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Abstract—This paper proposes a probability model and efficient 
scheme to extract buildings object from high-resolution 
panchromatic image in dense urban area. The overall idea of this 
work is to segment the image into regions, to treat all extracted 
regions’ contours as candidates, and to make use of specific 
probability model to select ‘true’ buildings. Discriminative 
features that characterize buildings are proposed. Application is 
performed on Quickbird images over Beijing city. 
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I.  INTRODUCTION 
This paper focuses on probabilistic modeling for building 

recognition in dense urban areas from high resolution images. 

Often confined to the remote sensing (RS) community, 
building retrieval from high resolution images is a difficult 
object/pattern recognition problem. The difficulty comes at 
first, likewise other vision problem from the data acquisition: 
the image is a projection of the real 3D object, therefore 
introducing deformation and multi-faces view of the object; 
shadows appear more or less, depending on the sun position 
and high of the buildings; occlusions are frequent in very 
dense areas. RS images are also characterized by a very high 
level of noise: stochastic noise–i.e. thermal noise, as in all 
system acquisition but also deterministic noise–such as cars, 
white lines, i.e. all small features that disturb the recognition 
process. Moreover, a contrary to man-made object detection in 
natural scenes,  the RS image is mostly composed of roads, 
buildings, etc, which have all similar types of primitives–
straight lines and right angles; Therefore approaches relying 
on low level features detection would inevitably fail. Use of 
texture information is also biased since objects have seldom 
homogenous intensity distribution.  

In the present paper, we propose an original approach for 
object–i.e. building-- extraction in dense urban areas. The 
core of the idea is to use probabilistic theory at its simplest 
level, assuming that the buildings probability distribution can 
be represented by a logistic function. Buildings are seen as 
independent objects in the image. Our main contributions are: 
i) to propose original features that characterize buildings; ii) to 
achieve recognition by computing a probability measure on 
each individual object.  

The following of this paper is organized as follows: section 
II is a brief summary of traditional and recent works on 
recognition and object retrieval in external scenes; section III 
describes the proposed model and computational scheme; we 
give details about the features that are computed; section VI 
presents samples of the results and their analysis. A conclusion 
is finally given in section V. 

II. RELATED WORKS 
Pattern/object recognition is one of the major ‘unsolved 

problem’ in image analysis and computer vision. Starting from 
Marr [10], recognition has been first considered as a bottom-
to-top problem: in a hierarchical scheme, features are first 
detected, then constraints are progressively added, up to 
higher level recognition. One can consider this approach as an 
attempt to answer to the question: what is where? since it first 
considers the location, then the nature of the object. Due to 
high sensitivity to noise, it shows strong limitations and, in 
general, low robustness. At the opposite, top-to-bottom 
scheme defines at first what should be the object to search for, 
then tries to localise it in the image. The problem is therefore 
shifted to the question: where is what? (first defines what is 
the object, then attempt to know where it is). Indeed, the 
generic definition of a specific object is extremely difficult. 
Since the last ten years, the trend is to say: we cannot define 
arbitrarily the parameters of the model, but data themselves 
can do it. This idea has raised indeed the generation of 
learning-based and knowledge-based approaches. At the core 
of these, is probability and statistics.  

Numerous works have been proposed for man-made objects 
extraction–building or road from aerial [11, 6, 5] or very high 
resolution satellite images [4]. Mayer gives in [7] a complete 
overview focused on buildings and proposes specific 
improvements. Worth to notice is the limitation of the use of 
one unique image: works are more and more oriented to the 
fusion of 2D and 3D digital surface model or Lidar data, which 
enables in particular to reduce occlusion and shadow problems 
[12, 3]. Little works have been done to study the potential of 
probabilistic modeling and derived approaches–maximum 
likelihood, markov random fields [9], discriminative random 
fields [1, 2], … However intuitively, this type of approaches 
are the best suited to deal properly with the high level of 
noise – or uncertainty – of the RS image. One of the 
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difficulties is to translate the geometric shape that characterizes 
a building into features to be incorporated into the model. 
Widely used for natural scenes [1, 2], we study in this paper the 
potential of an approach derived from probability theory for 
building recognition in complex urban scenes of RS image. 

III. THE MODEL 
A reliable probability measure relies on the appropriate 

choice of the functional and of the features. Our approach 
consists in computing this probability function over regions 
extracted from a segmentation step. Features are computed 
over these regions. Functional parameters are estimated from a 
large training data set.   

A. The Functional 
Similar to the association potential as given by Kumar [1, 

2], we define our probabilistic distribution by 

 (1) 

Where P is used as a measure of confidence of building 
candidates and iy  is the features vector at element i, x  is the 
label associated to the given element–with xi=1 for building 
and xi= -1  for non building. ω  is the parameter vector of the 
model. The application function f transforms the feature vector 
y such as: m dℜ → ℜ and [1, ]→ ty y,y y,y . y  is defined as 
the product of each feature with another. Knowing m is the size 
of the feature vector, the dimension d is given by: 
1+m+m(m+1)/2. 

B. Candidates Selection 
We extract at first some regions of interest, that we refer as 

building candidates { }i i Sb ∈Β = , where S is the candidates 
space. Β  is generated by first applying a sliding multi-window 
binary filter on the original image [8]. The window binary filter 
can be associated to a pass-band filter, where pixels having 
intensity level within the bandwidth are retained. This filter is 
sliding progressively from an arbitrarily predefined minimum 
value to an arbitrarily predefined maximum value, generating 
each time it is applied a new binary (i.e. black and white) 
image. In each of these images, aggregated pixels form 
compact regions, whose closed contours Cp are extracted 
(mathematical morphologic operators need to applied first to 
clean the data). All of these contours C={Cp} localize potential 
candidate buildings. Smallest or largest contours are removed, 
overlapping contours are merged. Merging enables to generate 
only contours that can be considered as building candidates 
in Β . Indeed this step is critical. We merge the overlapped 
contours such as to maximize the probability measure  
p = P( x = 1). We call this algorithm the ‘cut-and-merge’ 
approach. 

C. Features Computation 
In this section we focus on the way to compute the features 

vector   from building candidates closed contours. Computa-
tion of the features vector requires to pre-compute various 

information, in particular: edge points, edge line segments and 
shadow mask in the image. Shadow mask is obtained by 
finding the class of lowest intensity level of the contour region 
gray histogram. Edges points are extracted using Canny 
detector. The eight different features that are used are defined 
as follows: 

• Distance to the Straight Lines 

For each contour curve Cp, we accumulate the distance 
of every pixel to its nearest straight lines’ pixel. The 
first feature is the ratio sum of distance over the total 
length–i.e. total pixels number of the contour. This is 
motivated by the fact that building shape is polygonal 
and therefore constituted by joint line segments. 

• Contour Region Entropy 

For each contour curve Cp, we compute the entropy of 
the region inside it. The entropy is calculated based on 
the grey level histogram of this region. Roof building 
texture is relatively homogenous and therefore has 
higher entropy than non building contours. 

• Contour Including Edges 

Let’s say that the number of edges pixels (excluding 
the straight lines) included within the region delineated 
by the contour curve Cp is given by in_ep. The third 
feature is the ratio of in_ep over the inside area size–
in term of pixel number. The motivation is that roofs 
are generally regions with smooth intensity level 
variations. 

• Grey Level Average Value and Standard Deviation 

Building contours regions often have lower standard 
deviation than non-building. If the average of the 
contour region is too low, the contour maybe a shadow 
area contour. 

• Shape Features 

We compute the gradient direction of each contour 
curve pixel and create the histogram over gradient 
direction [2]. Based on this histogram, the second 
moment is retrieved and saved as a feature. The peaks 
of the histogram are obtained simply by finding the 
local maxima of the histogram. Let 1δ and 2δ be the 
ordered gradient direction angle corresponding to the 
two highest peaks. Then the orientation based feature 
is computed as |cos(2( 1δ - 2δ ))|. These two features 
are indicator of perpendicularity and parallelism of the 
straight lines that constitute the contour.  
We assume here that building borders may be 
preferentially perpendicular or parallel. 

• Shadow Ratio 

For the original image, it is very easy to know the 
orientation of the sun light. Translating the object 
contour Ci from n pixels (usually 3-5 pixels) according 
to the sun light orientation, one can create a new 
contour Cj. For Ci and Cj, their inside regions are noted 
Λi andΛj and we can make a new region Λ’ = (Λi 
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∪ Λj) –Λi. The number of shadow pixels included 
within Λ’ is given by in_shd. The eighth feature is the 
ratio in_shd over the area of Λ’. The motivation is that 
building contours are usually adjacent to shadow area. 

A. Parameters Estimation 
The unknown parameters ω  are retrieved from training 

images.  Parameters are computed by maximizing the sum of 
the log-likelihood of iP calculated at each element i. Thus we 
have: 

 (2) 

where N is the total number of sub-images of the training set, 
and S is the space of the elements labeled as building 
areas ix = 1 or non-building areas ix = -1. The optimization 
procedure is performed with a gradient descent algorithm. 

 We manually created the subset S from 4 large images–
dim(S) is close to 2650 with about 650 buildings and extracted 
2000 non-building, for our experimentation. The computation 
time take about 3-4 minutes. Note that the computation cost 
comes from contour feature computation and the optimization 
per see only takes less than 10 seconds. 

B. Inference 
Basic probability laws enable us to write: 

 (3) 

Computing the feature vector y  at each building candidate 
and knowing ω , we can easily compute P. To retrieve true 
buildings and eliminate false candidates we should have: 
P( x =1) > P( x =-1). Using equation (3)， we then retain as 
buildings objects verifying: 

           P > 0.5.                                                                     (4) 

II. APPLICATION AND RESULTS ANALYSIS 
Application and results are given on sub-images extracted 

from panchromatic Quickbird image, acquired in 2002. Image 
resolution is 0.6m/pixel. 

The data have been processed and building retrieved 
applying equations (1) and (4). Post processing involves 
polygonal approximation of the recognized buildings using 
Douglas-Peucker line approximation method. 

Table 1 summarizes simple result analysis in term of 
detection rate “DecR” (detection could be false or correct) and 
correct detection rate “CorR”.  High value of detection rate and 
correct detection translate good results (see table 1 caption) 

Note the complexity and variety of the shape and roof 
texture of the original images. The illustrations of the all set of 
contours (to right image) and the final candidate building 
contour after merging (image bottom left) show how much the 
cut-and-merge algorithm is powerful. 

Bottom right figures, i.e. final retrieved buildings 
superimposed to the original images, show that some of the 
buildings can be retrieved partially, but their position or shape 
may not be correct. This may be due to features vector    that 
may not be discriminative enough. 

The figures of the global results however are quite 
significant. 

TABLE I.  RESULT ANALYSIS 

Image Ref Correct Error Non DecR CorR 

1 37 36 0 1 0.973 1.000 
2 30 24 1 6 0.800 0.960 
3 40 34 3 6 0.850 0.919 
4 24 24 2 0 1.000 0.923 
5 35 24 2 11 0.686 0.923 
6 23 20 2 3 0.870 0.909 
7 16 12 1 4 0.750 0.923 
8 44 34 4 10 0.773 0.895 
9 28 23 1 5 0.821 0.958 

Total 277 231 16 46 0.834 0.935 

Ref: number of buildings identified visually (ground truth); Correct: number
of correctly detected buildings; Error: number of mistaken detected building;
 Non: number  of undetected building;   DecR: Correct / Ref;   CorR: Correc
t / (Correct + Error) 

 
 

 

 
 
Figure 1.  Illustration on Quickbird image on Beijing area (image No. 8 in the 
table 1), acquired in 2002. top left: original image; top right: contour 
extraction C from sliding multi-windows thresholding; bottom left: selected 
contour after merging; the gray level of each contour is proportional to its 
compute probability measure; bottom right: final building retrieval after 
polygonal approximation, overlapped to the original image 
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Figure 2.  Illustration on Quickbird image on Beijing area (image No. 4 in the 
table 1), See figure 1 caption of images description 

  

  
Figure 3.  Illustration on Quickbird image on Beijing area (image No. 1 in the 
table 1), See figure 1 caption of images description 

III. CONCLUSION 
We proposed in this paper an original approach for building 

inference based on basic probability modeling. The robustness 
of the approach is due in particular to the appropriate definition 
of probability distribution function and appropriate features 

choice. However, the present approach still shows certain 
number of limitations. In particular, we can notice the 
insufficiency of the shadow model since it can not be 
generalized from one image to another –the orientation of the 
shadow with regard to the building is not an invariant. 
Robustness of the approach with regard to different imagery 
system or resolution will also be tested. 
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