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Abstract—This paper introduces a new approach to compute
similarity/dissimilarity between images or regions from images.
It borrows concepts from object recognition and content based
image retrieval. The main idea is to build a bag-of-features where
the feature clusters are learnt from a single pair of images.
Normalised Cut is used to segment the image into regions which
exhibit homogencous and regular structural pattern distribution.
Histograms of feature types are compared using the x* distance.
The application is on very high resolution optical satellite images,
for urban development analysis.

I. INTRODUCTION

Our objective is to propose and to demonstrate the limit and
potential of a completely new framework for structural change
analysis from two co-registered remote sensing images, with
application on urban areas and VHR optical data,

A survey of change detection techniques can be found in
[10]. Thought it is a quilc thorough review, it docs not give
much insight of most recent and innovative approaches. Kumar
and Hebert introduced Discriminative Random Ficlds (DRF) to
detect structured objects (i.c. polygonal objects) [rom natural
images. Liu Wei extended and adapted DRF model (o the case
of structural change analysis |6]. Bover and Sarkar developed
in [11] and [14] an approach based on graph spectra and
eigencluster in order to segment the image into developed and
less developed areas, where the word “developed” refers to
the lines organisation in the image. Li and Hu [S], in a similar
fashion, proposed to first partition the image, then to analyse
the changes at the level of the sub-graphs.

The approach we introduce in this paper is originally
motivated by the need to [ind a correct delinition of “what
is a change”, from remote sensing VHR images. Figure 2
shows examples of different types of change in a scene, from
structural (top-left), to object (top-right), or texture (bottom-
left). The bottom-right image pair illustrates the difficulty to
differentiate between “apparent changes™ in the image and
“real changes™ of the real scene. “Apparent changes™” can
be generated by shadows, acquisition view angle, occlusion,
seasonal effect, or by the introduction of temporary objects in
the scene. such as people, car. bird, ... Bottom-right images
at figure 2 accumulates the effects of shadow, projection, and
apparition of birds. Indeed, we are interested to analyse only

Fig. 1. Original panchromatic Quickbird (0.61m/pixel) pair of images over
Beijing city. Top: Year 2001. Botom: Year 2003.

the “real changes™, or long term changes which happen in
the real word. We address the issue of structural change.
A structural change is characterised by the apparition or
disparition of a compact block of similar geometric objects
in the scene. One can observe a typical structural change on
figure 1, localised at the centre of the images. The presence
of buildings forms a structural pattern or structural texture in
the image.

To tackle the problem of structural change, we are guided
by two main principles: both global pattern and local features
are important; it is easier to formalise the notion of similarity
rather than the notion of change itself. The approach we
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Fig. 2.
—bottom left, object —top right right, and apparent —bottom right. The two
former characterise global change —at the scale of the scene or regions of
the scene— while the two latter are local —at the scale of the object.

Different types of change in a scene : structural -top left, texture

propose takes root in the works that emerged since ten years
about in the field of object-categories recognition ( [7], [8]).
‘We adapted this concept to the problem of change recognition.

The rest of the paper is organised as follows: section II
introduces the principle of structural change computation; we
first give a general overview, then we explain in details the
segmentation from Normalised Cut, the generation of a bag
of invariant features and the quantitative evaluation of change.
In section III, an illustration of the approach is shown from
concrete examples on a VHR optical image pair taken on
Beijing City. The paper ends with a conclusion in section IV.

II. STRUCTURAL CHANGE FROM BAG-OF-FEATURES
A. Approach overview

The general principle is to assume that a given scene in
the real world can be represented by a limited number of
specific local appearance features (lets call them feature types
at this stage) computed from the image, independently of
the image acquisition conditions. We proceed at first to a
rough segmentation of the image into structurally consistent
regions (section II-B). At the scale of the images, we constitute
a dictionary of words (section II-C). Each region is then
described with a vocabulary taken from this dictionary. Then,
the change analysis between two associated regions extracted
from a pair of images is performed by computing the similarity
within their vocabularies (section II-D).

B. Graph-based image segmentation

Our approach for image segmentation into regions of dif-
ferent structural patterns is mainly inspired by the works from
Boyer and Sarkar [11], [13].

Man made objects -buildings, roads, railways,..— in an
abandoned rural area, will be sparse and have random direc-
tions; a contrario, man-made objects in a highly developed
region, for example an inhabitant suburban area, are dense
and regularly spaced in the scene, most often parallel or
orthogonal to each others. The level of spatial organisation
of the objects in a real scene is characterised in the image
by the degree of spatial organisation of edge lines. Highly
regular spatial pattern of edge lines, or, at the opposite, fully

random distribution of edge lines, characterises the “structural
pattern” of a region in the image.

Hence, in order to segment the image into regions of similar
structural pattern, we build up a graph G' = (V, E), where the
nodes/vertexes V' are the line segments, extracted from the
image using support region method as described in [14]; the
weight w;; of each edge e;; € E linking pairwise nodes (i, j)
(i.e. straight lines) is defined as a function of the distance
between these two connected nodes and of their relative

¥ orientation:

2
wij = | cos(2ai) | exp(~57)
e

(1)

where a;; is the angle between the normals of line ¢ and
of line j; d;; is the distance between line i and line j; 3 is a
scale constant that controls the maximum distance in which the
lines” pair will affect each other; and |.| denotes the absolute
value. The relation matrix defined by W (i, j) = w;; = wy; is
symmetric and positive definite.

Normalized Cuts (Ncut) [12] is used to partition graph G
into sub-graphs GG, G2. The cost function to minimise in order
to generate sub-graphs with maximum intracohesivness (with
respect to the definition of the weight function), is defined by:

cut(Gq,G2) cut(G1,G3)
assoc(G1,G)  assoc(Gz,G)

Ncut(Gy,Ga) = (2)
where assoc(G1,G) = Yicq, jec Wi cut(G1,G2) =
Ziecx JEGy Wij-

Equation 2 has an analytical global minimum solution which
can be computed by solving the following eigenequation [12]:

D™5(D~W)D™ix = Ax

where D is a diagonal matrix with each item on the diagonal
is the sum of all the items in the comresponding row in W.
The eigenvector x with the second smallest eigenvalue A
determines the optimal bi-partitioning of the graph.

This bi-partition process is performed iteratively. Intuitively,
we wish the partitioning process to stop when the intra-
cohesiveness within each resulting region is high enough.
Simultaneously we will wish to favour the partitioning at the
beginning of the iterations, and to penalise it while iterations
go on. Based on these remarks, we propose the following
Iteration Stopping Criteria (ISC) to be applied within each
region i:

assoc(GL,G'1)
conn(G')

l
> Trse CXP(_S) (3)

where i = {1,2}, G! is the sub-graph i at iteration level [ >
0, conn(G') is the number of connections in sub-graph G'
—i.e. card(V_L.l)—, and T7sc, 0 are constants which control
the maximum threshold and the decreasing speed respectively.
G" is the initial graph formed by all segments in the image.
The number of partitions at the end of the iterations is thus
determined by the image itself —and the parameters values
indeed. Partitions are identified by their index k, 1 < k£ < N.



The graph partitioning however does not segment the image
itself —since G = (V, E) is built on the edge lines and not
the image pixels. Image segmentation is performed by back
projecting the vertexes V' onto the image. Pixels are assigned
the index of the partition they are the closest to. We end
up with an image segmented into geometrically structured
regions.

We propose to evaluate the quality of the resulting segmen-
tation by comparison with a manually created ground truth
—based on our own (subjective) understanding of what is a
structurally consistent region. We define a similarity factor
Sim between N cut-segmentation Sy, and ground truth
segmentation S, by:

Sim(Sy, Sneut) =

exp(—|Ny — Nyvew|) [ |
k

k h
Jllmuwinler(-PJ Feuts Pyt)
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where A,,m“,,k.,,(Pﬁrwt., P;‘) is the maximum intersection
area between the Ncut region k, P}, and its corresponding
overlapping ground truth region indexed h, P"; A(PE_ ) is
the area of the Ncut region k; Nyeyt, Ny are respectively the
total number of regions resulting from the N cut segmentation
and from ground truth segmentation. The manually created

segmentation is shown in figure 3.

C. Invariant features

We argue that similar scenes will have similar feature-
types (so-called bag-of-features, or words dictionary, see for
example [8], [15]) and that defacto it is possible to “recognise”
the similarity between two scenes based on the comparison of
their feature-types computed from images.

We compute local features with directional gradient his-
tograms over small patches (typically 16x16 pixels window
size). Patches are centred on key points extracted with a corner
detector (e.g. Harris detector), or randomly distributed over the
image [8], [9]. These SIFT-like operators [8], [15] have proved
to be very robust features to characterise the geometry of the
object locally; they are the most popular descriptors for object
recognition from static images or video [1], [4]. The classical
approach is to compute SIFT features from a large database
of positive and negative image samples, and to cluster them
into a certain number of classes or feature-types, characterised
by their centre (i.e. the average of all features belonging to a
cluster) and possibly their variance (in the feature space). This
is for the learning phase. The recognition phase is achieved
by classifying the test image as positive (the object exists) or
negative (there is no such object in the image) [15].

Features should be robust to illumination changes and
to differences in view angle during the image acquisition
process. To make directional gradient features invariant to
affine transformation of intensity level, it can be shown that it
is sufficient to normalise the gradient directions by the local
average intensity level. Invariance to rotation has to be treated
more carefully. We detect the predominant direction in the
local patch and compute its associated orientation angle .

Fig. 3. Ground truth segmentation generated from the top image of fig. 1 .

All gradient directions computed in the patch are then turned
with an angle . It results that, the “normalised” predominant
direction is identical for all the patches.

The problem of change recognition needs to be tack-
led slightly differently than for “pure” object recognition —
although based largely on the main concepts— since we do not
have access to a large data-base for training. The purpose is
not to describe a scene uniquely but to compare the similarity
between a pair of images in term of feature types (namely
“words”). We do not have positive and negative samples.
Corner detector and SIFT descriptor are applied on each of the
two images. Clustering is performed and generate a dictionary
of words. To each patch is assigned the closest word in the
feature space. Thus, each of the two images are described with
a set of words taken from the same dictionary. Because we
deal only with local appearance patches, two different scenes
which have similar local geometrical properties —e.g. a scene
of residential buildings in dense urban area— will be described
with a similar vocabulary.

Structural change analysis will then be achieved by com-
paring the set of words that describe each image.

D. Change analysis

The most simple and straightforward way to express —
and to quantify— changes between two images or regions in
images, is in term of a distance of local features. It is the
approach we choose in this paper.

In practice, we carry out the segmentation step (section II-B)
in one image only. The resulting segmentation, i.e. delineation
of contours that separate two or more regions, is projected onto
the second image. For each region of each of the two images,
a histogram of words, hist, is built (section II-C).

We use y?-distance to quantify the similarity/dissimilarity
between regions. The degree of change DG of a given region
k between image 1 and image 2 is then given by:

DGy, = x*(hist'(k), hist* (k)))



Fig. 4. Graph final partitions (top) and image segmentation (bottom).

where hist! (k) and hist?(k) are the words’ histograms
computed in region k from image 1 and 2 respectively.
High y2-distance value corresponds to very different scenes
and vice-versa.

For comparison with a manually estimated “ground truth”
of the changes, we threshold the DGs and quantify them to
{0, 0.5, 1}, associated respectively to the classes “no-change”,
“partial-change”, “total-change”. The overall quality index of
the changes estimation between two images is then defined
by:

Q—iz L d(2 DGy) — gt(k) ’
=N 5 TOUT Tk gt(k

k

where the function round(a), a € R, is the closest integer
approximation; gt(k) is the ground truth for region £ (ground
truth takes values belonging to {0;0.5;1}; and NNV is the total
number of regions.

Fig. 5. Zooming of the top-left part of the graph partition at figure 4. Colours
represent partition index. The straight dark lines delineate the partitions
indexed 1,2 and 3.

III. RESULTS

Input data used for experimentation and validation are a
pair of Quickbird panchromatic images (resolution 0.61me-
tre/pixel), acquired in 2001 and 2003, and covering the area
of Beijing. An example of input images is shown in figure 1.
The image size is 1625 x 1318 pixels (about 1000x800m? on
the ground), and the grey level spreads over 8 bits.

The values of the parameters fixed manually are: 3 = 30
(equ. 1), T75c = 0.06,0 = 10 (equ. 3). K-means algorithm
stops when less than 1% of points are reassigned to a new
cluster, with a total number of clusters to 17.

We illustrate the results from figures 4 to 7. Graph partitio-
ning and image segmentation results are given at figure 4, with
a zoom of the graph shown at figure 5. The partitioning clearly
separates regions composed of edge lines having different
orientations and organisation levels. The drawback of graph-
partitioning based on edge lines is that an image region without
edge lines (e.g. grass land) cannot be identified as an individual
part. The resulting segmentation at figure 4 is however rather
good and corresponds well to our perception of structural
segmentation.

The spatial distribution of feature-types (words) on each of
the two images is shown on figure 6. One can notice (from the
colour image) how well different words (identified by different
colours) are associated to different local geometrical features.
For example red-word is localised mainly in the low textured
land areas, while green-word covers mainly the buildings.

The final classification of each region into “struc-
tural change”, “no-structural change”, or “partial-structural
change”, is given in figure 6(b) and compared to the manual
classification on 6(a). Here two regions are mis-classified. If
we take a look at the central (oval) region, we can notice that
there exist clear modifications in this area, but that there are
not of structural type, and therefore have not been detected
as structural change. This show the power of computing local
geometrical features, rather than global texture characteristics.



(b)

Fig. 6. Extracted patches and feature descriptors: colours represent the word
index to which the local patch is assigned. (a) Year 2001, (b) Year 2003.

IV. CONCLUSION

In this paper, we proposed a novel framework for structural
change detection and analysis from roughly registered very
high resolution remote sensing image pair. The main idea is
that a scene can be described in term of a limited number of
local appearance feature types (words). The distance between
words histograms is an indicator of the similarity/dissimilarity
between two scenes. A rough image segmentation achieved at
first, makes it possible to localise the areas of the changes/no
change.

Future work will focus on the reformulation of the weights
of the relation matrix by adding concepts borrowed from
Gestalt theory, the integration of a multi-scale approach, and
the development of a probabilistic model of change.

(a) Change labelled by hand

0.065

(b) Change quantification

Fig. 7. Structural change is computed at each region using y? distance
(indicated by the numerical value). then quantified. Colour code is: red: no
change, green : partial change, blue : change.
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