.97 ± 0.38	38.39 ± 0.58
DCRNN	20.46 ± 0.34	31.58 ± 1.38	42.03 ± 0.18
STGCN	19.34 ± 0.24	31.34 ± 1.16	37.30 ± 0.26
STGCNAction	19.78 ± 0.13	31.45 ± 1.90	39.41 ± 0.14
GSTNet	19.17 ± 0.32	30.77 ± 1.35	37.01 ± 0.35
MS-Net	$\textbf{18.60} \pm \textbf{0.06}$	$\textbf{29.37} \pm \textbf{0.46}$	$\textbf{35.62} \pm \textbf{0.12}$

GRU: Gated Recurrent Unit GAT: Graph Attention Network, Velickovic & al. , ICLR 2017 STGCN: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting, Yu & al. IJCAI 2018

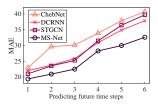
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Experiments: Results on subway dataset Prediction: Next time step





Prediction: Multiple time steps



STGCNAction: Spatial Temporal Graph Conv. Networks for Skeleton-Based Action Recognition, Yan & al., 2018 ChebNet: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, Defferrard & al., 2016 DCRNN: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic_Forecasting, Li & al., 2018

Experiments: Ablation study - Beijing subway

Table: Results of temporal feature fusion

Fusion Metho	d MAE S	ubway Dataset MAPE (%)	Time (mins)
Weighted Sum	20.85 ± 0.05	18.08 ± 0.31	0.07
Average Proposed		$\begin{array}{c} 17.89\pm0.49\\ \textbf{16.97}\pm\textbf{0.30} \end{array}$	0.07 0.08

Table: Results of external factors

External Fast	S	ubway Dataset	
External Facto	MAE	MAPE (%)	Time
			(mins)
w/o factors	20.71 ± 0.04	$\begin{array}{c} 17.95 \pm 0.15 \\ \textbf{16.97} \pm \textbf{0.30} \end{array}$	0.06
with factors	$\textbf{19.44} \pm \textbf{0.14}$	$\textbf{16.97} \pm \textbf{0.30}$	0.08

200

э

< ロ > < 四 > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

- Dilated attention graph convolution operator
- Integration in space, time and exhogenous data fusion
- On going directions
 - Optimal architecture search (in space domain) Meta learning for exhogenous data fusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction

Urban traffic forecasting [T-ITS'2021]

- Introduction
- Problem statement
- Method
- Results

Towards autonomous parking [T-ITS'2019] Motivation Method Results

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Perspectives

Towards autonomous parking A vision based system

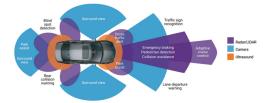
IEEE Trans. on Intelligent Transporation Systems, sept. 2019

Motivation

- Advanced driver assistance systems (ADAS): to reduce the number of fatalities on the road (Pedestrian detection/avoidance, Lane departure warning/correction, Traffic sign recognition, Automatic emergency braking, Blind spot detection)
- Human Horizons (leading Chinese smart mobility and autonomous driving research company) has already Level 4 Autonomous Valet Parking (AVP) system
- Full vision based

https://www.prnewswire.com/news-releases/world-first-level-4-fully-autonomous-vehicle-parking-system-rolled-out-on-human-horizons-hiphi-x-301132815.html

Motivation



LEVELS OF DRIVING AUTOMATION

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

https://www.synopsys.com/automotive/what-is-adas.html, https://www.synopsys.com/automotive/autonomous-driving-levels.html

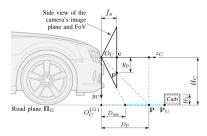
Method

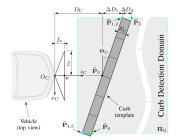
- Objective: detect the curb –vehicle-to-curb distance, curb height, angle
- Fully vision based system (single CDD fisheye camera mouted near the front licence plate)
- Near real time, > 90% accuracy requirement
- Adversarial conditions: rainy/foggy weather, damaged curb
- Perpendicular parking

Youtube video teaser [Video teaser]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Method: Setting and assumptions





$$D_U = f_y \frac{H_c}{y_U} \qquad \frac{h_U}{H_U} = \frac{f_y}{D_U}$$

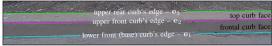
 (f_x, f_y) : cameral focal length H_c : camera-to-road-plane vertical distance (i.e., along y axis) h_U : curb's frontal projection face in the image P_U : point of the curb on the road plane y_U : vertical's coordinate of P_U 's projection in the image D_U : curb's to camera distance H_U : curb's height θ_U : curb's angle E_U : curb's width

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Method: Simple concept

a) curb appearance in image



b) curb's faces and edges

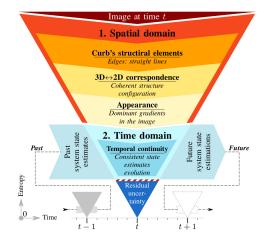
c) 3D curb template's edges and faces

$$\begin{split} \hat{P}_{1} &= [-W_{max}, H_{C}, \hat{D}_{U} + \Delta D_{1}], \\ \hat{P}_{2} &= [-W_{max}, H_{C} - \hat{H}_{U}, \hat{D}_{U} + \Delta D_{1}], \\ \hat{P}_{3} &= [-W_{max}, H_{C} - \hat{H}_{U}, \hat{D}_{U} + \Delta D_{1} + \Delta D_{2}], \end{split}$$

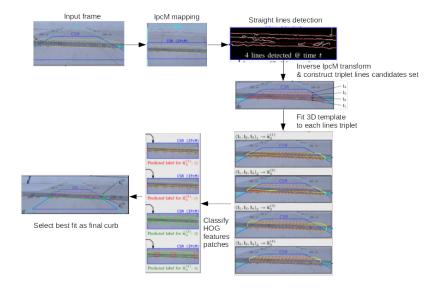
$$\Delta D_1 = W_{max} \tan \hat{\theta}_U, \qquad \Delta D_2 = \frac{\hat{E}_U}{\cos \hat{\theta}_U}$$

$$\begin{split} \hat{P}_4 &= [W_{max}, H_C, \hat{D}_U - \Delta D_1] \\ \hat{P}_5 &= [W_{max}, H_C - \hat{H}_U, \hat{D}_U - \Delta D_1] \\ \hat{P}_6 &= [W_{max}, H_C - \hat{H}_U, \hat{D}_U - \Delta D_1 + \Delta D_2] \end{split}$$

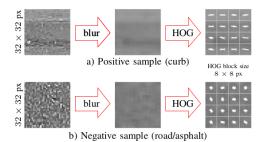
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

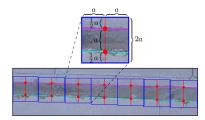


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

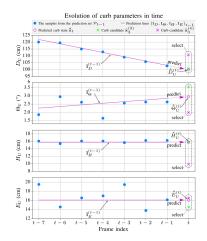




イロト イヨト イヨト イヨト

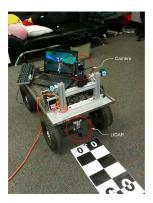
æ

Temporal tracking asssuming small frame to frame displacement:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Experimental results: data



DATASET DETAILS

Vid. seq. #	Curb height (cm)	Curb depth (cm)	Weather conditions	Curb/road physical properties	Frames count [‡]
1	11.1	20.6	Clear	Co./As.*	702/374
2	13.3	20.6	Clear	Co./As.*	665/344
3	10.6	20.6	Clear	Co./As.*	626/378
4	16.2	15.9	Shadow	Co./As.*	519/332
5	14.6	16.4	Shadow	Co./As.*	497/321
6	10.5	20.6	Clear	Co./As.*	580/345
7	10.8	20.3	Shadow	Co./As.*	545/318
8	9.8	21.6	Shadow	Co./As.*	521/341
9	11.4	20.8	Shadow	Pa./St.†	486/291
10	9.8	20.3	Shadow	Pa./St.†	412/308
11	13.7	20.8	Clear	Co./As.*	555/360

* Concrete/Asphalt

† Painted/Strained

[‡] Total number of frames in the sequence/Number of the frames with curb presented in the CCD

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Experimental results videos

[Video 2] [Video 3] [Video 5] [Video 8] [Video 9]

https://www.youtube.com/playlist?list=PLeJQFxWyfCj7v1TNN0OOppD2K08R3Zoib

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Experimental results: quantitative evaluation

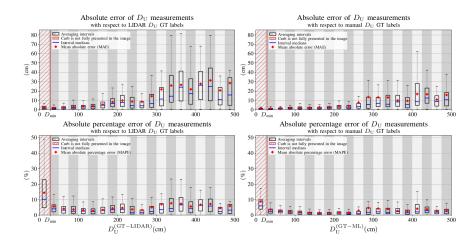
Classification rate

Video sequence #	Accuracy	F ₁ score
1	99.7%	0.997
2	99.1%	0.989
3	93.6%	0.926
4	97.4%	0.986
5	97.4%	0.819
6	83.9%	0.901
7	96.2%	0.974
8	81.7%	0.871
9	90.5%	0.940
10	91.6%	0.956
11	81.7%	0.798
Average:	91.4%	0.923

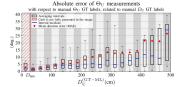
$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$
$$F_{1} = 2 \frac{precision.recall}{precision + recall}$$
$$precision = \frac{TP}{TP + FP}, recall = \frac{TP}{TP + FN}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Experimental results: quantitative evaluation D_u



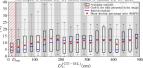
Experimental results: quantitative evaluation Θ_U, E_U



Absolute error of HU measurements with respect to manual H11 GT labels, related to manual D11 GT labels Averaging intervals Darb is not fully presented in the image interval medians Mean absolute error (MAE (cm) (iii 200 Absolute percentage error of H11 measurements with respect to manual H_U GT labels, related to manual D_U GT labels 40 raging intervies b is not fully presented in the image real medians 35 can absolute percentage enter (MAPE) 30 30 8 20 £ 20 0 Dmin 200 300 D_e^(GT-ML)(cm) 100 500

with respect to number E_1 (T) labels, related to number A_2 , GT labels, P_1 P_2 P_2 P_3 P_4 P_4

Absolute error of Eu measurements



Conclusion

Conclusions and perspectives

- Deep learning, a powerful generic *transversal* toolbox agnostic to the application enables cross-modality data processing
- For many applications, in particular for large scale natural phenomena/events modeling, numerical (mathematical) models should be coupled with DL

 Many challenging and open problems in the field of dynamic/time-series event analysis (medical, remote sensing)