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Abstract This paper addresses the segmentation from an
image of entities that have the form of a ‘network’, i.e. the
region in the image corresponding to the entity is composed
of branches joining together at junctions, e.g. road or vas-
cular networks. We present new phase field higher-order
active contour (HOAC) prior models for network regions,
and apply them to the segmentation of road networks from
very high resolution satellite images. This is a hard prob-
lem for two reasons. First, the images are complex, with
much ‘noise’ in the road region due to cars, road mark-
ings, etc., while the background is very varied, contain-
ing many features that are locally similar to roads. Second,
network regions are complex to model, because they may
have arbitrary topology. In particular, we address a limita-
tion of a previous model in which network branch width
was constrained to be similar to maximum network branch
radius of curvature, thereby providing a poor model of net-
works with straight narrow branches or highly curved, wide
branches. We solve this problem by introducing first an ad-
ditional nonlinear nonlocal HOAC term, and then an addi-
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tional linear nonlocal HOAC term to improve the compu-
tational speed. Both terms allow separate control of branch
width and branch curvature, and furnish better prolongation
for the same width, but the linear term has several advan-
tages: it is more efficient, and it is able to model multiple
widths simultaneously. To cope with the difficulty of pa-
rameter selection for these models, we perform a stability
analysis of a long bar with a given width, and hence show
how to choose the parameters of the energy functions. Af-
ter adding a likelihood energy, we use both models to ex-
tract the road network quasi-automatically from pieces of a
QuickBird image, and compare the results to other models
in the literature. The state-of-the-art results obtained demon-
strate the superiority of our new models, the importance of
strong prior knowledge in general, and of the new terms in
particular.

Keywords Active contour · Phase field · Shape prior ·
Parameter analysis · Remote sensing · Road network
extraction

1 Introduction

The need to segment network-like structures from images
arises in a variety of domains. Examples include the seg-
mentation of road and river networks in remote sensing im-
agery, and of vascular networks in medical imagery. Au-
tomatically extracting the network region in the image is
a difficult task, because images are usually complex, con-
taining much noise and confounding elements having sim-
ilar local properties to the entity of interest. For this rea-
son, techniques that include no prior knowledge about the
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region containing the network cannot succeed. In order to
solve this problem, such prior knowledge must be injected
somehow, either through the intervention of a user, or by
incorporating it into a model. Human users possess very
specific prior knowledge about the shape of regions corre-
sponding to networks, and in most applications, this level of
knowledge is necessary rather than merely sufficient. Un-
fortunately, current methods, based on manual extraction,
are time and labour intensive. On the other hand, generic
prior knowledge alone, for example concerning boundary
smoothness, is not enough. The need to include more spe-
cific prior knowledge of a class of shapes raises a difficult
methodological issue, however. The set of network-like re-
gions is complicated to model, because they may have ar-
bitrary topology. More concretely, it consists of a large (in
principle infinite) number of connected components, corre-
sponding to the different possible topologies of a network
(number of connected components in the network, number
of loops in each connected component), or equivalently to
the set of planar graphs (for 2D data). To this is added a geo-
metric superstructure corresponding to an embedding of the
graph in the plane, and to its ‘fattening’ into a region. The
construction of a model that favours regions lying in this set
as opposed to those outside it is a non-trivial problem. This
paper proposes two new models to address this problem, and
applies them to the extraction of road networks from very
high resolution (VHR) satellite imagery.

The incorporation into models of prior knowledge about
a region to be segmented from an image has a long his-
tory. The earliest and still most widely used models in-
corporate local knowledge about the boundary, essentially
smoothness: active contours (Kass et al. 1988) are one exam-
ple, the Ising model (Ising 1925; Geman and Geman 1984)
another. This degree of prior knowledge is almost never
sufficient to segment an entity of interest automatically,
even in relatively simple images. More recent work has fo-
cused on the inclusion of more specific prior knowledge
in active contour models (Chen et al. 2002; Cremers et al.
2002, 2006; Leventon et al. 2000; Riklin-Raviv et al. 2007;
Rousson and Paragios 2007; Srivastava et al. 2003). This
work uses shape priors saying that the region sought must
be ‘close’ to an exemplar region or regions. Although hav-
ing prior information about the expected shape of the object
can significantly increase the robustness of the segmentation
algorithm in many applications, this type of model is not ap-
propriate when the region sought has arbitrary topology.

To model families of regions such as networks, Rochery
et al. (2006) introduced ‘higher-order active contours’
(HOACs). HOACs incorporate not only local, differential
knowledge about the boundary, but also nonlocal, long-
range interactions between tuples of contour points. Via
such interactions, they favour regions with particular geo-
metric characteristics without constraining the topology via

use of a reference region. For example, the model used in
Rochery et al. (2006), which uses pairwise interactions,
favours, for certain ranges of parameter values, network-like
regions composed of branches with roughly parallel borders
and a constant width that meet at junctions.

The HOAC energy developed in Rochery et al. (2006)
suffers from a limitation, however. This is that the interac-
tions between points on the same side of a network branch
have the same range and strength as the interactions between
points on opposite sides. The effect is that typical maximum
curvature κ and branch width W will be related approxi-
mately by κ ∼ 1/W . This is particularly serious for certain
types of networks, e.g. road networks in cities, for which
κ � 1/W , and prevents successful extraction.

In this paper, we first construct a new nonlinear nonlocal
HOAC prior energy for modelling networks that overcomes
this limitation, allowing separate control of branch straight-
ness and width. To optimize computational efficiency, we
then propose another new linear nonlocal HOAC prior en-
ergy which achieves a similar effect. Moreover, the latter
linear energy permits a broader range of widths to be mod-
elled simultaneously, and can even model two disjoint width
ranges. We test both models by applying each of them to
the problem of road network extraction from VHR images
of Beijing. This is an extremely challenging problem due to
the amount of ‘noise’ in the road regions (cars, road mark-
ings, shadows, . . .) and the degree of variation and detail in
the non-road regions. Nevertheless, our new energies permit
a quasi-automatic extraction of the road network.

To avoid the complications of expressing regions with
arbitrary topology in terms of boundaries and the com-
plexity of the implementation of HOAC terms using stan-
dard level-set methods, Rochery et al. (2005) reformulated
HOAC models as equivalent nonlocal phase field models.
Phase fields possess many advantages over more traditional
methods for region representation and modelling, even in
the non-HOAC case, but are particularly advantageous for
HOAC energies. It is often convenient to formulate an ac-
tive contour model in terms of the parametric curve, and
then reformulate it as a phase field model for implementa-
tion. In this paper, we follow this procedure by considering
each new prior energy using first a parametric contour rep-
resentation, and then a phase field representation.

For the last few decades, road detection from remotely
sensed imagery has been extensively studied, due to the va-
riety and importance of the potential applications of an au-
tomatic extraction method. A great number of approaches
have been proposed (Mena 2003). Early work, such as that
by Merlet and Zerubia (1996) and Geman and Jedynak
(1996), used path-finding methods suitable for low resolu-
tion images, but could only find networks of restricted topol-
ogy. Péteri and Ranchin (2003) took advantage of a topolog-
ically correct graph of the network in order to extract roads
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and junctions using two different types of active contours.
Lacoste et al. (2005) used marked point processes to model
road networks, but the models were appropriate for medium
resolution images; the method has not been applied to VHR
images. Amo et al. (2006) proposed a region competition
based method for providing large-scale GIS information.
Hu et al. (2007) detected roads based on shape classifica-
tion, and then pruned a road tree using a Bayesian decision
process. Bertozzi et al. (2007) modified the Cahn-Hilliard
equation to achieve fast inpainting of binary imagery. Do-
brosotskaya and Bertozzi (2008) developed an extension of
this model. Both of them can be used for interpolating sim-
ple roads. However, all these methods are restricted to appli-
cations on semi-urban areas and using aerial or SAR images.
They are not robust enough to be applied to dense urban ar-
eas and optical images.

The paper is organized as follows: Sect. 2 recalls HOAC
energies and the phase field framework. In Sect. 3, we intro-
duce two new nonlocal HOAC energies. In Sect. 4, we cal-
culate the conditions for which each new total prior model
allows stable bars. In Sect. 5, we define the overall model,
including a data term. The application of our models to road
extraction from VHR images is illustrated in Sect. 6. We
conclude in Sect. 7.

2 Higher-Order Active Contours and Phase Fields

Rochery et al. (2006) proposed a Euclidean-invariant HOAC
prior energy for modelling network regions:

EC(R)

= λCL(∂R) + αCA(R)

− βC

2

∫∫
(∂R)2

dt dt ′ γ̇ (t) · γ̇ (t ′) �

( |	γ (t, t ′)|
d

)
, (1)

where ∂R is the boundary of region R; γ : S1 → 
 is a map
representing ∂R, parameterized by t ; 
 ⊂ R

2 is the image
domain; dots represent differentiation with respect to t ; L is
boundary length; A is region area; 	γ (t, t ′) = γ (t)− γ (t ′);
and d is a constant that controls the range of the interaction.
The long range interaction between t and t ′ is modulated by
� , the interaction function:

�(x) =
{

1
2

(
2 − |x| + 1

π
sin(π |x|)

)
if |x| < 2,

0 else.
(2)

It is a smoothly decreasing function from 1 at x = 0 to 0
for x ≥ 2. In (1), L(∂R) acts as a regularizer and encour-
ages smoothness of the boundary, while A(R) controls the
expansion of the region. The quadratic HOAC term has two

effects: it controls the curvature of network branches by try-
ing to align tangent vectors, and it controls branch width by
creating a repulsive force.

For many reasons (Rochery et al. 2005), the phase field
framework provides a more convenient framework for re-
gion modelling than do contours. A ‘phase field’ is a func-
tion φ : 
 → R, which defines a region R ∈ 
 via a thresh-
old z: R = ζz(φ) = {x ∈ 
 : φ(x) > z}. The basic phase field
energy term E0 is

E0(φ) =
∫




dx

{
1

2
∇φ(x) · ∇φ(x) + U(φ(x))

}
. (3)

The ‘potential’ U is given by

U(y) = λ

(
1

4
y4 − 1

2
y2

)
+ α

(
y − 1

3
y3

)
, (4)

where λ and α are constants. For λ � α > 0, U has two
minima, at y = −1 and y = 1, and a maximum at y = α/λ.
Define φR = arg minφ: ζz(φ)=R E0(φ). If we ignore the gra-
dient term in (3), and set z = α/λ, we clearly find that
φR(x) = 1 for x ∈ R and φR(x) = −1 for x ∈ R̄ = 
 \ R.
Adding the gradient term results in a smooth transition from
1 to −1 over an interface region RC around the boundary
∂R. Note that to a very good approximation ∇φ is non-zero
only in RC . It has been shown in Rochery et al. (2005) that
E0(φR) 
 λCL(∂R) + αCA(R), i.e. E0 corresponds to the
two linear terms in EC .

The third, i.e. the HOAC term in EC , can also be re-
formulated in terms of an equivalent phase field energy
(Rochery et al. 2005). It becomes

ES(φ) = −β

2

∫∫

2

dx dx′ ∇φ(x) · ∇φ(x′) �

( |x − x′|
d

)
.

(5)

The sum E0 + ES is then equivalent to EC in (1).
As explained briefly in Sect. 1, EC (or equivalently

E0 +ES ) suffers from a significant limitation when it comes
to modelling networks. Apart from a sign change, the inter-
action between two points on the same side of a network
branch (γ̇ (t) · γ̇ (t ′) > 0) has the same strength and range
as the interaction between two points on opposite sides of
a network branch (γ̇ (t) · γ̇ (t ′) < 0). The effect is that for a
stable network branch, a typical curvature of a branch κ is
connected to the width of that branch W approximately by
κ ∼ 1/W . In other words, the length/range along which the
network branch is expected to be straight is the same as the
width of the branch itself. The standard HOAC prior energy
EC (or its phase field counterpart E0 +ES ) thereby provides
a poor model of networks with straight narrow branches or
highly curved, wide branches. In our application of road ex-
traction in cities, road width gives only an (approximate) up-
per bound on the radius of curvature of the road: most roads
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are much straighter than they are wide. For narrow roads,
this is particularly problematic, since the road region is rel-
atively unconstrained due to the small road width.

3 Modelling Networks

To solve these problems, we need to be able to model longer-
range or stronger interactions along the road, without chang-
ing the interactions across the road. This means that we have
to separate the two interaction functions, and hence allow
separate control of branch straightness and width, thereby
allowing more sophisticated prior knowledge to be included.
To achieve this goal, we will construct new nonlocal HOAC
prior energies that act in a complementary way to the stan-
dard HOAC term. The first new energy term is a nonlinear,
nonlocal HOAC energy ENL, which increases the magni-
tude of the interaction along one side of a network branch.
The second is a linear, nonlocal HOAC energy EL, which
provides a longer-range interaction along one side of a net-
work branch. Through the stability analysis of this model,
we further demonstrate that the linear nonlocal term per-
mits the modelling of two widths simultaneously. These
new models have been previously introduced in Peng et al.
(2008a, 2008b). Here we present and analyse them in more
detail.

3.1 Nonlinear Nonlocal HOAC Term

In order to separate the two interactions, the interaction
function must depend on the tangent/normal vectors at the
pairs of points that are its argument. Although the length
scale in the interaction function of (1), d , could be made
to depend on the inner product between the tangent/normal
vectors at the two pixels, it would lead to complicated func-
tional derivatives. Alternatively, we prefer to perform a lin-
ear interpolation between two interaction functions. In the
contour formulation, our new HOAC prior energy EHO

takes the form:

EHO(γ ) = −
∫∫

S1×S1
ds ds′

{
f+‖(γ̇ (s) · γ̇ (s′)) �+‖

− f−‖(γ̇ (s) · γ̇ (s′)) �−‖
}
, (6)

where γ : S1 → 
, is an arc length parameterization of the
region boundary ∂R; γ̇ (s) is the tangent vector to the bound-
ary at s (thus γ̇ (s) · γ̇ (s′) ∈ [−1,1]); ‘+ ‖’ denotes paral-
lel vectors and ‘− ‖’ denotes antiparallel vectors. We define
f+‖(x), f−‖(x) : [−1,1] → [0,1] by:

f+‖(x) = (1 + x)/2, (7a)

f−‖(x) = (1 − x)/2. (7b)

�+‖ and �−‖ are interaction functions similar to that in (2),
but have different range or magnitude. They compete with
each other: when γ̇ (s) · γ̇ (s′) ∈ [0,1], i.e. the two inter-
acting tangent vectors are more parallel, �+‖ is dominant;
while when γ̇ (s) · γ̇ (s′) ∈ [−1,0], i.e. the two interact-
ing tangent vectors are more antiparallel, �−‖ is dominant.
Here we decide to adjust only the magnitude of the interac-
tion (although this effectively changes its range also). Thus,
we assume that the magnitude of the interaction of paral-
lel vectors is stronger than that of antiparallel vectors, i.e.
�+‖ = a�−‖, where a > 1, is a constant. Then, (6) becomes

EHO(γ ) = −1

2

∫∫
S1×S1

ds ds′ [(a − 1)

+ (a + 1)
(
γ̇ (s) · γ̇ (s′)

)]
�−‖. (8)

In order to implement EHO(γ ) in the phase field frame-
work, it needs to be reformulated as a function of the phase
field φ, instead of the arc length parameterization γ used
in (8). Since the constant length of γ̇ (s) corresponds to
the fixed change in φ across the interface, we replace tan-
gent vectors by normal vectors, and then normal vectors
by ∇φ. Subsequently, the range of interactions is extended
from the region boundary ∂R to the whole of the image do-
main 
. Due to the fact that ∇φ(x) is approximately equal
to zero everywhere outside the narrow interface RC in 
,
the boundary indicator function

S(φ) = (∇φ(x) · ∇φ(x)
)(∇φ(x′) · ∇φ(x′)

)



{

1 ∀x, x′ ∈ RC,

0 otherwise,
(9)

is inserted into the first term of (8). Thus we have

EHO(φ) = −1

2

∫∫

2

dx dx′ [(a − 1)S(φ)

+ (a + 1)
(∇φ(x) · ∇φ(x′)

)]
�

( |x − x′|
d

)
.

(10)

When a = 1, this reduces to the standard phase field HOAC
term ES (up to a factor of β/2). Therefore, we define our
new additional energy term ENL by

ENL(φ) = −β2

4

∫∫

2

dx dx′ (∇φ(x) · ∇φ(x)
)

× (∇φ(x′) · ∇φ(x′)
)
�

( |x − x′|
d

)
, (11)

where β2 > 0 is a constant. (Note that d is the same as that in
ES .) Thus in this case, we have a term that is quartic in ∇φ.
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Fig. 1 The effects of EL in (14) (blue arrow: vector; cyan arrow:
interaction force; black dot: interacting point). (a) When two tan-
gent vectors are nearly aligned or anti-aligned with 	γ , the energy
EL favours their alignment; (b) when at least one of the two tangent

vectors is nearly orthogonal to 	γ , there is only a very small force
between the two points, but contributions from many points can add
up to a significant repulsion, as denoted by F

The functional derivative of ENL is

δENL(φ)

δφ(x)

= β2

∫



dx′
{
∇2φ(x) �

( |x − x′|
d

)(∇φ(x′) · ∇φ(x′)
)

+ (∇φ(x′) · ∇φ(x′)
)(∇φ(x) · ∇�

( |x − x′|
d

))}
.

(12)

Since this functional derivative of ENL contains a term non-
linear in ∇φ, due to S(φ) being O(φ4), we refer to it as the
nonlinear nonlocal term.

Whether the two tangent/normal vectors at a pair of inter-
acting points are parallel or antiparallel, the effect of ENL is
always to encourage two points inside the range of the in-
teraction to attract each other. Thus ENL weakens the repul-
sive effect of ES between opposite sides, so that ES along
a network branch can be strengthened without changing the
width. Consequently, the interaction between pairs of points
on the same side of a network branch is stronger than that be-
tween pairs of points on opposite sides of a network branch.

3.2 Linear Nonlocal HOAC Term

In the previous subsection, we proposed a nonlinear nonlo-
cal HOAC prior term ENL to overcome the limitation of the
standard HOAC prior term. The term ENL reinforces the
interaction along the bar branch and weakens the interac-
tion across the bar branch, but both interactions still depend
on the same interaction function, hence the effects in these
two directions cannot be tuned in a completely independent
way. In this section, as an alternative to ENL, we construct
a new, Euclidean invariant linear nonlocal HOAC prior term
EL that works in rather a different way.

As we have seen in (1), one general class of quadratic
HOAC terms can be written as

EHO(γ ) = −
∫∫

(∂R)2
dt dt ′ γ̇ (t) · GC(γ (t), γ (t ′)) · γ̇ (t ′),

(13)

where GC is a map from 
2 to 2 × 2 matrices. Impos-
ing Euclidean invariance on this term leads to several pos-
sibilities. One is GC(γ (t), γ (t ′)) = �(|	γ |/d) δ, where
δ is the unit matrix, and 	γ = γ (t) − γ (t ′). Another is
GC(γ (t), γ (t ′)) = �(|	γ |/d) 	γ	γ T . The former leads
to the standard HOAC term in EC (1). The latter leads to
our new linear nonlocal HOAC prior energy, EL:

EL(γ ) = −
∫∫

(∂R)2
dt dt ′

{(
γ̇ (t) · 	γ (t, t ′)

)

× (
γ̇ (t ′) · 	γ (t, t ′)

)
�

( |	γ (t, t ′)|
d2

)}
, (14)

where we use the same � (2) as in EC , but with a different
range d2.

EL compares each tangent vector to the vector 	γ (t, t ′)
joining the two interacting points. When two points have
tangent vectors that are both nearly aligned or anti-aligned
with 	γ , the product of the dot products is positive. The en-
ergy EL can decrease further by further aligning these tan-
gent vectors with 	γ and hence with each other. This situ-
ation corresponds to two points on the same side of a net-
work branch, as shown in Fig. 1(a). The energy thus favours
straight lines, within a range controlled by d2. On the other
hand, when at least one of the two tangent vectors is nearly
orthogonal to 	γ , the product of the dot products is small.
In this configuration, changing the distance between the two
points in the argument to � does not change the energy
much, and thus the force between two such points is small.
This situation corresponds to two points on opposite sides
of a network branch, as shown in Fig. 1(b).
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As a result, when EL is added to EC , the width of the
network branches is controlled largely by the parameter d of
EC , while the distance over which the branch will be straight
is controlled largely by d2, if d2 > d . For thin, straight bars,
we will indeed fix d2 > d . The exception to this rule is again
shown in Fig. 1(b). From the above, γ (t ′) exerts no force on
γ (t), but for both γL(t ′) and γR(t ′), the product of the dot
products is negative. The energy EL can decrease when the
value of � becomes less positive, i.e. both γL(t ′) and γR(t ′)
repel γ (t), as shown by the force arrows FL and FR in the
figure. The tangential parts of FL and FR cancel, and there
is an overall normal repulsion F . If the weight of EL in the
model is too large, this repulsion may begin to dominate the
bar width.

Making the following change of variables in the linear
nonlocal HOAC term EL in (14):

γ̇ (t) = (cos θ, sin θ), γ̇ (t ′) = (cos θ ′, sin θ ′),

	γ (t, t ′) = |	γ (t, t ′)|(cosη, sinη),

EL can be rewritten (up to a multiplicative factor) as

EL(γ ) = −
∫∫

(∂R)2
dt dt ′ |	γ (t, t ′)|2(cos(θ̄ − θ̄ ′)

+ cos
(
θ̄ + θ̄ ′)) �

( |	γ (t, t ′)|
d2

)
, (15)

where θ̄ = θ − η and θ̄ ′ = θ ′ − η are the angles made by
γ̇ and γ̇ ′ with 	γ . Thus EL is a function not only of
θ̄ − θ̄ ′, like the standard HOAC quadratic term in (1), but
also of θ̄ + θ̄ ′. We will continue to use the form of EL given
in (14), however, as this is more convenient for analysis and
implementation.

We now reformulate EL(γ ) in the phase field framework.
We rotate tangent vectors to normal vectors, and replace the
latter by ∇φ. Since ∇φ is very small outside RC , the do-
mains of integration can be extended from ∂R to 
 without
significantly changing the energy, except for a multiplicative
factor. By introducing a weight parameter β3, we define the
linear nonlocal HOAC phase field term EL(φ) as

EL(φ) = −β3

2

∫∫

2

dx dx′ (∇φ(x) × (x − x′)
)

× (∇φ(x′) × (x − x′)
)
�

( |x − x′|
d2

)
, (16)

where × is the 2D vectorial antisymmetric product. The
functional derivative of EL is

δEL(φ)

δφ(x)
= β3

∫



dx′ ∇ · (ε(x − x′)(x − x′)T εT
)

· ∇φ(x′) �

( |x − x′|
d2

)
, (17)

Fig. 2 A bar of length L → ∞ and width W

where ε rotates the tangent vectors to the inward normal vec-
tors. Since this functional derivative is linear in φ, we call
EL the linear nonlocal term.

4 Stability Analysis

We now add the new nonlinear term ENL or the new linear
term to the standard model E0 + ES . The sum of the three
energies EP,NL = E0 +ES +ENL constitutes the nonlinear
nonlocal HOAC total prior model and EP,L = E0 +ES +EL

constitutes the linear nonlocal HOAC total prior model. For
both models, there are a number of parameters to tune,
(α,λ,β,β2, d) for the former and (α,λ,β,β3, d, d2) for the
latter. Unfortunately, not all parameter values allow stable
network structures. The behaviour of the prior energy de-
pends on the parameter settings, and can vary significantly.
If we wish to model networks with this energy, it is therefore
very important to analyse the stability of a network structure
and to deduce the resulting constraints on the parameters.

By considering the total prior energy of a long, straight
bar of a given width, we establish constraints on the para-
meters that ensure that a long network branch of the de-
sired width is a stable configuration of the energy functional.
An important side-effect is that some of the (rather ab-
stract) model parameters are effectively replaced by ‘phys-
ical’ quantities, such as bar and interface width, which we
can reasonably fix from numerical or application considera-
tions. Note that, in addition, to guarantee the Turing stability
of the model, Rochery et al. (2005) introduced another con-
straint, which we will not detail here.

4.1 Definition of a Bar

Since network branches are locally like straight bars, we
can, to a good approximation, analyse the stability of a long
straight bar, of length L and width W � L → ∞. This al-
lows us to ignore boundary effects. Denote the width of the
interface by w. Such a bar is shown in Fig. 2.

Ideally, we should minimize the prior energy under the
constraint that ζz(φ) = Rbar (where Rbar denotes the bar re-
gion), and then expand around that point to test stability, but
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this is very difficult. Instead, we take a simple ansatz for
φRbar, and study its stability in a low-dimensional subspace
of function space; the results may be justified a posteriori by
numerical experiments. In Rochery et al. (2005), a similar
procedure was followed, the results comparing favourably
to those obtained by more sophisticated ‘matched asymp-
totics’. The ansatz is defined as follows. The phase field
is given by φ(x) = 1 for x ∈ R \ RC ; φ(x) = −1 for x ∈
R̄ \ RC , while in RC , φ changes linearly from 1 to −1.

Now we evaluate both prior energies on this ansatz, per
unit length of bar. The constraint that the network branch is a
local energy extremum requires the first derivatives with re-
spect to w and W to be zero, while the constraint that it is a
local minimum requires that the second derivatives must be
positive semi-definite. These requirements provide the sta-
bility conditions of the model.

4.2 Nonlinear Nonlocal HOAC Term

We evaluate the energy EP,NL on the ansatz, per unit length
of bar, which is denoted by eP,NL. Up to an additive con-
stant, it is given by

eP,NL(w, Ŵ ) = 4

3
αŴd + 4

15
λw + 4

w
− 16β2d

w2

+ 4d

(
β − 2β2

w2

)∫ 2

Ŵ

dη

√
η2 − Ŵ 2

× (
1 − cos(πη)

)
, (18)

where the scaled width Ŵ = W/d . Its first derivatives are
set to zero:

∂eP,NL

∂Ŵ
= 4

3
αd − 4Ŵd

(
β − 2β2

w2

)

×
∫ 2

Ŵ

dη
1√

η2 − Ŵ 2

(
1 − cos(πη)

) = 0,

(19a)

∂eP,NL

∂w
= 4

15
λ − 4

w2
+ 16β2d

w3

×
∫ 2

Ŵ

dη
1√

η2 − Ŵ 2

(
1 − cos(πη)

) = 0. (19b)

This is a complicated system of two-variable equations.
To simplify the problem, we fix arbitrarily the value of w

beforehand (w = 2 ∼ 4), and then solve (19a) to get a sub-
optimal solution of Ŵ . In this way, there is no need to cal-
culate the second derivative of eP,NL with respect to w, but
we still need to ensure that the second derivative of eP,NL

with respect to Ŵ is non-negative. It is given by

∂2eP,NL

∂Ŵ 2

= 4d

(
β − 2β2

w2

)∫ 2

Ŵ

dη
1 + π2(η2 − Ŵ 2)√

η2 − Ŵ 2
cos(πη)

− 4d

(
β − 2β2

w2

)
ln

(
2 +

√
4 − Ŵ 2

Ŵ

)
≥ 0. (20)

The above analysis shows that stability of the nonlinear
nonlocal HOAC total prior model is related to the scaled
control parameters β̂ = β/α and β̂2 = β2/α, and to the
scaled width Ŵ = W/d . Therefore, we obtain the parameter
constraints:

β̂ − 2β̂2

w2
= 1

3ŴI1(Ŵ )
, (21a)

I2(Ŵ ) ≥ ln

(
2 +

√
4 − Ŵ 2

Ŵ

)
, (21b)

where

I1(Ŵ ) =
∫ 2

Ŵ

dη
1√

η2 − Ŵ 2

(
1 − cos(πη)

)
, (22a)

I2(Ŵ ) =
∫ 2

Ŵ

dη
1 + π2(η2 − Ŵ 2)√

η2 − Ŵ 2
cos(πη). (22b)

Now we can draw the diagram of the relationship be-
tween β̂ , β̂2, and Ŵ , which takes the form of a 3D sur-
face. When w is set to 2, an example of such a surface is
illustrated in Fig. 3. The left-hand part of the surface rep-
resents the extremum as a local maximum, i.e. the second
derivative is negative (this is an unstable configuration); the
right-hand part of the surface represents the extremum as a
local minimum, i.e. the second derivative is positive; and the
borderline between these two surfaces, where Ŵ = 0.8798,
indicates the situation when two extrema of eP,NL become
an inflection point (i.e. ∂eP,NL/∂Ŵ = 0 and ∂2eP,NL/

∂Ŵ 2 = 0). Clearly, once Ŵ is given, β̂ and β̂2 have to be
chosen in the right-hand part of this surface. For each given
width Ŵ , there is a curve that indicates all the possible pairs
of scaled parameters β̂ and β̂2. Note that, due to the scaling
of β̂ and β̂2, the dependence on α has been eliminated.

4.3 Linear Nonlocal HOAC Term

Similarly, the linear nonlocal HOAC total prior energy per
unit length of bar, eP,L, is

eP,L(w, Ŵ )

= 4

3
αŴd + 4

15
λw + 4

w
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Fig. 3 Diagram of the scaled control parameters β̂ and β̂2, and the
scaled width Ŵ , when w = 2. The left part of the surface represents the
parameter space for which eP,NL has one local maximum; in the right
part of the surface, eP,NL has one local minimum; and the borderline
between them, where Ŵ = 0.8798, represents the situation when two
extrema become an inflection point

+ 4βd

∫ 2

Ŵ

dη

√
η2 − Ŵ 2

(
1 − cos(πη)

)

+ 4β3d
3
∫ 2d̂2

Ŵ

dη η

√
η2 − Ŵ 2

×
(

2 − η

d̂2
+ 1

π
sin

(
πη

d̂2

))
. (23)

As for eP,NL, we find the minimum of eP,L by setting
its first derivatives, with respect to w and Ŵ , to zero, while
ensuring that its second derivative, with respect to Ŵ , is non-
negative. For the derivatives, we find

∂eP,L

∂Ŵ
= 4

3
αd − 4βŴd

∫ 2

Ŵ

dη
1√

η2 − Ŵ 2

(
1 − cos(πη)

)

− 4β3Ŵd3

d̂2

∫ 2d̂2

Ŵ

dη

√
η2 − Ŵ 2

(
1 − cos

(
πη

d̂2

))
,

(24a)

∂eP,L

∂w
= 4

15
λ − 4

w2
, (24b)

∂2eP,L

∂Ŵ 2
= −4βd ln

(
2 +

√
4 − Ŵ 2

Ŵ

)

+ 4βd

∫ 2

Ŵ

dη
1 + π2(η2 − Ŵ 2)√

η2 − Ŵ 2
cos(πη)

− 4β3d
3

d̂2

∫ 2d̂2

Ŵ

dη
η2 − 2Ŵ 2√
η2 − Ŵ 2

×
(

1 − cos

(
πη

d̂2

))
. (24c)

It follows that stability is related to the three scaled con-
trol parameters β̂ = β/α, β̂3 = β3d

2/α and d̂2 = d2/d , and
also to the scaled width Ŵ = W/d . The parameter con-
straints are then as follows:

1 − 3β̂Ŵ I1(Ŵ ) − 3β̂3Ŵ

d̂2
I3(Ŵ ) = 0, (25a)

β̂I2(Ŵ ) − β̂3

d̂2
I4(Ŵ ) ≥ β̂ ln

(
2 +

√
4 − Ŵ 2

Ŵ

)
, (25b)

λ = 15

w2
, (25c)

where I1(Ŵ ) and I2(Ŵ ) have been defined in (22); and
I3(Ŵ ) and I4(Ŵ ) take the form:

I3(Ŵ ) =
∫ 2d̂2

Ŵ

dη

√
η2 − Ŵ 2

(
1 − cos

(
πη

d̂2

))
, (26a)

I4(Ŵ ) =
∫ 2d̂2

Ŵ

dη
η2 − 2Ŵ 2√
η2 − Ŵ 2

(
1 − cos

(
πη

d̂2

))
. (26b)

For w, the constraint is trivial, leading to λ = 15/w2. The
stable width Ŵ , i.e. the value of Ŵ where a local minimum
of eP,L is found, depends on the parameters β̂ , β̂3 and d̂2.
The term ŴI1(Ŵ ) in (25a) is a simple curve with one max-
imum inside the interval [0,2), so when β̂3 = 0, for a given
β̂ , the number of solutions of this equation is at most two:
one corresponds to the local minimum of the energy, the
other the local maximum. The additional term ŴI3(Ŵ )/d̂2

is also a simple curve with one maximum but in the interval
[0,2d̂2). As a result, when d̂2 is small, the two curves are
mostly overlapped, and (25a) possesses the same properties
as when β̂3 = 0: the number of possible solutions is zero or
two; while when d̂2 is large enough so that one curve has
non-zero values inside a longer interval than the other, the
first constraint changes significantly: the number of possible
solutions satisfying ∂EP,L/∂Ŵ = 0, is zero, two, or four.

Consequently, there is a singular point of d̂2, where the
maximum number of solutions jumps from two to four, and
accordingly the stable width(s) that the prior energy can
model jump(s) from one to two. However, since (25a) in-
volves complicated integrals and the piecewise interaction
function, it is non-trivial to obtain analytically the number
of its solutions. Therefore, we carry out numerical experi-
ments to find an approximate value for this singular point.
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Fig. 4 d̂2 = 2 < D̂2. (a) Different regions in the β̂3 − β̂ plane. eP,L has either no local minimum (red) or one local minimum (green). (b) The
associated stable bar width Ŵ∗. (c) eP,L with no local minimum (β̂ = 0.05, β̂3 = 0.04). (d) eP,L with one local minimum (β̂ = 0.2, β̂3 = 0.1)

We find that such a singular point of d̂2 (named D̂2) indeed
exists, with D̂2 
 2.7. If d̂2 is less than D̂2, at most one lo-
cal minimum can be found. If d̂2 > D̂2, there are three cases,
depending on the values of β̂ , β̂3 and d̂2: eP,L has no local
minimum; eP,L has one local minimum, with either Ŵ 
 1
(i.e. W 
 d) or Ŵ 
 d̂2 (i.e. W 
 d2); or eP,L has two local
minima, at Ŵ 
 1 and Ŵ 
 d̂2.

The two regimes are illustrated in Figs. 4 and 5. For both
regimes, the associated stable bar width, as well as the pos-
sible behaviours of the energy, are shown in the same figure.
Figure 4 gives an example for d̂2 = 2 < D̂2. In the β̂3 − β̂

plane, the red region and the green region correspond to
the situations when eP,L has no local minimum, and one
local minimum respectively. The sole separation curve be-
tween the two regions corresponds to the situation when the
two extrema of eP,L become an inflection point. This curve
demonstrates a qualitative change in the behaviour of eP,L.

The case for d̂2 > D̂2 (here d̂2 = 5.5) is shown in Fig. 5.
To make things clearer, we label the three curves by num-
bers; and we name the widths where the two possible lo-
cal minima are found ŴMIN1 and ŴMIN2 , and the widths
where the two possible local maxima are found ŴMAX1 and
ŴMAX2 , by the ascending order of their values, so ŴMAX1 ≤
ŴMIN1 ≤ ŴMAX2 ≤ ŴMIN2 . (In the case of equality, the ex-
trema of the energy merge as one or more inflection points.)
We examine the situation at each curve and at each intersec-
tion point between two curves:

– Curve 1: ŴMAX1 and ŴMIN1 merge together and become
an inflection point. See Fig. 6(c).

– Curve 2: ŴMAX2 and ŴMIN2 merge together and become
an inflection point. See Fig. 6(e).

– Curve 3: ŴMIN1 and ŴMAX2 merge together and become
an inflection point. See Fig. 6(g).
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Fig. 5 d̂2 = 5.5 > D̂2. (a) Different regions in the β̂3–β̂ plane. eP,L

has either no local minimum (red), one local minimum (green), or
two local minima (white). (b) The associated stable bar width(s) Ŵ∗.

(c) eP,L with no local minimum (β̂ = 0.1, β̂3 = 0.01). (d) eP,L with
one local minimum (β̂ = 0.05, β̂3 = 0.015). (e) eP,L with two local
minima (β̂ = 0.2, β̂3 = 0.013)

Fig. 6 Evolution of eP,L as the parameter setting is moved from left to right along the dotted path P shown in Fig. 5 (d̂2 = 5.5). Red dot: local
minimum
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– Intersection point between curve 1 and curve 2: ŴMAX1

merges with ŴMIN1 and also ŴMAX2 merges with ŴMIN2 .
Four extrema of the energy merge as two inflection points.
See Fig. 7(a).

– Corner point between curve 1 and curve 3: ŴMAX1 ,
ŴMIN1 and ŴMAX2 merge together. The energy has a very
wide maximum (the inflection point of the three extrema)
and a local minimum. See Fig. 7(b).

– Corner point between curve 2 and curve 3: the point actu-
ally goes off to infinity, which arises from the finite range
of the interaction function � . It corresponds to the situa-
tion where ŴMIN1 , ŴMAX2 and ŴMIN2 merge together.
The energy should have a local maximum and a very
wide local minimum (the inflection point of the three ex-
trema). This is exactly what we need for modelling net-
work branches with widely varying widths. We cannot re-
ally use this ‘critical point’ with the current interaction
function, but the possibility of changing the interaction
function in order to benefit from this behaviour is cer-
tainly a point for future study.

Thus, each curve is a set of points where two extrema of
the energy merge as an inflection point, and where a quali-
tative change in behaviour happens; each intersection point
combines the properties of the intersecting curves.

Let us see how the local minimum/minima of the energy
eP,L evolve(s) through the three different states, i.e. no lo-
cal minimum, one local minimum and two local minima, if
the parameter setting is moved from left to right along the
dotted path P shown in Fig. 5. The sequence of energies
eP,L is plotted in Fig. 6. The state starts with no local min-
imum (Figs. 6(a)–6(b)). When the path P meets curve 1, a
first local minimum appears, and the state jumps from no
local minimum to one local minimum. Initially, the first lo-
cal minimum is an inflection point (Fig. 6(c)). The first local
minimum gradually becomes deeper, but the state stays in
one local minimum (Fig. 6(d)). Eventually, when the path
P meets curve 2, a second local minimum, i.e. an inflection
point, appears (Fig. 6(e)), and the state jumps from one local
minimum to two local minima (Fig. 6(f)). When the para-
meter setting continues to the right and meets curve 3, the
first local minimum and the second local maximum merge
together, and become an inflection point (Fig. 6(g)). In the
end, the first local minimum disappears, and the state jumps
back to one local minimum again (Fig. 6(h)). The red dots
in Fig. 6 denote the local minima. They are shown in Fig. 5.

The parameters governing energy stability constitute an
M-dimensional parameter space C; the width of the bar is a
1-dimensional state space X; and the energy eP is a smooth
function on X parameterized by C. In the linear nonlocal
HOAC prior model, the dimension M of the parameter space
is 3 (there are three parameters β̂ , β̂3 and d̂2 in space C), and
so the possible stable states of the 1-dimensional state space
should form a swallowtail catastrophe (Thom 1975). The

Fig. 7 Graphs of eP,L when the parameter setting is chosen in the two
intersection points of curves shown in Fig. 5 (d̂2 = 5.5). Red dot: local
minimum

numerical study illustrated by the diagrams in Figs. 4 and 5
confirms this statement.

The variety of possible behaviours is important for ap-
plications. As well as being able to model networks with
branches of more or less fixed width, but with greater ‘stiff-
ness’ than provided by the model in Rochery et al. (2006),
the new linear energy can model two widths at the same
time. At certain ‘critical points’ in parameter space, essen-
tially where pairs of minima merge, it can also potentially
model a large range of widths.

5 Overall Model for Linear Network Extraction

In addition to the prior energy EP (EP,NL or EP,L), we also
need a likelihood energy term linking the region R (which in
our case corresponds to the road network) to the data, in our
case a VHR optical satellite image. In this section, we will
introduce this term, ED , and specify some implementation
details.

5.1 Overall Energy

The overall energy is the sum of the prior energy EP and the
likelihood energy ED :

E(φ; I ) = ED(I,φ) + θEP (φ), (27)

where I : 
 → R is the image, and θ ∈ R
+ is a constant that

balances the contributions of the two terms. ED is given by

ED(I,φ) = −
∫




dx
{
φ+(x) lnP+(I (x))

+ φ−(x) lnP−(I (x))
}
. (28)

P±(I ) are models of the histograms of the image intensity,
inside (+) and outside (−) the road region. They are both
mixtures of Gaussians whose parameters are learned a pri-
ori, in a supervised way. The quantities φ± = (1 ± φ)/2
are, by construction, approximately equal to the character-
istic functions of R and R̄. The likelihood energy is quite
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Fig. 8 Data, and experiment at 1/4 resolution. (a) Image data (size = 350 × 350, road width = 3 ∼ 5 pixels). (b)–(d) Results obtained using the
new nonlinear model (with ENL) at iterations 1, 1,500 and 27,000

weak, in the sense that maximum likelihood classification
produces very poor results (see Figs. 9(b) and 11(d)), mainly
due to the ‘noise’ in the road region and the great variations
in the background. No image model that only takes into ac-
count the radiometry of independent pixels can do much bet-
ter than this, which is why a powerful geometric prior model
is needed.

5.2 Optimization and Parameter Settings

To minimize E, we perform gradient descent with the neu-
tral initialization: the initial value of φ is set equal to the
threshold z = α/λ everywhere in 
 (Rochery et al. 2005).
The algorithm is thus quasi-automatic. The functional deriv-
atives of the HOAC terms δES/δφ, δENL/δφ and δEL/δφ

involve convolutions: they are calculated in the Fourier do-
main, as are all derivatives. The evolution equation for E

with ENL is

∂φ(x)

∂t
= 1

2
ln

P+
P−

+ θ
{
∇2φ(x) − λ(φ3(x) − φ(x))

− α(1 − φ2(x)) + βF −1{k2d�̂(kd)φ̂(k)
}

− β2∇2φ(x)F −1{d�̂(kd)F
{∇φ(x) · ∇φ(x)

}}

− β2∇φ(x) · ∇{
F −1{d�̂(kd)

× F
{∇φ(x) · ∇φ(x)

}}}}
, (29)

where F and F −1 denote the Fourier and the inverse
Fourier transform respectively, and a hat ˆ indicates the
Fourier transform of a function. The evolution equation for
E with EL involves replacing the last two lines of (29) by

β3F
−1

{
k · F

{
�

( |x|
d2

)
εx xT εT

}
· k φ̂(k)

}
. (30)

The time evolution of φ uses the forward Euler method. The
parameters of the two prior energies EP,NL and EP,L are
constrained by the stability analysis of Sect. 4.

6 Experimental Results

As input data I , we use a number of images, with average
size 1200 × 1200 pixels, extracted from a QuickBird optical
panchromatic image of Beijing. The scenes are characteris-
tic of dense urban regions. Our aim is to extract, completely
and accurately, the road network from an image. We also
analyse the effect of the different terms in our energies. In
order to evaluate the performance of our new nonlinear and
linear models, we compare them quantitatively to ground
truth and to other methods from the literature. Ground truth
was created by slightly correcting by hand an available GIS
map from a few years earlier of the road network in the zone
shown in the image. Note that this ground truth defines what
we mean by the phrase ‘road network’.

6.1 Nonlinear Nonlocal Overall Model

In this subsection, we demonstrate the behaviour of our new
model E = θ(E0 + ES + ENL) + ED via experiments at
reduced resolutions.

Figure 8(a) shows one of the input images at 1/4 resolu-
tion. The parameters (θ,α,λ,β,β2, d) are (100,0.12,3.8,

0.0375,0.0338,4). The results obtained using the energy
with the new nonlinear nonlocal term ENL at iterations 1,
1,500 and 27,000 are illustrated in Figs. 8(b)–8(d). The re-
sult obtained using the standard HOAC model without ENL

(i.e. β2 = 0) is shown in Fig. 9(a). We see that adding ENL

enables the recovery of the main and secondary road net-
work, whereas the model without ENL misses a secondary
road. In order to illustrate the effects of other terms in the
model, we compute results using maximum likelihood esti-
mation (MLE, i.e. θ = 0) and a standard, non-higher-order
active contour (i.e. β = β2 = 0) (see Figs. 9(b) and 9(c)).
The ground truth is presented in Fig. 9(d). The MLE result
shows that local image information alone is not sufficient to
distinguish the roads from the background, while the stan-
dard active contour result shows the importance of the geo-
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Fig. 9 Experiments at 1/4 resolution and ground truth. (a)–(c) Results obtained respectively using the standard energy without ENL, MLE, and
a standard, non-higher-order active contour model (with neither ES nor ENL). (d) Ground truth segmented manually

Table 1 Quantitative evaluation criteria for the different methods as
tested on Fig. 8(a) at 1/4 resolution (T = True, F = False, P = Positive,
N = Negative). The completeness is the percentage of ground truth
road network that is extracted; the correctness is the percentage of

extracted road network that is correct; and the quality is the most im-
portant measure of the ‘goodness’ of the result, because it takes into
account the completeness and the correctness

Measure Completeness Correctness Quality
Method TP/(TP + FN) TP/(TP + FP) TP/(TP + FP + FN)

New model E with ENL (Fig. 8(d)) 0.9524 0.8591 0.8237

θ(E0 + ES) + ED (Fig. 9(a)) 0.8832 0.8659 0.7769

θE0 + ED (Fig. 9(c)) 0.4282 0.8314 0.3940

MLE (θ = 0) (Fig. 9(b)) 0.9734 0.1831 0.1822

metric knowledge introduced by HOACs. Quantitative eval-
uations based on standard criteria (Heipke et al. 1997) are
shown in Table 1.

Figure 10 presents more results at reduced resolutions.
The first column shows the input image data, which is either
at 1/4 or 1/2 resolution. The two columns on the right show
the corresponding results obtained with and without the new
nonlinear, nonlocal term ENL. The importance of ENL is
clear: it facilitates greatly the retrieval of secondary roads.
However the nonlinear nature of the energy means that it is
prohibitively expensive computationally at full resolution.
In the next subsection, we show results at both reduced and
full resolution using the linear nonlocal model.

6.2 Linear Nonlocal Overall Model

As in the previous subsection, we study primarily the extrac-
tion of a network consisting of roads of roughly the same
width, but in Sect. 6.2.2, we briefly consider the extraction
of networks containing roads of two very different widths. In
the former case, we choose the parameters so that eP,L has
one local minimum. The resulting model can extract roads
whose widths’ are close to the minimizing value. In the lat-
ter case, we choose the parameters so that eP,L has two local
minima. Again a small range of widths around each mini-
mum is possible.

6.2.1 Extraction of Roads of Similar Width

We apply our new linear model E = θ(E0 + ES + EL) +
ED to both full-resolution and reduced resolution im-
ages. We fix the parameters as described in Sect. 4.3. For
all experiments, the parameters (θ,α,λ,β,β3, d, d2) are
(200,0.15,4, 0.02,2 × 10−4,4,12) and (200,0.15,4,0.02,

1.25 × 10−5,16, 48) at 1/4 and full resolution respectively.
Note that apart from the obvious scaling of d and d2, and a
change in β3, the other parameters are the same for the two
resolutions.

The results obtained using the new linear model E (with
EL), at 1/4 resolution and at full resolution, are shown in
Figs. 11(b) and 11(c). The complete road network is re-
trieved successfully at both resolutions. Although the seg-
mentation at 1/4 resolution appears geometrically smoother,
the extraction result is actually more accurate at full resolu-
tion. Accuracy at 1/4 resolution is limited both directly, by
the low resolution of the phase field, and indirectly, because
each scaling coefficient in the data at level 2 is the average of
16 pixels at full resolution: coefficients near the road border
therefore include both road and background contributions,
and the road boundary is thereby blurred.

To evaluate the performance of the linear model, we now
compare our result to other methods at full resolution: with
MLE (i.e. θ = 0); with a standard, non-higher-order active
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Fig. 10 More experiments at
reduced resolutions. First
column: input images, first row:
1/2 resolution, size = 400 ×
440, road width = 2 ∼ 4 pixels;
second row: 1/4 resolution,
size = 300 × 300, road width =
3 ∼ 5 pixels; third row: 1/4
resolution, size = 300 × 400,
road width = 3 ∼ 6 pixels; last
row: 1/4 resolution, size =
512 × 512, road width =
3 ∼ 15 pixels. Two rightmost
columns: corresponding results
obtained using the new
nonlinear model (with ENL)
and the standard model (without
ENL)

contour (i.e. β = β3 = 0); and with the standard model with-
out EL (i.e. β3 = 0). The results are shown in Figs. 11(d)–
11(f). Again MLE discriminates poorly between the roads
and the background, while the models without EL and/or
ES are not able to recover the complete road network (al-
though that with ES does better than the standard active con-
tour, which has only local prior knowledge). In addition, we
apply two other methods, as described in Wang and Zhang
(2003) and Yu et al. (2004), and compare them to ours (see
Fig. 12). Wang and Zhang (2003) presented a classification,
tracking, and morphology algorithm to extract urban road
networks from QuickBird images; Yu et al. (2004) proposed
a fast but rough segmentation technique based on ‘straight
line density’ to extract urban road networks. However, with-
out much prior geometric knowledge, both of them extract
many incorrect areas that happen to have statistical proper-
ties similar to roads. Moreover, the accuracy of the delin-

eation of the road boundary is poor. Some quantitative eval-
uations based on standard criteria (Heipke et al. 1997), are
shown in Table 2. The ‘quality’ is the most important mea-
sure because it considers both completeness and correctness.
Our complete model outperforms all others.

Figure 13 presents more results using the new linear
model (with EL), at full resolution. We also apply the same
model to river extraction, as shown in Fig. 14.

6.2.2 Extraction of Roads of Different Widths

Images containing roads of different widths are processed
after choosing parameter values for which eP,L has two lo-
cal minima. Figure 15(a) shows an input image containing
two roads: their widths are approximately 20 pixels and 80
pixels. The results obtained using the new linear model (with
EL) and the standard model (without EL), at 1/4 resolution,
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Fig. 11 Experiments using the
new linear model (with EL),
and analysis of the effects of the
different terms in the energy.
(a) Image data (size:
1400 × 1400); (b) result
obtained using the new linear
model (with EL), at 1/4
resolution; (c) result obtained
using the new linear model
(with EL), at full resolution; and
results obtained at full
resolution using (d) MLE;
(e) the model with β = β3 = 0
(equivalent to a standard active
contour); (f) the standard model
without EL (i.e. β3 = 0)

Fig. 12 Comparisons at full resolution. (a, b) Results obtained with
Wang and Zhang (2003) and Yu et al. (2004)

are illustrated in Figs. 15(b) and 15(c) respectively. The pa-
rameter values (θ,α,λ,β,β3, d, d2) used in this experiment
are (25,0.15,5,0.02,1.228 × 10−4,4,22). The estimated
stable widths for these parameter values are 5.28 and 20.68,
corresponding to the road widths at 1/4 resolution, i.e. 5
pixels and 20 pixels. This comparison shows clearly that
adding EL enables the detection of roads with both widths,
while the standard model without EL finds only an incom-
plete network.

6.3 Discussion

Computational cost The computational costs of the two
proposed algorithms depend on two factors: the number of
iterations and the number of operations at each iteration. The
number of iterations depends greatly on the complexity of
the image, and on the values of the parameters, even when
the final result does not. On the other hand, the number of

operations at each iteration is related to the functional deriv-
ative of the energy. As already mentioned, we compute the
functional derivative in the Fourier domain. At each iterative
step, for the nonlinear model, we need to compute two for-
ward Fourier transforms and two inverse Fourier transforms;
while for the linear model, only one forward and one inverse
transform are required, the rest of the operations being the
same. The computation time for the result in Fig. 8, obtained
with ENL, is around 80 minutes, while that for the result in
Fig. 11(b), obtained with EL, is around 60 minutes. These
computation times are long of course, but to our knowledge
no other method even approaches the quality of the results
obtained.

Parameter choice We note that in practice, the results ob-
tained are not sensitive to the precise choice of parame-
ter values, provided they lie in the correct subset of the
β̂ − β̂3 − d̂2 diagram.

7 Conclusion

Using the phase field HOAC framework, we have presented,
in this paper, two novel nonlocal HOAC energies for mod-
elling network-shaped regions. Both of them enable the gen-
eration of longer, straighter branches with better prolon-
gation, but by different means. The first, nonlinear energy
causes pairs of points inside the range of the interaction to
attract each other. In conjunction with the standard HOAC
geometric term, it allows the interaction between points on
the same side of a network branch to be stronger than the
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Table 2 Quantitative criteria for the experiments shown in Fig. 11(a) at full resolution (except first row) (T = True, F = False, P = Positive,
N = Negative). See Table 1 for an explanation of completeness, correctness and quality

Measure Completeness Correctness Quality
Method TP/(TP + FN) TP/(TP + FP) TP/(TP + FP + FN)

New model E (with EL) at 1/4 resolution (Fig. 11(b)) 0.9688 0.8519 0.8292

New model E (with EL) at full resolution (Fig. 11(c)) 0.8756 0.9693 0.8520

MLE (Fig. 11(d)) 0.9356 0.2073 0.2044

θE0 + ED (Fig. 11(e)) 0.6047 0.8249 0.5359

θ(E0 + ES) + ED (Fig. 11(f)) 0.6946 0.9889 0.6892

Wang (Wang and Zhang 2003) (Fig. 12(a)) 0.9350 0.3463 0.3381

Yu (Yu et al. 2004) (Fig. 12(b)) 0.6050 0.3695 0.2977

Fig. 13 More results using the new linear model (with EL) on pieces of a QuickBird image at full resolution. Image size: top left: 800 × 880; top
right: 1200 × 1200; bottom left: 1200 × 1600; bottom right: 1400 × 1400

Fig. 14 Result of river extraction on a QuickBird panchromatic image
(size: 1024 × 1024)

interaction between points on opposite sides of a network
branch. The second linear energy, which includes a longer-
range interaction, controls the prolongation of the network
branch, but has little effect on the branch width. The stan-
dard HOAC geometric term still controls the branch width

with a (relatively) short-range interaction. Based on a sta-
bility analysis of a bar with a desired width, we established
constraints on the parameters of the energy function. We ex-
plored the possible behaviours of each of the two resulting
prior energies as a function of the parameter settings. We
showed that as well as separating the interactions between
points on the same and opposite sides of a network branch,
the new linear model permits the modelling of two widths
simultaneously. The analysis also fixes some of the model
parameters in terms of network width(s). Moreover, the lin-
ear nonlocal term is more efficient from a computational
point of view, and can thus be applied to images at full res-
olution. As a consequence, narrower network branches can
be extracted than is possible at reduced resolution, and in
general, extraction accuracy is improved. Experiments also
demonstrate the superiority of our new models to others
in the literature. Our current work is focused on constructing
a prior energy EP that has a very flat local minimum in a
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Fig. 15 Extraction of a road
network containing two
different widths, at 1/4
resolution. (a–c) Image data;
results using: the new linear
model E; the standard model
(β3 = 0)

wide range, instead of two sharp local minima. This might
be a better solution for the extraction of roads with multi-
ple widths. We note finally that also though in this paper we
have focused on reducing curvature, one could use the flex-
ibility of the new models to allow more curvature than the
model of Rochery et al. (2006), while still allowing a wide
range of branch widths.
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