
Spatio-Temporal Prior Shape Constraint for
Level Set Segmentation�

T. Bailloeul1,2,3, V. Prinet1, B. Serra2, and P. Marthon3

1 LIAMA, Institute of Automation, Chinese Academy of Sciences,
P.O Box 2728, Beijing 100080, China

Phone: (+86 10) 82 61 44 62 / Fax : (+86 10) 62 64 74 58
tbailloeul@liama.ia.ac.cn, prinet@nlpr.ia.ac.cn

2 Alcatel Space, 100 bd du Midi, 06156 Cannes La Bocca, France
Phone: (+33) 4 92 92 67 26 / Fax: (+33) 4 92 92 76 60

Bruno.Serra@space.alcatel.fr
3 LIMA (IRIT), 2 rue Camichel, 31071 Toulouse, France

Phone/Fax: (+33) 5 61 58 83 53
Philippe.Marthon@enseeiht.fr

Abstract. This paper exposes a novel formulation of prior shape con-
straint incorporation for the level set segmentation of objects from cor-
rupted images. Applicable to variational frameworks, the proposed
scheme consists in weighting the prior shape constraint by a function
of time and space to overcome local minima issues of the energy func-
tional. Pose parameters which make the prior shape constraint invariant
from global transformations are estimated by the downhill simplex algo-
rithm, which is more tractable and robust than the traditional gradient
descent. The proposed scheme is simple, easy to implement and can
be generalized to any variational approach incorporating a single prior
shape. Results illustrated with different kinds of images demonstrate the
efficiency of the method.

1 Introduction

Since the early nineties the incorporation of a priori and geometric high level
information within active contours frameworks has become popular to segment
objects from physically corrupted images. A constraint applied on the shape of
a free form deformable model is a common approach to address the issue of ob-
ject segmentation from altered data. Unlike generic geometric constraints such
as contour regularization, a prior shape constraint is specific and derived from
extrinsic information. It aims at restricting the space of possible shapes embod-
ied by a segmenting curve and therefore enables to overcome image artifacts
which influence is penalized by the shape prior constraint. The Medical Imaging
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community was the first to use shape constrained deformable models as it has to
deal with images frequently distorted by noise, occlusions and poor contrast of
organs to be segmented [1, 2, 3, 4]. The application of these model-based schemes
was later extended to manufactured and natural scenes objects as well as object
tracking from video sequences [5, 6, 7, 8, 9, 10, 11].

The prior shape constraint can be derived from a single or a collection of
reference shapes. In the latter case statistical frameworks take advantage of the
geometric variability across the different instances of the object, which conveys
a larger although restricted space of possible shapes of the active contour. As a
result, the segmenting curve has a globally constrained shape while being able
to include local disparities contained in the training samples. Shape samples
are first aligned to remove pose differences which could bias the retrieval of
intrinsic shape variabilities from the database. Then a statistical prior shape
model is built to determine the variability across the family of shapes. Finally
the shape model is integrated in the segmentation model: the constraint could
be naturally incorporated in the active contour evolution equation, exerted in
the training shapes space or inserted extrinsically as a corrective term. The
shape constraint integration is often invariant from a global transformation which
parameters need to be estimated as the segmenting curve evolves. In [1] shapes
are represented by their projection on an elliptic Fourier basis. Prior probability
distributions are calculated on the representation parameters from the training
samples and are used in a maximum a posteriori (MAP) framework to constrain
the segmenting curve that captures image high gradients. In [2, 5, 3, 12] shape
samples are projected in an orthogonal subspace by principal component analysis
(PCA), which retains the main variations modes from the different instances.
Differences arise among these schemes towards the representation of the shapes
as well as the way the shape constraint is applied. In [2] the active contour is
explicitly represented as a snake [13], and in [5] shapes are projected on a B-spline
basis. The main limitation of the aforementioned works is their inability to make
the evolving contour undergo topological changes which are naturally handled
by the distance level set representation of curves [14, 15]. In [3, 12] shapes are
implicitly represented by their level set functions. In [2, 12] the shape constraint
is directly applied in the PCA subspace whereas it is achieved by a corrective
term to the evolution equation in a MAP approach in [3]. In [5] the shape
constraint incorporation is achieved through the input in an energy functional
of a Mahalanobis distance measuring the discrepancy between the evolving curve
and the statistical prior shape model. In [6] Paragios and Rousson propose a non-
stationary pixel-wise Gaussian model which fully takes advantage of the level set
representation of shapes and preserves the ability to capture local deformations.

In case the different instances of the object reduce to a sole shape prior,
the training shapes space contracts to a singleton set and statistical schemes for
prior shape modeling are no longer valid. As a consequence shape prior incorpo-
ration is achieved in a harder fashion as local variabilities of the contour from
the reference shape are only governed by the balance between image and prior
shape information. Incorporation of the shape prior can be achieved through the
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formulation of a distance measuring the dissimilarity between the segmenting
curve and the reference shape, modulo a global transformation. In [4] shape con-
strained geodesic active contours are used to retrieve boundaries of corrupted
objects from medical images. In this variational framework the shape distance
is formalized as the sum of the squared distances between the evolving con-
tour points and the shape prior. Unlike this edge-to-edge dissimilarity measure,
surface terms comparing the active contour and the shape prior were proposed
for level set segmentation [9, 10, 8]. The dissimilarity energy can be either the
squared difference between the level set functions embedding the contour and
the shape prior [9], or the difference of areas contained by the contour and the
reference shape [8]. In the latter case, the shape energy does not depend on the
image domain Ω. Further works towards shape energy independent from Ω and
the extension to shape prior with multiple components can be found in [10] with
the formulation of a symmetric pseudo-distance. In [7] Foulonneau et al. formu-
late a distance between high order geometric moments of the evolving curve and
the shape prior to apply the constraint. The moments are projected on a Leg-
endre polynomial basis to decrease the redundancy of the shape representation.

In this paper we argue about the sensitivity to local minima of shape con-
strained level segmentation in variational frameworks. We propose to address the
issue of the balance between shape and image information responsible for local
minima occurrence. We tackle this problem while considering a segmenting curve
constrained by a single shape prior. The next section states and details further
the problem we aim at resolving. The present paper formalizes and extends the
work undertaken in [16] and applied to remote sensing imagery.

2 Problem Statement

Assuming the evolving active contour is implicitly represented by a signed Eu-
clidean distance level set function φ [14, 15], the shape prior incorporation in
variational frameworks can be generally formalized as follows:

J (φ, ψ) = Jimage (φ) + λJshape (φ, ψ) (1)

where J is the energy functional, Jimage is the image-based energy which aims
at driving the segmenting curve to the object boundaries and Jshape is the shape
constraint energy that restricts possible shapes embodied by the contour. Jshape

measures the dissimilarity between the evolving contour and a shape reference
ψ. The higher the discrepancy, the higher Jshape:

Jshape (φ, ψ) =
∫

Ω

D (φ (x) , ψ (x)) dx (2)

where D is a function measuring the distance over the image domain Ω between
the active contour embedded in φ and the shape prior represented by the level set
function ψ. The constant λ∈ R

+ balances the influence of the shape constraint
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with respect to the image information. A first issue referring to the value of the
constant λ arises from equation (1). On the one hand, a too low value of λ will
not enable to overcome image artifacts, i.e. the local minima of J corresponding
to wrong segmentations will be numerous (in the rest of the paper these minima
will be denoted as local minima of the first kind). On the other hand, a high
value of λ will restrict too much the freedom of movement of the contour, thus
drastically limiting the ways it can escape from local minima (second kind).
To find an optimal value for λ, which could fairly balance shape and image
information is not trivial since this optimum may depend on the image to be
analyzed as well as the type and level of corruption of image data, which are not
always known in advance. The tuning of the constant λ is a difficult task which
is even more intractable when the target object to be retrieved in the image is
surrounded by peripheral objects with similar statistical properties or when it
is poorly discriminated from the background. Indeed in such case image infor-
mation which drives the contour to the object boundaries is weakened regarding
to the shape constraint which therefore becomes predominant. The shape infor-
mation is then over-weighted, which leads to the second aforementioned local
minima problem. This unwelcome effect is even more severe when the segment-
ing curve initialization is distant from the target as the convergence to the right
solution become hazardous. The issue of local minima inherent to the unsuitable
balance between the shape constraint and the image information is addressed in
this paper. To alleviate this problem we propose to embed the shape prior in a
soften fashion while spatially and temporally relaxing and reinforcing the shape
constraint during the convergence process. Such flexible incorporation that we
will describe in section three conveys a better control of the degrees of freedom
of the segmenting curve to overcome local minima obstacles.

The distance D in (2) is made invariant from a global transformation which
best maps the prior shape to the evolving active contour:

ψ = ψ0 ◦ Tξ (3)

where T is a global transformation which parameters are ξ = {ξ1, . . . , ξn}; ψ0 is
the static shape prior level set. Invariance from global transformation is achieved
while finding the optimal parameters ξopt which minimize Jshape:

ξopt = arg min
ξ

Jshape(φ, ψ0 ◦ Tξ) (4)

The second problem we address in this paper relates to the estimation of the
optimum parameters ξopt which minimize Jshape. According to the expression of
Jshape it may not always be possible to analytically deduce ξopt from:

(
∂Jshape

∂ξi

)
i=1,...,n

= 0 (5)

As a consequence numerical schemes have to be used to retrieve ξopt. A commonly
adopted method is a gradient descent scheme which sequentially estimates ξi by
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n iterative descents [2, 17, 12, 4, 6, 8]. Practical implementation of such scheme
is challenging as a wrong estimation in the ith descent may bias the estima-
tion of the n − 1 remaining parameters, preventing in the end to retrieve T .
Cremers et. al touched on the problem of tuning such gradient-descent scheme
for parameters optimization in [11]. They proposed an alternative way avoid-
ing numerical optimization: invariance from translation and isotropic scaling is
achieved in projecting the level set functions φ and ψ in their intrinsic reference
systems. In his approach the scale and translation parameters are not derived
from (5) but are equal to the first and second order moments of the shape. In-
variance from rotation with such scheme is more challenging and not achieved
yet. In this article we propose an alternative to the gradient descent scheme
for pose parameters estimation during the segmentation process. The section
four details our alternative based on the downhill simplex optimization method,
which is parameter free and estimates the pose parameters simultaneously and
more robustly. The combination of the soften shape constraint with the simplex
pose parameters estimation yields some promising experimental results that are
showed in section five with different kinds of images. We compare our proposed
scheme with constant and simpler spatio-temporal prior shape incorporations.
The performances difference between the simplex and gradient descent schemes
is also investigated. Finally we discuss the proposed approach and the results
illustrated in this paper and conclude in section six.

3 Spatio-Temporal Shape Constraint Weight

To address the practical problem of local minima, we first turn the shape prior
weight λ in equation (1) into a function of space. It is meant to relax the shape
prior influence within a restricted area close to the 0-level set of the reference
template ψ while preserving the original uniform shape constraint far from it.
Such spatially restricted relaxation will convey a limited freedom to the evolving
active contour which shape space is therefore enlarged. Consequently, the contour
may globally keep the reference template shape while allowing local variations,
which may be a desirable property to avoid local minima of the second kind.
We propose to formalize this spatial relaxation by a symmetric function of the
distance to the shape prior:

λ (ψ (x)) = 1 − e−(ψ(x)
d )2

(6)

This one-parameter function has a minimum value at the 0-level set of the
prior template while it increases and asymptotically tends to a constant farther.
d is the parameter controlling the size of the area where the prior shape is spa-
tially relaxed. Simpler or more intuitive formulations than (6) such as piecewise
linear functions of ψ (x) would fulfill the same relaxation requirements. However
as we may empirically demonstrate and discuss further in section 5.3, the deriv-
ability and the presence of a stationary point at ψ (x) = 0 is a property which
improves the present method.
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The existence of the freedom space is intended to prevent the segmenting
curve from being trapped by local minima of the second kind, nevertheless it
would not enable to deal with corrupted images as allowed local variations may
correspond to artifacts we aim at overcoming (local minima of the first kind).
We propose to temporally decrease the freedom space to {∅} in the iterative con-
vergence process starting from time t1. As the freedom space narrows the active
contour shape space decreases, which augments the shape constraint efficiency
uniformly all over the image domain. The underlying idea is to reach a rough
segmentation while the prior shape constraint is spatially relaxed (t < t1) and
to enhance the shape penalty in a second time to overcome image alterations
(t ≥ t1). As a result, the prior shape weight function depends on space and on
time as well. The decrease of the freedom space is to be achieved in turning the
parameter d into a decreasing linear function of time:

d (t) =

⎧⎨
⎩

d0 if t < t1
(ε − d0) t−t1

t2−t1
+ d0 if t1 ≤ t < t2

ε if t2 ≤ t
(7)

where (d0, ε) ∈ R
∗+ with d0 > ε and ε � 1.

Finally, we enhance prior shape relaxation and reinforcement in multiplying
(6) by an increasing function λa (t) of the convergence time t and which will
globally rule the amplitude of the prior shape weight function. At the beginning
of the iterative process, the amplitude of the prior shape weight is low to convey
more flexibility to the evolving active contour. Starting from t1, the amplitude
increases to reach a maximum value which supports the shape constraint and
enables the segmentation of corrupted objects in the image. In the end, the
spatio-temporal prior shape weight function λ : R × R → R

+ can be formalized
as follows:

λ (t, ψ (x)) = λa (t)λspace (ψ (x)) (8)

where λa (t) is ranging from λmin and λmax and is akin to the opposite function of

(7) and λspace (ψ (x)) = 1−e−(ψ(x)
d(t) )2

. The shape energy is then reformulated as:

Jshape (φ, ψ, t) =
∫

Ω

λ (t, ψ (x))D (φ (x) , ψ (x)) dx (9)

A spatio-temporal variation of the shape prior constraint has already been
carried out in [9] for a different purpose. The authors introduced a labelling
function which defines where the shape constraint is applied and which evolves in
space and time. As a result the segmentation scheme is able to segment familiar
and corrupted objects as well as unfamiliar ones. This method was extended
in [8] to similarity transformation invariance and with a different formulation
of the dynamic labelling function. Satisfying results are showed for segmenting
object lacking discrimination from the background, which is the point we also
address here. However our approach does not make use of extrinsic labelling
function, which makes our scheme simpler and more self-consistent. The figure 1
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Fig. 1. Spatio-temporal shape prior weight function with d0 = 3, t1 = 100, t2 = 400,
λmin = 1.25 and λmax = 2

illustrates the spatio-temporal profile in three dimensions. Two questions arise
from the definition of the proposed spatio-temporal shape constraint. The first
deals with the choice of t1 which should depend on the image features. As we
already mentioned, a solution would be to reach a rough segmentation with a
low and spatially constrained shape prior and subsequently increase the shape
constraint efficiency. In that case t1 is the time needed to reach the convergence
of the coarse segmentation. The second issue applies to the influence on pose
parameters estimation of discrepancies between the contour and the shape prior.
Since variations from the reference template are allowed within the freedom
space, it might be crucial to robustly retrieve pose parameters in spite of local
discrepancies. We address the latter issue in the next section.

4 Shape Prior Invariance: A Simplex Optimization
Scheme for Parameters Estimation

The sequential estimation of pose parameters by gradient descent as well as the
tuning of the time step for each descent make the use of this scheme unsuitable.
As the descents estimate parameters with different geometric meanings (e.g. ro-
tation, scaling, translation, etc...), it is not clear how fast should one descent be
with respect to the others. Since the n gradient descents are dependent, a slightly
wrong parameter estimation in one descent might impact the n − 1 remaining
ones to finally make the pose parameters retrieval diverge. We propose to use the
downhill simplex method [18] to solve the optimization problem stated in equa-
tion (4). The simplex method is an efficient zero-order iterative scheme designed
to minimize non-linear cost functions. Unlike the gradient descent technique, the
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simplex does not use derivatives and it estimates robustly the optimal parame-
ters. A simplex is a n-dimensional convex polyhedron defined in the parameters
space by n + 1 vertices which evaluate the cost function with different sets of
parameters ξ. Initially, the first vertex of the simplex is derived from some given
initial parameters ξ0 and the rest of the polyhedron is built in the same way
while adding an individual variation δi to each component of ξ0. The subsequent
iterative algorithm is as follows:

1. The simplex vertices are sorted according to their corresponding cost func-
tion values. Let be b the best vertex among them (minimum cost function
value), w the worst and a the best after b. As the method intends to find a
minimum of the cost function, it attempts to build a new simplex far from
the worst vertex w. To do so, one tries to replace w by a vertex c better
than b:

2. A better candidate c is tested as the reflexion of w with respect to the
hyperplane H opposite to w (reflexion of the simplex). If such c is better than
b it is possible to look farther in this direction (expansion of the simplex).
The best candidate among the reflexion and expansion results is chosen to
replace w.

3. If none of the previous attempts is better than b, one tries two candidates
c1 and c2 laying on each side of H and belonging to the hyper-line normal
to H which goes through w. The best candidate will replace w if it is better
than a (contraction of the simplex).

4. If neither c1 nor c2 is better than a, it means b is already close to the
expected solution. In that case the best vertex b is kept and each remaining
vertex is replaced by the middle point of the segment connecting it to b.

5. Once the new simplex is built, the algorithm loops from steps 1 to 5 until
the score difference between two consecutive best vertices is below a given
threshold εsimplex. The estimated optimal parameters ξ̂opt are the ones cor-
responding to the last best vertex b.

The main advantage of the simplex algorithm over the gradient descent scheme
is the simultaneous estimation of the parameters. In that way the uneasy and
intricate tuning of the n dependent gradient descents is avoided. Besides, the
simplex is known to estimate more robustly parameters which values are far from
ξ0. Indeed the simplex does not need to follow gradient descent curves in the
cost function space, which makes it less sensitive to local minima. However one
limitation of the simplex method is its computational cost as it needs numerous
evaluations of the cost function to be minimized. We will see in section 5.2 how
to decrease the computational load for evaluating the cost function by using the
narrow band technique. A too high number of parameters to be estimated might
also increase the complexity of the simplex method. However in two dimensions,
affine and projective transformations have less than ten parameters, which is
manageable by the simplex. Finally, the performances of the simplex algorithm
also depend on the size of the initial simplex as well as the value of εsimplex:
a large initial simplex might enable to retrieve optimal parameters far from ξ0
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at the cost of a higher computational load; a smaller εsimplex would yield finer
estimates ξ̂opt with longer convergence times. In the experiments detailed in the
next section, we chose to estimate pose parameters after each evolution of the
active contour and with εsimplex = 10−4.

5 Experiments

5.1 Image-Based and Shape Constraint Models

In our experiments we make use of the region-based formulation of the Bayesian
MAP deformable model formerly proposed in [19] in order to drive the active
contour to the target object in the image. This approach best befits segmentation
of piecewise smooth components of an image I:

Jimage (φ) =
∫

Ω

((
I (x) − Īin(φ(x, t))

)2

2σ2
in(φ(x, t))

+ ln
√

2πσ2
in(φ(x, t))

)
Ha (φ (x, t)) dx

+
∫

Ω

((
I (x) − Īout(φ(x, t))

)2

2σ2
out(φ(x, t))

+ ln
√

2πσ2
out(φ(x, t))

)
(1 − Ha (φ (x, t))) dx

(10)
where Ī and σ2 respectively denote the image mean and variance grey level.
Subscripts in and out refer to the computation of these statistical quantities
inside and outside the evolving active contour:

Īin (φ (x, t)) =

∫
Ω I (x) Ha (φ (x, t)) dx∫

Ω
Ha (φ (x, t)) dx

(11)

Īout (φ (x, t)) =

∫
Ω

I (x) (1 − Ha (φ (x, t))) dx∫
Ω (1 − Ha (φ (x, t))) dx

(12)

σ2
in (φ (x, t)) =

∫
Ω

(
I (x) − Īin (φ (x, t))

)2
Ha (φ (x, t)) dx∫

Ω
Ha (φ (x, t)) dx

(13)

σ2
out (φ (x, t)) =

∫
Ω

(
I (x) − Īout (φ (x, t))

)2 (1 − Ha (φ (x, t))) dx∫
Ω

(1 − Ha (φ (x, t))) dx
(14)

The active contour is embedded as a level set function φ, which is assumed
to be positive inside the contour. Ha represents a regularized approximation
of the Heaviside function. Edge-based and contour regularization terms have
been intentionally omitted in (10) since we only investigate region-based active
contours. Besides, the shape constraint to be introduced will act as a contour
regularizer. We chose the shape constraint energy independent from the domain
Ω and proposed in [8]. It measures the discrepancy between areas included in
the evolving active contour and the shape prior:

D (φ (x) , ψ (x)) = (Ha (φ (x)) − Ha (ψ (x)))2 (15)
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The gradient of the overall energy functional J with respect to the level set
function φ yields the following active contour evolution equation:

φ (x, t)t = δa (φ (x, t))

{
−

(
I (x) − Īin (φ (x, t))

)2

2σ2
in (φ (x, t))

+

(
I (x) − Īout (φ (x, t))

)2

2σ2
out (φ (x, t))

+ ln
(

σ2
out (φ (x, t))

σ2
in (φ (x, t))

)
+ 2λ (t, ψ (x)) [Ha (φ (x, t)) − Ha (ψ (x, t))]

}
(16)

5.2 Invariance from Similarity Transformation and Algorithm

In these experiments we propose to consider invariance from a similarity trans-
formation which includes isotropic scaling, rotation and translation:

Tx = s

[
cos θ − sin θ
sin θ cos θ

]
x +

[
µx

µy

]
(17)

with the scaling factor noted as s (s ∈ R
∗+), θ refers to the rotation angle and

µ to the translation. As demonstrated in [20], the relationship between a level
set function and its transformed by similarity is solved analytically, which eases
the computation of ψ (x, t). We use the narrow banding technique to decrease
the computational cost of our algorithm. The reason for using such technique
is twofold. First it decreases the cost for evolving the active contour and re-
distancing the level set function φ. Second, it can also decrease the computational
cost of the simplex-based pose parameters estimation. Indeed the evaluation of
the cost function Jshape using equation (9), which is needed to build the simplex
vertices, can be reduced by computing shape discrepancies within a narrow band
around the 0-level set of φ:

Jshape (φ, ψ) =
∫

Ω

N (φ (x) , εb)λ (t, ψ (x))D (φ (x) , ψ (x)) dx (18)

where the function N (φ (x) , εb) is equal to 1 if |φ (x)| ≤ εb, otherwise it is
equal to 0. The band half size εb is then a compromise between computational
efficiency and the pose parameters accuracy: a too narrow band will not yield a
discriminative measure of discrepancy, which may lead the simplex optimization
to erroneous results. A systematic re-initialization of the level set function φ is
also needed to provide a good measure of dissimilarity with the shape prior and
therefore an accurate pose parameters estimation. The segmentation algorithm
can be expressed as follows:

1. For a given prior shape, initialize pose parameters: s (t = 0) = 1, θ (t = 0) =
0, µ (t = 0) = 0 and build ψ (x, t = 0). Initialize φ (x, t = 0) within a narrow
band.

2. Evolve the active contour according to (16).
3. Re-initialize φ (x, t) within a narrow band.
4. Retrieve and update pose parameters (s (t), θ (t), µ (t)) using the simplex.
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5. While the contour has not converged loop steps 2 to 5. Otherwise trigger the
shape constraint weight function increase (t = t1).

6. Repeat steps 2 to 4 until final convergence.

In our experiments a narrow band half size of three pixels yields satisfying results
and re-initialization is achieved in using the fast scheme presented in [21]. We
adapted the latter method to preserve sub-pixel accuracy of the segmenting
curve.

5.3 Results and Discussion

We show experimental results with three different kinds of 2D grey-level images.
The first image depicts a manufactured toy extracted from the Amsterdam Li-
brary of Object Images (ALOI). The second and third apply to remote sensing
and medical imaging respectively. Prior shapes used in experiments represent
the exact boundaries of the object we aim at segmenting. In the case of remote
sensing imagery, prior shape knowledge might come from cartographic data as
we showed in [16]. A perfect single prior shape is however not realistic in the
case of medical imaging since shape variabilities of organs across patients, views
and acquisition means compel to use statistical frameworks. Nevertheless, we
performed experiments with the brain image in order to demonstrate the ro-
bustness our scheme on a wider range of images which exhibit a lack of dis-
crimination of the target from the background. In the following experiments,
the initial contour is similar to the shape prior and transformed by a similarity
transformation which parameters are called ξini = (sini, θini, µini) in the rest of
the paper. We propose to quantify and compare the performances of the simplex
and gradient descent schemes in computing the absolute error between ξini and
their estimates ξ̂opt retrieved by each method (table 1). We refer the reader to [8]
for implementation details about the gradient descent technique. As the shape
priors perfectly match the objects to be segmented in the images, the quantita-
tive results of table 1 also measure the accuracy of the segmentation achieved

Table 1. Absolute errors between the initial similarity transformation parameters ξini

and their estimates ξ̂opt by the simplex and gradient descent schemes

Absolute error
Experiments ∆θ in degrees ∆s ∆µ in pixels

1. Spatio-temporal λ + simplex, fig. 2.c -0.6 0.05 (−0.2, −0.05)
2. Spatio-temporal λ + simplex, fig. 3.a -0.1 -0.01 (−0.04, −0.60)
3. Spatio-temporal λ + simplex, fig. 3.b 1.0 0.00 (0.65, −0.15)
4. Spatio-temporal λ + simplex, fig. 3.c -0.2 0.00 (0.25, −0.02)
5. λ = cst + simplex, fig. 5.a 0.9 0.05 (−0.12, −0.20)
6. λ = cst + grad. desc, fig. 5.b 0.9 0.05 (−0.15, −0.20)
7. Spatio-temporal λ + grad. desc, fig. 5.c -4.0 -0.08 (0.65, −3.30)
8. Spatio-temporal λ + grad. desc, fig. 5.d 122.6 -0.20 (0.50, −3.70)
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by the spatio-temporal weighting technique.The first experiment illustrates the
efficiency of the proposed scheme with a simple case and sini = 2, θini = π,
µini = (10, −10) (fig. 2). We compare the results obtained with a constant prior
shape weight (λ = 100, λ = 10) and our scheme. The case (λ = 100) illustrates
the lack of flexibility of the active contour because of a predominant shape con-
straint (fig. 2.a where λ is intentionally high). The constraint prevents and
penalizes the motion of the active contour which image-based force is not sig-
nificant enough to segment accurately the border of the object. In that case the
correct pose parameters can not be estimated and the contour finally reached a
local minimum of the functional corresponding to an unsatisfying segmentation
result. In the second case (λ = 10), the shape constraint is not strong enough to
cope with the erasure which corrupts the object in the image (fig. 2.b), which
also corresponds to a local minimum of the energy. Finally the spatio-temporal
scheme shows how a low and spatially constrained shape prior weight enables to
reach a rough segmentation which is at the end improved when the constraint
is reinforced. The resulting segmentation is satisfying (fig. 2.c) and the pose pa-
rameters are estimated with a good accuracy (table 1, row 1). The second set
of experiments is performed with images which exhibit lack of discrimination of
the target object from the background and the proposed spatio-temporal scheme
(fig. 3). In the first case the toy pattern was flipped, resized and duplicated to
make a background with similar local radiometric properties to the target. In
the first experiment (fig. 3.a), the initial contour is transformed according to
sini = 0.75, θini = π/4, µini = (10, −10). We can see that peripheral patterns

(a)

(b)

(c)

Fig. 2. Segmenting curve evolution from left to right: comparison between constant
and spatio-temporal shape prior weight. (a) λ = 100, (b) λ = 10 (c) spatio-temporal
function with d0 = 10, λmin = 20 and λmax = 100.
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(a)

(b)

(c)

Fig. 3. Segmenting curve evolution (from left to right) with spatio-temporal shape
prior weight function and lack of discrimination of the target from the background. (a)
d0 = 15, λmin = 15 and λmax = 100 (b) d0 = 7, λmin = 27 and λmax = 70 (c) d0 = 10,
λmin = 50 and λmax = 100.

(a) (b) (c)

Fig. 4. Failed segmentations with constant shape prior weight and lack of discrimina-
tion from background. (a) λ = 20 (b) λ = 50 (c) λ = 70.

similar to the target do not affect the final segmentation result. Indeed, during
the convergence process the prior shape is flexible enough to allow segmentation
of the patterns and topology changes. At the end of the process, the target is
correctly segmented as the erasure artifact is overcome by constraint enhance-
ment. The effect of the freedom space is visible in figure 3.a as small toy patterns
are segmented within a neighborhood of the main segmenting curve. The figure
4.a shows the unsuccessful segmentation result obtained with a constant shape
constraint (λ = 20). The over-estimated shape weight restricts the motion of
the active contour which is trapped by a local minimum. The second case ap-
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plies to a remote sensing image depicting two buildings with similar radiometric
properties (fig. 3.b, fig. 4.b). In this case we expect to segment the L-shaped
building in the center of the image. The initial contour is transformed according
to sini = 1.0, θini = 0.3, µini = (7, −5). The segmentation process in figure
3.b shows how the spatio-temporal scheme conveys flexibility to the segmenting
curve while avoiding to segment the squared building nearby the target. A hard
and constant shape prior incorporation yields the unsuccessful segmentation of
parts of both buildings (fig. 4.b). The main reason of such result is the inability
of the segmenting curve to split at the border between the two buildings because
of a two high shape constraint. As a result, a part of the second building is also
segmented as it shares similar image statistical properties to the target. Finally
the ability of the segmenting curve to undergo topological changes is yet illus-
trated with the medical image in figure 3.c (sini = 1.1, θini = 0.7, µini = (3, 3)).
The spatially constrained active contour prevents from spreading all over the
image while retaining local flexibility within the freedom space and yields the
correct solution opposed to the constant shape constraint (fig. 4.c). The quanti-
tative results of these three cases (table 1, rows 2 to 4) validate the performances
of the simplex algorithm as well as our spatio-temporal scheme. Indeed, the ab-
solute error between the initial transform and its estimate is less than one degree
for the angle, less than one pixel for the translation and less than 0.05 for the
scale factor. Results displayed in figure 5 compare the simplex and gradient de-
scent schemes for the estimation of the similarity transformation parameters.
The two first experiments carried out with a simple case (sini = 1.5, θini = π/4,
µini = (2, 0)) show comparable good results with a constant prior shape weight,
which is confirmed by the parameter estimate errors (table 1, rows 5-6). However
the two last results are wrong segmentations with the spatio-temporal schemes
and the gradient descent (fig. 5.c-d) whereas they were successful with the sim-
plex algorithm (fig. 3.a, fig. 2.c). Sensitivity to local minima of the gradient
descent scheme might explain these incorrect segmentations. The comparison of
the parameters estimations (table 1, rows 2&7 and 1&8) also demonstrates that
the simplex outperforms the gradient descent in these cases. In the end, we com-

(a) (b) (c) (d)

Fig. 5. Segmentation results comparison with the simplex and the gradient descent
schemes. (a-b) successful results with λ = 75: (a) simplex method (b) gradient descent.
(c-d) unsuccessful results of the grad. desc method with the spatio-temporal scheme:
(c) d0 = 15, λmin = 15 and λmax = 100 (d) d0 = 10, λmin = 20 and λmax = 100.
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(a) (b) (c)

Fig. 6. Failed segmentations with: (a) sole temporal variation of the shape prior weight
amplitude between λmin = 30 and λmax = 70 (no spatial relaxation). (b) spatio-
temporal model with ramp-like spatial profile. (c) spatio-temporal model with no time
transition (Heaviside step function for λa(t) and d(t)).

pare our spatio-temporal shape constraint scheme exposed in (8) with simpler
temporal and spatial profiles functions. In figure 6.a is displayed the segmenta-
tion result with a sole temporal weight variation (no spatial relaxation) using
the same (λmin, λmax) values as the experiment carried out in figure 3.b. This
result is unsuccessful unlike the spatio-temporal case. With the purely temporal
method, the low shape constraint applied at the beginning of the convergence
process does not allow to overcome image artifacts because of the lack of spatial
flexibility. As a consequence, the segmenting curve diverges from the target and
biases pose parameters estimation. When the shape constraint is reinforced at
the end, the curve is far from the target with a significant shape weight, which
makes the segmentation process very sensitive to local minima and explain the
erroneous result. The second experiment similar to the one in figure (3.c) was
carried out with the proposed spatio-temporal technique but with a different
spatial profile. Instead of the exponential formulation, a simpler piecewise lin-
ear function was used: λspace (ψ (x)) = |ψ (x)| / (2d (t)) if |ψ (x)| < 2d (t), else
λspace (ψ (x)) = 1. With this more intuitive ramp-like spatial profile, the re-
sult is incorrect (fig. 6.b). Such profile reinforces too much the weight in a very
close neighborhood of the prior shape. As a result, the segmenting curve is not
flexible enough to roughly capture the object in the image and prevents from
a good result when the shape constraint is enhanced. Attempts with a larger
freedom space to cope with this drawback would not yield better results as the
shape constraint would be too loose in space. The proposed spatial profile in
(8) alleviates this problem since it enables a low weight close to the reference
template while retaining a strong constraint farther. Finally, we repeat the ex-
periment of figure 3.b while replacing the temporal profiles λa(t) and d(t) by
two Heaviside step functions. The shape constraint is then suddenly enhanced
instead of progressively. The unsuccessful result of figure 6.c shows that the
spatio-temporal scheme proposed originally performs better. Before shape con-
straint reinforcement, the pose parameters estimation can be slightly biased as
the contour roughly segments the object in the image. A progressive reduction of
the freedom space and increase of the constraint amplitude is therefore needed
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for the parameters estimation scheme to catch up with the evolving curve which
converges to the target because of its gradually enhanced regularization. Such
adjusting procedure is not possible with a sudden constraint application as the
active contour directly embodies the prior shape with inaccurate pose param-
eters. As a consequence, the evolving curve might be far from the target with
a high and uniform shape constraint, which makes it sensitive to local minima
and prevents from satisfying segmentation (fig. 6.c).

6 Conclusion

We have presented a soften single shape prior incorporation for model-based
level set segmentation of objects from corrupted data in variational frameworks.
The proposed scheme is intended to circumvent the difficult tuning of the weight
balancing shape and image information. Most of the time this constant param-
eter is under or over-estimated, which yields unsuccessful segmentation results
corresponding to local minima of the energy functional. The proposed shape
constraint is spatially relaxed in a neighborhood of the prior shape to over-
come the issue of local minima. The constraint is later enhanced to overcome
image data corruptions. Experiments carried out with different kinds of images
demonstrated the efficiency of our spatio-temporal approach compared to the
shape prior integration achieved by a constant constraint. We also empirically
demonstrated the good performances of our approach with respect to simpler
temporal and spatial profile functions. Future works may be dedicated to the
building up of a theoretical basis enabling to retrieve such profile functions from
the image and shape prior information instead of the exposed ad hoc definitions.
Besides, we have proposed an alternative to the gradient descent scheme for
pose parameters estimation by using the downhill simplex method. The simplex
algorithm is easier to tune and estimates more robustly pose parameters than
the gradient descent scheme. Practically more tractable, the proposed method
is simple, easy to implement and can be applied to any segmentation problem
incorporating single prior shape constraints.
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