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Abstract

Landuse classification is an important problem in the re-
mote sensing field. It can be used in a wide range of appli-
cations. In this paper, we propose a hybrid method fusing
edges and regions information for the landuse classifica-
tion of multispectral images. It mainly includes the steps
of image pre-processing, initial segmentation and region
merging. Especially, a novel spatial mean shift procedure
is proposed so that some information can be extracted and
used in the successive steps. Aiming at the multispectral im-
ages processing, we also design a band weighting strategy
that give a proper weight to each band adaptively according
to the region to be processed. Experimental results on the
Landsat TM and ETM+ images validate the performance of
the proposed method.

1. Introduction

Landuse (or landcover) classification, as an image la-
belling problem, plays an important role in the remote sens-
ing field. This procedure assigns a ground cover label, such
as water, urban, forest, crop, etc., to each image site based
on the observed data at the site. In recent decades, many ap-
proaches to image segmentation or classification have been
applied to landuse classification. According to the image
site to be labelled, these approaches can be divided into
four groups: the pixel-based methods, the boundary-based
methods, the region-based methods and the hybrid methods
[4, 8].

As for multispectral images classification, how to de-
fine a proper multispectral distance or how to assign proper
weights to bands is an especially important issue worthy of
considering because different bands present different spec-
tral characteristics for different landcovers. Furthermore,
even the regions under the same type of landcover may
present rather different gray values in certain bands. Take
the Landsat5 TM images as an example. In Figure 1, the
two large water bodies, i.e. the lake in the image cen-

ter and the river, appear different grays values in band 2
because the ability of water penetration is strong in this
band and features underwater can therefore be reflected.
On the contrary, they present similar gray values in band
4 due to the complete absorption by water. This indicates
that band 4 is more helpful for water bodies recognition
rather than band 2. Thus, it is necessary to properly se-
lect or weight bands for multispectral images classification.
Several methods regard pixels as multivariate vectors and
use the Euclidean distance to measure their homogeneity,
which implicitly assumes that all bands contribute equally
to the landcover response. This is obviously not true in
most cases. The use of the Mahalanobis distance seems
more reasonable but the estimation of the class-dependent
covariance matrix usually requires a large number of train-
ing samples. Some PCA-based (Principle Component Anal-
ysis) and LDA-based (Linear Discriminant Analysis, i.e.
Fisher’s rule) band selection methods for multispectral or
hypersprectral images were discussed in [7], but their ob-
jectives mainly lay in band decorrelation and data reduc-
tion. In these methods, the bands were selected globally
according to statistic analysis of whole images (e.g. canon-
ical analysis) but not adaptively to the landcover types of re-
gions. Therefore, one of the most important motivations of
this paper is to develop a region-adaptive method for band
weighting.

In this paper, we present a hybrid landuse classifica-
tion method for multispectral images. The image is first
smoothed by the mean shift filter [5], and then an initial
over-segmentation is carried out by means of seeded region
growing. Thanks to the smoothing and the region-based
segmentation, the salt-and-pepper noise and impure spec-
tral noise are suppressed effectively. Moreover, an exten-
sion to the mean shift method, which we call spatial mean
shift, is proposed in this paper. By the novel mean shift
procedure, an assistant map can be created, from which ho-
mogeneous areas, edges and centers of small regions can be
distinguished. Following the initial segmentation, a band-
weighted EM clustering is then proposed for region merg-
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Figure 1. Landsat5 TM images in Red River

ing. Especially, we design a band weighting strategy, and
incorporate it to the EM algorithm. Here, the information
of region boundaries and edges are fully used to determine
the band weights, and such weighting strategy is adaptive to
the region to be processed.

2. Mean shift procedure

The mean shift procedure [5] is essentially a detector for
local maxima of a p.d.f. (probability density function) in a
feature space. It can provide reliable solutions to many vi-
sion tasks, such as discontinuity preserving smoothing and
image segmentaion. The choice of the mean shift filter for
image smoothing here arises from the comparison research
in [14], which reported that the mean shift filter had a good
tradeoff between RSI (Relative Smoothing Index) and ERI
(Edge Retention Index), compared with filters like Gaussian
filter, median filter, bilateral filter, etc. An extension to the
mean shift, which we call spatial mean shift, is proposed in
this work. Some edges and regions information can be ex-
tracted from this novel mean shift prodedure, and thereafter
used for both the initial segmentation and region merging.
The principle of the mean shift is described in detail in the
work of Comaniciu and Meer [5].

Before the mean shift smoothing, a PCA transformation
is performed on the input multispectral images. It removes
the correlation among bands and, furthermore, the trans-
formed image may make evident features not discernable
in the original data. Or alternatively, it may preserve the es-
sential information content of the image [1]. In the case of
the Landsat5 TM images, the transformed image only con-
taining the first three components can preserve more than
95% of the essential information of the original seven-band
image [2]. After this transformation, the input data are
condensed into three channels and form a false color im-
age. The successive operations, including the mean shift

smoothing and the initial segmentation, are performed on
this false color image. This reduces the computational de-
mands and improves the algorithm performance.

2.1. Image smoothing

For each image pixel xi, i = 1, 2, · · ·,M × N
(M and N is the number of image row and column,
respectively), combining its spatial coordinate xs

i =
(xi,row, xi,column) with its corresponding range measure-
ments xr

i = (xi,B1 , xi,B2 , · · · , xi,Bd
) (d is the number of

bands), a joint spatial-range space can be constructed. Mean
shift procedure can be generalized to this joint space, where
the feature point is x = (xs, xr), and the kernel function
is gs,r = c · gs(‖ xs

hs
‖2)gr(‖ xr

hr
‖2) with two bandwidth

parameters hs and hr.
In our case, d = 3 for the PCA transformed false color

image, while d = 1 for the single-band image. If gs is
defined as a uniform kernel

gs(x) =
{

1 if ‖ x ‖≤ 1
0 otherwise

according to the principle [5], this is produced as

yj+1 =

∑
xs

i∈N(ys
j ,hs) xigr(‖ yr

j −xr
i

hr
‖2)

∑
xs

i∈N(ys
j ,hs) gr(‖ yr

j −xr
i

hr
‖2)

(1)

where N(ys
j , hs) is the neighborhood of ys

j with radius hs.
For each pixel x = (xs, xr), initialize y1 = x, compute

yj according to (1) until reaching the convergence point yc,
and replace the range component of x with yr

c , and the fil-
tered image will be obtained, where all pixels that converge
to the same point have the same range values. Noises are
suppressed effectively after smoothing, as illustrated in Fig-
ure 2.

(a) Before smoothing (b) After smoothing

Figure 2. PCA transformed false color image



2.2. Spatial mean shift

If we further consider the spatial location of the conver-
gence point, something interesting is noted. Extracting the
spatial component from (1), we have

ys
j+1 =

∑
xs

i∈N(ys
j ,hs) xs

i gr(‖ yr
j −xr

i

hr
‖2)

∑
xs

i∈N(ys
j ,hs) gr(‖ yr

j −xr
i

hr
‖2)

(2)

It is a weighted mean of the spatial locations, called spa-
tial mean shift. Let gr be a Gaussian kernel. The above
equation indicates that ys

j+1 tends to shift to areas where
range values are homogeneous, but away from areas where
edges exist. For each spatial location xs, counting the num-
ber of points that converge to xs, what we call spatial ac-
cumulation map can be produced. In this map, generally,
value 0’s occur along edges, where no point converges to,
while 1’s occur in the large homogeneous area because iter-
ation (2) stops immediately by converging to ys

1 itself, and
large values (say ≥ 5) occur in centers of small areas whose
scale is less than hs since most of points inside such a small
area converge identically to its center. Thus, the edges, the
small areas, and the large homogeneous areas can be dis-
criminated according to the values of the accumulation map.
Such information will be utilized in the successive steps.

Figure 3(a) shows the spatial accumulation map of the
false color image. Enlarging the lake area in the center, it
can be seen from Figure 3(b) that pixels are mostly 1’s (the
blue ones) within the lake area, and 0’s (the white ones)
along it. It indicates that a large homogeneous area exists
within the lake, but edges along it. If we only consider the
0-value pixels, an edge map can be created. As depicted in
Figure 4, the edge maps of different bands can be produced
by applying the spatial mean shift procedure separately to
each single-band image.

(a) Spatial accumulation map (b) Enlarged homogeneous area
and edge

Figure 3. Spatial accumulation map of the false color image

(a) Band 1 (b) Band 2 (c) Band 3

(d) Band 4 (e) Band 5 (f) Band 6 (g) Band 7

Figure 4. Edge maps of each band

3 Initial segmentation by seeded region
growing

Region growing involves two critical issues, the choice
of seeds and the choice of growing criteria. Here, the seeds
are selected according to the spatial accumulation map if
either of the following conditions is satisfied.

(1) The point corresponds to a 1-value pixel and all of
its neighbors (within a 3 × 3 window) are 1-value pixels as
well;

(2) The point corresponds to a large-value pixel (say ≥
5), and none of its neighbors (within a 3 × 3 window) is an
edge pixel (i.e. ≥ 1).

These rules guarantee that the representatives of large
homogeneous areas or the centers of small areas are selected
as seeds. When a seed is selected, together with its neigh-
bors within a 3× 3 window, the initial region is determined
and its mean and variance values are computed. Then the
growing starts from the initial region. During this proce-
dure, one would dynamically update the mean and variance
of an already grown region R and compare them with a can-
didate pixel x in the neighborhood. Since channels of a
PCA transformed image are uncorrelated to each other, the
following inequalities can be tested separately

|pci(x) − µi(R)| < kσi(R), i = 1, 2, 3 (3)

If they are all satisfied, pixel x will be included in region R.
Here, pci is the ith component of the PCA transformed im-
age and µ, σ are the current mean value and standard vari-
ance of region R. Suppose that the gray values in R fol-
low the Gaussian distribution. The pixels passing the above
test fall approximately within the central 86% range of gray
values of R when k = 1.5 given. Figure 5 shows the initial
segmentation and boundaries of the segmented regions.



(a) Map of region label (b) Map of region boundary

Figure 5. Initial segmentation results

4 Band-weighted region merging

In this section, the final classification will result from the
initial over-segmentation by region merging. Here, the EM
algorithm is used but, different from common applications,
band weighting is incorporated in our classification task. As
mentioned in Section 1, even the same type of landcover
may present fairly different gray values in certain bands,
which results in different colors in the PCA transformed
false color image (see water bodies in Figure 2). Thus, the
merging procedure is operated on each band of the original
multispectral images instead of the PCA transformed one.
Moreover, it is also expected that different bands contribute
different weights. For instance, the two large water body
regions (the lake and the river) in band 2 present quite dif-
ferent gray values, and their boundaries seem not so clear as
the ones in bands 4, 5 and 7. Therefore, the weight of band
2 for water body region is supposed to be less than those in
other bands.

Here, we determine the band weights by comparing the
edge maps of each band with the boundary map of initially
segmented regions. The basic idea is that, for a region in
the initial segmentation map, if there exist remarkable edges
along its boundary in certain bands, these bands will be con-
sidered as ”good” bands for the said region, and will be as-
signed high weights. For example, consider Figure 4 and
Figure 5(b), bands 4, 5, and 7 are good for water bodies be-
cause of their remarkable edges. It will be observed that our
strategy of band weighting is adaptive for regions.

4.1. Estimation of band weight

The band weights are estimated by evaluating how ”re-
markable” an edge is relative to its corresponding region
boundary. This problem is similar to the evaluation of edge
detection. Both of them compare an edge map with a ref-
erence boundary map and check their matching cost. The
related work was reviewed in [10]. Here, the CDM (Closest
Distance Metric) algorithm [9] is adopted. For each pixel

Band 1 Band 2 Band 3
Wi(R) 0.0009 0.1875 0.0058

Band 4 Band 5 Band 6 Band 7
Wi(R) 0.2150 0.2793 0 0.2592

Table 1. Band weights of a water body area

of a region boundary (i.e. reference pixel), the edge map
is inspected to find possible matchings within a previously
defined searching window, such as a 5 × 5 window in our
study that allows 2 pixels to be displaced. If there is no
possible matching, the reference pixel is left unmatched. If
it has multiple matchings, the edge pixel that is closest to
the reference pixel is chosen. However, if its position as an
edge pixel has already been chosen for a matching before,
the next closest possible matching is selected. Therefore,
the CDM criterion can build a one-to-one matching between
the edge map and the reference map. The matching cost can
be calculated in the following manner,

CDM(f, g) =
Match(f, g)

|f ∪ g| (4)

where f and g represent the edge map and the region
boundary map, respectively. Match(f, g) is the number
of matched pixels. |f ∪ g| is the total number of pix-
els in f or g within the strip area that is the trace of the
searching window moving along the region boundary. The
weight of region R in the kth band is hereby denoted as
Wk(R) = CDM(fk, g(R)), where fk is the edge map of
the kth band, and g(R) is the boundary map of region R.
Moreover, for a region R, if the weights of all bands are
very small, R is regarded as an invalid region and will be re-
moved by merging it into the adjacent region with the most
similar mean value, such as the red marked region in Figure
5.

The band weights of the lake region in the image center
are listed as Table 1. Note that in bands 4, 5 and 7, the
weights are much higher than those in other bands. This
implies that these bands are more important for identifying
water body region, and thereby demonstrates the feasibility
of our approach to estimate band weights.

4.2 Region merging by band-weighted EM clus-
tering

The EM algorithm is used here to merge regions into
clusters. That is, the regions whose spectral measurements
are close enough will be labelled as the same class. The
EM [3, 12, 13] algorithm is a method for finding likeli-



hood parameter estimates when there are missing or incom-
plete data. Assume that a point xj , j = 1, 2, · · · , N , in
a d-dimensional feature space, is modelled as the K GMM
(Gaussain Mixture Model) with the following probability
density,

f(x|Θ) =
K∑

i=1

αifi(x|θi) (5)

fi(x|θi) =
1

(2π)d/2detΣ1/2
i

e−
1
2 (x−µi)

T Σ−1
i (x−µi) (6)

K∑
i=1

αi = 1 (7)

where Θ represents the collection of parameters
(α1, · · · , αK ; θ1, · · · , θK), and θi represents µi and
Σi. Given the initial parameters collection Θ, the updated
equations take on the following form,

αnew
i =

1
N

N∑
j=1

p(i|xj ,Θold) (8)

µnew
i =

∑N
j=1 xjp(i|xj ,Θold)∑N

j=1 p(i|xj ,Θold)
(9)

Σnew
i =

∑N
j=1 p(i|xj ,Θold)(xj − µnew

i )(xj − µnew
i )T

∑N
j=1 p(i|xj ,Θold)

(10)

p(i|xj ,Θ) =
αifi(xj |θi)∑K

k=1 αkfk(xj |θk)
(11)

until log likelihood

logL(Θ|χ) = logΠN
j=1f(xj |Θ) (12)

increases by less than 1% from one iteration to the next.
In our case, the feature point xj represents the mean

value of region Rj in the initial segmentation map, and K
is the number of predefined landuse classes (4 or 5 in com-
mon). Given the same initial parameters, the above compu-
tations are carried out on each band separately. When the
iteration stops, each conditional probability p(i|Rj , k), i.e.
the chance that region Rj belongs to class i(i = 1, · · · ,K)
in band k, is achieved. Thanks to the total probability theo-
rem, the chance that Rj entirely belongs to class i is,

p(i|Rj) =
M∑

k=1

p(k|Rj)p(i|Rj , k) (13)

where M is the number of bands (7 in our case), and the
prior probability p(k|Rj) is proportional to the band weight
defined in formula (4):

p(k|Rj) =
Wk(Rj)∑M

k=1 Wk(Rj)
(14)

At last, the MAP (Maximum A Posteriori) criterion is used
for class decision. For each region Rj , let it belong to the
class that maximizes p(i|Rj) for all i’s. This classification
results in the final landuse map.

Two issues are left to be solved in our EM-based region
merging method, namely decisions of the class number K
and the initial parameters µ0 and Σ0. Here, K is speci-
fied by users, and the initial parameters are obtained in the
following manner. The first two regions are chosen from
the initial segmentation map that have the largest distance,
i.e. with the maximum difference of mean values. Then the
third one is selected such that it has the largest sum of dis-
tances to the previous two regions. This goes on until the
Kth region is found. This is in fact a greedy approach to
find the K most different regions that maximizes the rule
J = mini,j

∑
i�=j ‖ µi − µj ‖, where µi and µj are mean

value of the initial segmented regions, and within the sum
symbol are

∑K−1
k=1 k = K(K−2)/2 terms of distances. As

the K representatives of the initial segmented regions, the
means and covariance matrices of the selected regions are
regarded as the initial parameters.

5. Experimental results

The results demonstrated here utilize the Landsat5 TM
images of the Red River area in Vietnam and the Landsat7
ETM+ images of the Jingjiang River area in China.

Figure 1 shows a sub-scene of the Red River area at-
tained in April 2001. It contains seven bands, with a reso-
lution of 30 meters and size of 512 by 512. In this scenario,
there are obviously a lake in the center, and a river across
the image. Other than water bodies, resident areas cover the
bottom and right parts of the image, crop fields cover the
left and top portions, and sand areas disperse near the water
bodies.

Figure 6 shows a sub-scene of the Jingjiang area attained
in September 2002 also with a size of 512 by 512. In ad-
dition to the TM bands, there is a panchromatic band with
higher resolution of 15 meters for ETM+. Here, only bands
1-5 and 8 are used because they are of the same resolution
of 30 meters. In this image, the dark areas in the center
are water bodies. The top half part and the left-bottom part
are mainly mountain frosts. The right-bottom part is mixed
with crop fields and wet fields.

According to the above description, the classification
procedure can be summarized as follows:



(a) Band 1 (b) Band 2 (c) Band 3

(d) Band 4 (e) Band 5 (f) Band 8

Figure 6. Landsat ETM+ images in Jingjiang River area

1. Band reduction by the PCA transformation. Three first
principle components are reserved containing more
than 95% of the information of the original multispec-
tral images;

2. Image smoothing and edge extraction by the mean
shift procedure. The range window size hr and the
spatial window size hs are 16 and 4, respectively;

3. Initial segmentation by seeded region growing. The
coefficient k = 1.5 makes that the point passing the
growing test fall within approximately 86% of the the
central range of gray values of the grown region if un-
der the condition of Gaussian distribution;

4. Region merging by band-weighted EM clustering. The
class number K is given by users.

Both the Red River and the Jingjiang River images are clas-
sified into four classes and the final results are shown in
Figure 7. Through prior knowledge, they correspond to the
water body, resident area, crop field and sand area in the
Red River image, and to the water body, crop field, moun-
tain forest, and wet field patterns in the Jingjiang River im-
age, respectively.

It is necessary to evaluate the classification result. Ac-
cording to the survey [11], the methods of empirical evalu-
ation for image segmentation or classification fall into two
groups: the discrepancy methods and the goodness meth-
ods. In the former category, some references or ground
truths that present the expected results are first needed, and
then the actual results are compared with the expected ones
so as to count the discrepancy measures, such as correct
accuracy, confusion matrix, Kappa analysis, etc. Different
from the first category, the second methods measure results

directly by ”goodness” parameters, such as intra-region uni-
formity, inter-region contrast, etc. Here, a goodness param-
eter (say the β index) is adopted to measure our results and
compare with other methods. The β index is defined as the
ratio of the total variation to with-class variation [6, 12],

β =

∑K
i=1

∑ni

j=1(xij − X)T (xij − X)∑K
i=1

∑ni

j=1(xij − Xi)T (xij − Xi)
(15)

where K is the class number, ni is the pixel number of the
ith class; Xij is the jth pixel value in class i, Xi, X are
mean values of the ith class and the total image, respec-
tively. For a M band multispectral images, they are all M-
dimensional vectors. β indicates the homogeneity of the
classification result. For a given image and K value, the
higher the homogeneity within the classified regions is, the
higher the β index will be. β also increases with the class
number K. In general, a high β value implies a good clas-
sification result.

Here, the class number K is given by users. From the
plots of β versus K illustrated in Figure 8, it can be ob-
served that K = 4 is reasonable, as the points where K = 4
are the corners of the curves. In other word, the increase of
β becomes slow when K > 4.

In order to demonstrate the performance of the proposed
method, comparisons are made with two common meth-
ods, the EM and FCM algorithms, without band weighting.
For those methods, the preprocessing and the initial seg-
mentation are the same, but in the region merging step, the
EM or FCM (Fuzzy C-Mean) algorithm are directly imple-
mented on the M-band multispectral images, and the fea-
ture points are M-dimensional vectors. Table 2 lists the
comparison results. It indicates that the proposed band-
weighted EM method is much better than the common EM
method without band weighting, and slightly better than the
FCM method in terms of the β index. These comparisons
demonstrate the advantage of the proposed method against
the method without band weighting.

6 Conclusions and Discussions

In this paper, a novel unsupervised landuse classification
method for multispectral images is proposed. Its novelty
lies in two aspects. First, we extend the mean shift proce-
dure to the spatial space and, from the spatial mean shift
procedure, some useful information can be extracted for
successive operations, such as seeds selection in initial seg-
mentation and band weighting in region merging. Second,
a band weighting strategy is presented. The edge informa-
tion obtained from the spatial mean shift procedure and the
region boundary information obtained from the initial seg-
mentation is used to evaluate the region-adaptive weights
of each band. Experiments show that with the same initial



FCM EM Band-weighted EM
Red River 1.99 1.26 2.09

Jingjiang River 2.04 1.36 2.16

Table 2. Methods comparison

conditions, the proposed method is superior to the method
without band weighting under the measure of the β index.

(a) Red River (K=4) (b) Jingjiang River (K=4)

Figure 7. Final classification

(a) Red River (b) Jingjiang River

Figure 8. Curves of the index β against class number K
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