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Abstract — In this paper, we propose a general frame-
work for automatic change detection of flooded areas
in bi-temporal Synthetic aperture radar (SAR) imagery.
Based on the fuzzy entropy principle, a single thresholding
method is proposed. The difference image which is gener-
ated by subtracting, one SAR image from the other one,
pixel by pixel, can be divided into two classes: changed
and unchanged. Due to noise, this single threshold deci-
sion procedure applied in the difference image is prone to
two kinds of errors: false positives and false negatives. To
cope with this problem, the threshold method is performed
again on the two separate classes. As a result, the differ-
ence image can be divided into changed, unchanged, and
unlabelled classes. The unlabelled class contains most of
the ambiguous pixels that are responsible for false positive
and false negative errors. In order to identify the true cate-
gory of the pixels in this class, we adopt a voting procedure
to compute the saliency of each unlabelled candidate pixel
by analyzing the region configuration in the local neighbor-
hood. Finally, according to the radiometric characteristics
of water bodies in SAR images, some verification measures
are carried out to identify water changes.

Key words — Change detection, Fuzzy entropy, Voting,
Homogeneous regions, Verification.

I. Introduction

With a large amount of satellite data available, there is an ur-
gent need for change detection techniques that can automatically
determine the locations of changes by comparing two images, which
are taken from the same geographical area at difference times. The
need stems from a wide range of applications such as: environmental
monitoringl3), forest[®] and agricultural surveysl and so on.

Many methods have been proposed for automatic change
detection('"2] over the past two decades. Some comparative per-
formance studies were reported in Refs.[8]. In Ref.[1], the authors
used the Markov random field (MRF) method to model the spatial
context in the prior model. Although this method exploited explic-
itly the local spatial information in the MRF framework, it did not
make full use of all the information in the image. The preservation
of MRF properties may not be guaranteed after some transforma-
tions such as subtraction of one image from another. To preserve
the MRF property, one has to define a set of potential functions in
the Gibbs energy function. However, only a simple potential func-
tion (the Kronecker delta function) was adopted in Ref.[1]. Thus
the MRF properties may not be preserved in their framework. In
Ref.[7], based on a global optimum strategy, the authors proposed
an automatic change detection method. They used MRF to model
the statistical correlation of intensity levels among neighbor pixels,
and used a global optimum search to determine which class each

pixel belongs to. The method was more accurate than pixel-based
models to some extent. However, in their approach, they required
some prior knowledge about the Gibbs potential and the Gibbs pa-
rameters, associated with the Gibbs potential for both noiseless im-
age models and change image. This method is not practical in real
applications. As a result, they had to make some assumptions on
Gibbs potential when processing real images. It is obvious that
the final result was excessively dependent on the form of the Gibbs
potential. Furthermore, the optimal search was conducted over all
pixels of the image. Although the Simulated annealing (SA) algo-
rithm was used to reduce the complexity of the computation, this
kind of search procedure was not feasible even with a normal size
image, such as 512 by 512, because the complexity of computation
increases rapidly according to image size.

In this paper, we propose a new method for automatic detec-
tion of changes in a water body by comparing two SAR images.
In order to preserve the original image information, we analyze the
difference image at two different levels instead of directly filtering
speckle noise on two original images. Our method consists of three
parts: First an entropy-based thresholding technique is used-to an-
alyze the difference image. To decrease the classification errors,
we categorize the difference image into three classes: changed, un-
changed, and unlabelled. Then for the unlabelled pixels, we com-
pute their saliency by analyzing the contextual information in the
local neighborhood. Finally, by using the radiometric properties of
water bodies in SAR images, an effective verification is proposed to
determine the water-inundated areas. Results with real images are
included to demonstrate the validity of the proposed algorithm.

I1. Classification of Difference Image

1. Thresholding based on fuzzy entropy principle

Image thresholding is an important technique in image process-
ing and pattern recognition, which is regarded as the first step for
image understanding. Many methods have been proposed to se-
lect the threshold automatically(*?]. Let D = {d(i, ), (i,j) € S}
denote the intensity level of the difference image; here § is the
dimension of the image. The change detection problem consists
of determining a binary label ¢(i,j) for each pixel on the differ-
ence image grid D. We associate ¢(i,j) with two possible events:
¢u(i,j) = unchanged class, and ¢.(i,j) = changed class. Defining
a threshold image T,, and letting ¢, 7(i,7) and ¢. (i, j) denote
the set of unchanged and changed classes induced by the threshold
T, we have:

if d(i,j)<T

otherwise

o=

¢u'T(iij)y(ivj) € sv
¢c,T(ivj)v ('vJ) € sv
Our objective is to find automatically a threshold T' at which

the difference image can be divided into two different classes based
on its histogram. Let 2 = {z;;i = 1,2,-+,n} be a fuzzy set with a
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membership function p(z;,T'), where z;,i = 1,2,---,n are the pos-
sible outputs from source 2 with the probability P(z;). The fuzzy
entropy of set {2 is defined as/10):

J==3, enP(@i)log P(zi)p(zi,T) 1)

Entropy describes uniformity of the set 2. When occurrence
probabilities of different states z; are uniform, the entropy of the
set is high. If 2 = {z;;i = 1,2,---,n} is viewed as the intensity
levels of the difference image, then maximizing the fuzzy entropy de-
fined in Eq.(1) is in fact to find any optimum threshold T to make
the states z; to be uniformly distributed in the set of 2. When the
membership function is moved pixel by pixel over the existing range
of intensity levels, in each position, the fuzzy entropy is calculated.
The position with a maximum amount of fuzzy entropy can be re-
garded as a suitable threshold. If the intensity level distribution of
both changed class and unchanged class is the symmetrical one with
a peak, intuitively the best theoretical threshold should be located
at the intersection point of the two distributions. In other words,
when the threshold T in the membership function corresponds to
the theoretical optimum, the fuzzy entropy of the difference image
reaches its maximum. Therefore, the Gaussian function can be se-
lected as the membership function as follows:

1 (z: — T)? }
\T) = B 2
O A @
We aim at obtaining an optimal threshold T to partition the

difference image into two classes by maximizing the fuzzy entropy
of the image:

5 (1) =argmax{ - 3" P logP@p@. T} @

T, EN

The optimal T should satisfy the
dJ(T) /8T = 0, we have:

following equation:

8J(T) 1 (zi = T)?
o =m z P(x;)log P(x;) exp { - T}

Ti€
Z:.-en z; P(z;)log P(z;) exp{—(z: — T)?/2h?} B
Z:.-en P(z;)log P(x;) exp{—(zi — T')2/2h?}

=0 (4)

where Zx.en P(x;)log P(x;) exp{—(xi — T)?/2h?} is a non-zero
positive number. Since the solution to the equation cannot be di-
rectly computed, we use the iterative algorithm to find its solution.
Therefore, Eq.(4) can be rewritten via iterative processes with:

) ) (. — T2 Jop2
TG+ _ Zz.-en 2 P(x;) log P(x;) exp{—(x; — T'1))2/2h2}
2:.-60 P(z;) log P(z;) exp{—(z; — T(1))2/2h2}

Let ¢; = P(x;)log P(x;) and K(||z; — TW|2) = exp{—(ax; —
T'())2/2h?}, the final iteration equation can be expressed as:
Zz.en eixi K (||l — T||?)

S, cn Kz — TOP)

where the superscripts j and j + 1 denote the values of the param-
eters at the current and next iterations. From the above iteration
equation, we obtain the sequences {T')};_; 5 .... It can be proved
that the sequence {T9)};=1 2,... converges (Refer to Ref.[12] for

detailed proof). The optimum threshold T would be obtained by
determining whether the following equation is satisfied:

N7+ — 7D < err (M

T+ — (6)

where err is a given minimal error. Once the threshold 7' is deter-
mined, the difference image can be classified into two classes. It is
worth noting that the given minimal error can be an infinitesimal
value because {T'))} ;=1 2.... is convergent with the strictly mono-
tonic increase (a Cauchy sequence). At convergence of the sequence,

a local maximum of the aforedefined function is reached. The ini-
tial estimate T(©) is obtained by considering the possible extent of
changed areas in the two images.

2. Determination of three classes

It is obvious that the single threshold decision procedure de-
scribed in Section II.1 is subject to two kinds of errors: false posi-
tive and false negative. The false positive is pixels that are detected
as changed but are actually unchanged in the ground-truth map,
and similarly the false negative is the pixels that are detected as
unchanged but are actually changed in the ground-truth map. Uti-
lizing the fuzzy entropy principle, binary segmentation of the differ-
ence image can be viewed as the first step that classifies the pixels
into either class ¢1(%, j) or ¢2(i, j). At the moment, we do not assign
semantic meaning to the unchanged area ¢, (i,7) and the changed
area ¢.(i,J), because some pixels which actually belong to ¢.(i, j)
have been segmented into ¢(1, j), and similarly, some pixels which
actually belong to ¢.(i,j) have been segmented into ¢.,(1, j).

Homogeneous regions are Gamma distributed in SAR image.
Here we classify the pixels with the similar intensity values instead
of the homogeneous region into one class, therefore the distribu-
tion of these pixels would be very close to a Gaussian distribu-
tion. After two classes ¢q(i,7) and ¢2(7,j) are obtained according
to the optimum threshold T, we compute the sample mean uj, u2
and the sample variance of, ag respectively associated with the
two classes (Fig.1). The sample mean is calculated by taking the
sum of all the values divided by the total number of the datum
set. The sample variance is the sum of the squared deviations from
their average divided by one less than the number of observations
in the datum set. The confidence interval of the two classes ¢ (i, 7)
and ¢2(i,7) can therefore be defined as [u1 — woy, 1 + wo| and
[2 — woa, p2 + woa| respectively, where w is the confidence coeffi-
cient. According to strategy one, the threshold T} and T, which
further partition ¢;(z,7) into another two classes, and ¢(3, j) into
another two classes, would be determined as follows: T} = p) +wo)
and Tp = pz — woo (Fig.1). Then two middle neighbor classes
are merged into one class, which is denoted as the unlabelled class,
the two other classes with the high confidence are denoted as the
changed ¢.(7, j) and unchanged ¢ (3, j) respectively. Up to now, the
difference image is classified into three classes: changed, unchanged,
or unlabelled. The unlabelled class contains most of the ambiguous
pixels that are responsible for false positive and false negative errors
occurred during the classification procedure, and a voting method
will be employed to process the unlabelled class in the next section.
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Fig. 1. Representation of our thresholding method applied to
difference image

III1. Classification of Unlabelled Pixels

It is well known that change detection at pixel level is very sen-
sitive to noise since it does not exploit the contextual information.
In fact, the probability that one pixel is assigned to a non-changed
class or a changed class is not only influenced by its current inten-
sity, but also continuously influenced by the intensities of its local
neighboring pixels. Our objective of processing the unlabelled pixels
is to predict the “real” value for each unlabelled pixel by consider-
ing the known intensity values of its local neighborhood. Here we
model the interaction between pixels in the local neighborhood as a
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voting procedure, and assess the saliency of each unlabelled pixel by
analyzing the region configuration in the local neighborhood. Each
pixel around the unlabelled pixel casts one value at its location, then
the candidate pixel collects all the voting values cast at its location
by all the other pixels, and the resulting value, which will replace
the original intensity value of the candidate, is the sum of the voting
values cast at the pixel. In addition, it is reasonable to assume that
the strength of interaction between pixels in a homogeneous region
decreases as the distance between them increases. This means that
the farther the distance between pixels, the less the strength of their
interaction. Here the Gaussian decay function is used as a weight
function.

Therefore, for the ith unlabelled pixel, its “real” intensity value
can be predicted by the following:

I = Z Liw(di;) / Z“’(dﬁ) (8)
jEC jeC

where I; is the intensity value of jth pixel, d;; is the distance
between the ith unlabelled pixel and the jth pixel, and w(z) =
exp(—z2/o2) is the Gaussian decay function, and the parameter
o is determined by the size of the homogeneous region C. Eq.(8)
means that the intensity of the ith candidate is a weighted average
of the intensity in the homogeneous region C.

As is well known, voting through replacing the pixel in the cen-
ter of a window by the weighted average of the pixels in the window
indiscriminately blurs the image, removing not only the noise but
also salient information. Thus, the voting procedure with a ho-
mogeneous region is preferred. On the other hand, the result is
dependent on the size of the homogeneous region. Intuitively, the
more casts the candidate has, the more accurate is the possibility
that the candidate belongs to either the unchanged or the changed
class. Therefore we hope to find the largest size of the homoge-
neous region in which there are the most casts for each candidate
pixel. Without explicit image segmentation but based on conti-
nuity of intensity uniformity, a simple and effective algorithm has
been introduced to estimate the size of the homogeneous region for
the candidate pixel in Ref.[22]. Firstly a circle Bj(c) with cen-
ter at every candidate pixel ¢ € C and radius k was defined by:
Bi(c) = {e € C|||lc — e|| € k}. Then they defined a function,

ZZGBh(C)—B._l(c) Gy (lf(c) = fle)])
[Bk(c) — Bi~1(c)|

which indicates the fraction of the set of pixels in the circle bound-
ary whose intensities in the circle boundary are sufficiently uniform
with that of ¢, where |f(c) — f(e)| is local intensity difference for
pixels (c,e), and G, is the zero mean unnormalized Gaussian func-
tion with standard deviation o,. Finally, Fi(c), the fraction of the
scene containing c that is contained in the circle boundary, was iter-
atively checked by increasing the circle radius k by 1, starting from
1 until the largest size was determined. Refer to Refs.[10] for the
detailed algorithm descriptions and choice of parameters. Once all
pixels in the unlabelled class were processed by the voting proce-
dure, we used the single thresholding method described in Section
I1.1 to partition the renewed unlabelled class into either unchanged
or changed class. The binary image, associated with two opposite
classes, changed and unchanged, was therefore produced.

Fi(c) =

’

1V. Identification of Water-Inundated
Regions

In order to further reduce the influence of environmental con-
ditions, speckle noise, and detect precisely water-inundated areas,
based on an empirically reasonable assumption and radiometric
characteristics of water bodies in SAR images, we propose some
simple and effective post-processing strategies to further process the
binary image.

1. Post-processing based on the empirically reasonable
assumption

Iy

To test our ability to detect the change of water body from two
SAR images, the images used in our experiment were acquired be-
fore and after a flood, so that one image has more water than the
other. As we know, water in SAR images holds low intensity value,
while non-water is usually brighter. From the first image X, to the
second X3, if a flood happens, the intensity value of a changed pixel
or the intensity mean value of a flooded region should change from
high to low. When the binary change image is mapped to the two
original images (Xi,k = 1,2), for each change region, if the inten-
sity mean value of the corresponding region in image X, is lower
than the one in image X2, then we think the change region is not
generated by water.

In order to develop an automatic flood detection system, it is
necessary to automatically determine which original image has more
water. To solve the problem, wé first map all the detected changes
into the two original images respectively, and then compare their
global intensity mean values. Since water bodies have a low inten-
sity value in SAR images, the image whose global intensity mean
value is lower can be confirmed as having more water. Then, for each
detected region, the local intensity mean values of the corresponding
regions in the two original images are calculated respectively. By
comparing the two local mean values with the global mean values,
one is able to judge whether this change region is generated by wa-
ter. Consequently, some change regions that cannot be caused by
water will be removed.

2. Post-processing based on statistical measurement of
region

Although water bodies usually look dark and smooth in SAR
images, they appear rough and relatively bright when the surface of
water fluctuates because of weather conditions or some other factors.
The roughness and brightness of water bodies caused by environ-
mental noise should be considered, and the detected change owing
to these factors should be excluded. Here the region correlation and
entropy measurement are applied to cope with the problem,

Correlation is usually used to describe the degree of relationship
between two random variables, What we expect to measure is the
correlation between the intensity levels of the two regions. It can
be defined as:

NSILy;Iz — 81 SIz

= , 5= 9
T /INSTZ, - (SI)PIINSTE, — (81ai)] Lier,a ©

where N is the number of pixels in the studied region and I;; and
I; respectively denote pixel intensity values of the two correspond-
ing regions (Ri,2) in the two original images. The larger r, is, the
stronger the correlation between the two regions, and the smaller
the probability that the detected region belongs to the real changed
one.

The entropy, which is defined as

H = =S [P(e:) log Pz

ien

can be applied to describe the homogeneity of the region in the
image, where P(z;) is the probability of the occurrence of the ith
intensity level x; inside the given region 2. For a homogeneous
region, for example, if the occurrence probability of the intensity
levels is uniformly distributed, then P(z;) = const, for i € 2, and
H is high. In SAR images, water areas are dark and relatively
smooth with some little bright areas, and their entropy is high. For
a non-water region, the occurrence probability of intensity levels is
usually arbitrarily distributed, and the entropy is low. Hence, this
kind of statistical measurement of a water body (i.e, entropy) is
a suitable way to discriminate water and non-water areas. When
the binary change image is mapped to the two original images, the
intensity levels of the corresponding regions in the image with more
water should be uniform, and the intensity levels in the other im-
age should be varied. In Section IV.1 we determined which original
image has more water, e.g. X1. For each detected region, if Hy
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and H; are the entropy values in the first and second images re-
spectively, then we have Ho > H). Therefore, for each detected
region, by comparing their entropy values in two images, one is able
to determine whether the region is caused by flood.

On the other hand, for an inundated region, even though the
intensity levels in two images may be similar, the entropy values
are usually different due to the radiometric characteristics of water
bodies. The entropy difference between two regions is written as:
ro = ||Hy — Haz||, where H), H2 are the entropy of the correspond-
ing regions in two images. The measurement in fact represents the
dissimilarity of the structural feature of the region. Obviously the
larger r3 is, the higher the possibility that the change is generated
by water. Correlation measurement and entropy measurement are
two different views of a region description that can complement
each other. From this point of view, a better region-based veri-
fication should be based on both of them. Thus, the verification
measurement can be written as: r = a1l - r1) + fBrz, where a,f3
are constants that tune the influence of the two kinds of measure-
ments on post-processing, and a+ 8 = 1. ry and r2 are normalized
respectively by setting their maximum values to 1. For each pair of
regions, if r is lower than a given value, then the detected change is
considered not to be caused by water.

Finally, due to the continuity of water bodies, the detected re-
sult that reflects change in the real scene can be modelled as con-
nected components of small size. This means that a pixel belonging
to a water body is likely to be surrounded by pixels belonging to
the water body. Thus some single isolated pixels and small clusters
are considered to be caused by noise, and will be removed in post-
processing. Undoubtedly, this simple elimination will make some
mistakes, however, one can notice from the experiment that most
of the removed small clusters are caused by other factors instead of
change of water body.

After post-processing, some regions with small size and un-
conformability to water change will be eliminated. As we know,
speckle noise will result in differences of intensity between two im-
ages. The thresholding approach wrongly classifies some of the con-
taminated pixels into either change or no change class due to their
large intensity differences, and classifies some of them into the un-
labelled class due to moderate intensity difference. The voting algo-
rithm, performed on the unlabelled pixels, is somewhat equivalent
to filtering with structure detection, in which the estimate of homo-
geneous region (i.e. structure detection) makes full use of the spatial
contextual information of a water body. These pixels, which oth-
erwise cannot be labelled to a certain class, can now be classified
as either changed or unchanged through the voting procedure, as
discussed in Section II. 3. On the other hand, the post-processing,
performed on the change image according to the radiometric fea-
tures of water bodies in SAR images, improves greatly the detected
result by eliminating the change regions caused by factors such as
different environmental conditions, speckle noise, etc. Therefore,
although speckle noise is not explicitly considered in this paper, the
voting procedure and post-processing can effectively avoid errors
caused by speckle noise.

V. Experiments

The experiments are performed using two repeat-pass ERS-2
SAR images taken from Poyang Lake, China, on Aug.24, 1996 and
Aug.14, 1999. Two pairs of sub-images are extracted: one of them
is impacted by a small flood (Fig.2), and the other by a big flood
(Fig.7). They were co-registered with a 1.5 pixels error by our soft-
ware.

Fig.2 shows the ortho-rectified and radio-metrically normalized
sub-image pair of the Poyang Lake taken at different times. The
difference image is calculated by taking into account the absolute
difference of the pixel intensity value over two images. By process-
ing the difference image, as discussed in Section II, we obtain the
result with three classes: changed (in white), unchanged (in blue),
and unlabelled classes (in red), as illustrated in Fig.3(a). Fig.3(b)

shows the result after a voting procedure is applied to the unlabelled
pixels, which is described in Section III. Fig.4(a) shows the final re-
sults after post-processing. When the detected change regions are
mapped to one of the original images as shown in Fig.4(b), by vi-
sual comparison, one can clearly see that most of the change regions
generated by water have been identified. Fig.7 is the sub-image pair
with the larger flooded areas, and the experimental result is shown
in Fig.8.

Fig. 2. Two SAR sub-images acquired on Aug.24, 1996 and
Aug.14, 1999

Fig. 3. (a) the difference image with three classes: the abso-
lute unchanged one, the absolute changed one, and the
unlabelled one; (b) result after a voting procedure is
applied to the unlabelled class

Fig. 4. (a) the final result after post-processing; (b) the de-
tected results are mapped onto one of the original
images

It is an important step to evaluate the “correctness” of the de-
tected result. In this paper, we focus on unsupervised change detec-
tion, and the ground truth information about change regions over
two images is not available. From Fig.2, one can see that it is a very
difficult task even for human beings to correctly extract the regions
of water in such a scene. Here we use Intelligent Scissors(®l to ex-
tract the edges of water body interactively, as shown in Fig.5(a).
The ground truth can be approximately obtained by comparing the
edges over the two images in Fig.5(b). If a pixel is found to be
changed in both the ground truth and the detected binary image,
it is considered a true positive. Fig.6 visually shows the compar-
ative results before (a) and after (b) post-processing, and the true



80 Chinese Journal of Electronics

S BN htp://www.cquip.com

2007

positive, false positive, and false negative are in white, blue, and
red respectively. The computational time is greatly dependent on
the size of images used in our application. In the experiment 1,
the computational time is 5.8s in the platform with Pentium 2.8G,
Window XP, Memory size: 2G, Visual C++.

Fig. 5. (a) one of the sub-images with edge features overlaid;
(b) the “ground truth” extracted by comparing the
edges over the two images

Fig. 6. The visual comparison of the detected result before
(a) and after (b) post-processing: false positive, false
negative, and true positive

Fig. 7. Two SAR sub-images acquired at different times

Besides the visual comparison, the detected result can be com-
pared numerically with the ground truth. A stratified systematic
unaligned sample is used to select sample pixels for accuracy ver-
ification. In experiment 1, a total of 1024 pixels were sampled,
with 914 unchanged pixels and 110 changed pixels in the ground
truth image. In experiment 2, a total of 1200 pixels were sampled,
with 1038 unchanged pixels and 162 changed pixels. The change
error matrix is usually used in error analysis of change detection.
Table 1 illustrates the change error matrix before and after the post-
processing verification. If the detection accuracy is defined as the
number of correctly classified pixels (true positive) with respect to
the total number of ground truth pixels, and the False positive (FP)
and False negative (FN) error rates are respectively defined as the
number of false positive and false negative pixels with respect to
the number of ground truth pixels, then in experiment 1, the false
positive and false negative error rates were 39.1% and 16.3% respec-
tively and the detection accuracy was 83.6% before post-processing.
After post-processing, the respective rates were 14.5%, 18.2%, and
81.8%. Table 3 illustrates the resultant errors of the two experi-
ments before and after post-processing. Although post-processing
eliminates some correctly classified pixels (the final detection accu-

racy is a little lower than the one before post-processing, and the
false negative error rate is a little higher), as a whole, it improves
significantly the detected result (the false positive error rate greatly
drops).

Fig. 8. (a) the final result after verification; (b) the detected
change regions are mapped in one of the two images

Table 1. The error matrix in experiment 1: the
ground truth is in the first column, and the
detected results before and after post-
processing are in the rows to the right

Detected result

Experiment 1 Before post-processing | After post-processing

Ground truth |Unchanged| Changed |Unchanged|Changed
Unchanged| 914 871 43 898 16
Changed | 110 18 92 20 90
Total 1024 889 135 918 106

Table 2. The error matrix in experiment 2: the
ground truth is in the first column, and the
detected results before and after post-
processing are in the rows to the right

) Detected result
Experiment 2 Before post-processing| After post-processing
Ground truth [Unchanged| Changed |Unchanged|Changed
Unchanged | 1038 993 45 1012 26
Changed | 162 33 129 34 128
Total 1200 1026 174 1046 154

Although the above comparative analysis confirms the effective-
ness of the verification technique, which significantly improves the
accuracy of the change-detection map and meanwhile reduces the
noise in this binary map, the false positive and false negative er-
rors arc still a little high. The main reason is that water bodies
at different seasons have different radiometric characteristics due to
various pollution, speckle noise, ctc. Although the post-processing
of the difference image described in this paper greatly improves the
detected result, the problem is not fully solved. Additionally, the
“ground truth” is manually extracted and not so accurate in this

case.
Table 3. The accuracy analysis before
and after post-processing
Experiment 1 Experiment 2
Before After Before After
post-pro. post-pro. | post-pro. | post-pro.
FN rate (%) 16.3 18.2 20.4 20.9
FP rate (%) 39.1 14.5 27.8 16.0
Accuracy (%) 83.6 81.8 79.6 79.0

VI. Conclusions

We have presented a unifying computational framework for the
unsupervised change detection of flooded areas in SAR images,
and have given the related experimental results and result analy-
sis. Our methodology can be grounded on three complementary
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aspects: a thresholding approach based on the fuzzy entropy princi-
ple is proposed to partition the difference image into three classes:
unchanged, changed, and unlabelled. By exploiting the spatial con-
textual information of the difference image, a voting procedure is
applied to process the unlabelled pixels. Further improvements in
the change-detection accuracies are obtained by making full use of
the radiometric properties of water bodies in SAR images. The sig-
nificant advantage of our approach is reflected in the fact that our
approach allows us to detect automatically the change regions of
flooding in two SAR images without any prior information about
the floods.
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