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ABSTRACT

We propose in this paper a robust multi-resolution technique
to estimate dense velocity field from image sequences. It cou-
ples a Gaussian pyramidal down-sampling decomposition to-
gether with a multi-grid approach. At each pyramid level, bi-
linear interpolation and efficient warping techniques are per-
formed to generate a residual images. The displacement field
is computed in a Markov Random Field (MRF) framework.
We compare two different methods to minimize the Gibbs
energy: a modified Iterative Conditional Mode (ICM) and
a Graph-Cut algorithm extended to multi-grid scheme. We
validate and demonstrate the robustness of our approach on
synthetic and real images for fluid experiment applications.

Index Terms— Motion measurement, Fluid flow, Multi-
resolution, Optimization methods.

1. INTRODUCTION

Motion estimation has received a great deal of attention since
the early days of computer vision, with applications in video
tracking, structure from motion, fluid analysis, ... Though
much progress have been done since the first proposed tech-
niques, some fundamental problems are still open.

Differential Optical Flow (DOF) computation, introduced
by [1], has proved to be very powerful for motion estima-
tion. The OF equation is based on the hypothesis of illumi-
nation constancy over two consecutive frames. Differential
OF assumes moreover that the displacement of the object or
particle of interest is rather small. These are very restrictive
constraints, satisfied by only a small number of movement
classes. In [2], Barronet al. made a survey of different clas-
sical methods for OF computation.

To cope with large displacements, multi-resolution tech-
niques have been proposed. The general idea consists in esti-
mating the OF at different resolutions from coarse to fine, in
an iterative and incremental way. The generation of images
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of different resolutions can be achieved using gaussian pyra-
mid [3], steerable pyramid [4] or more recently wavelet de-
composition [5]. Alternatives to solve the same problem are
multi-grid or scale-space approaches [6, 7, 8]: the proces-
sing parameter (grid size or filter coefficient) varies, while the
image resolution is fixed. In addition, Memin [9] and Ruh-
nau [10] have shown that coupling techniques can improve
the accuracy of the estimation. For specific applications, the
brightness constancy is withdrawn in favor of grey-level gra-
dient constancy ([11]).

Computational issues regarding the search for the optimal
global solution of the velocity field is probably the main focus
of attention these last years. Greedy [3, 2], variational [10, 9],
or graph-based [12] approaches are evenly used. However,
most of these techniques can only converge to a local solution.
They are then very sensitive to initialization.

In this paper, we present an efficient formulation and com-
putational framework to estimate accurate motion between
two frames. The DOF equation is solved by maximizing a
posterior probability. We propose a new hybrid multi-resolu-
tion multi-grid (MM) approach, making possible the compu-
tation of large displacements while improving significantly
the computation time. We compare two optimization tech-
niques: an adapted Graph-Cut algorithm converging to a global
solution and a revised Iterative Conditional Mode (ICM) –i.e.
local search method.

The rest of the paper is organized as follows. Section 2 in-
troduces the essentials of optical flow and its multi-resolution
formulation. In section 3, we detail the optimization proce-
dure. Results from synthetic and read data are illustrated and
discussed in section 4. We conclude in Section 5.

2. DESCRIPTION OF THE DOF+MM APPROACH

2.1. Problem statement

The velocity fieldv is computed within an MRF frame-
work via Maximum a Posteriori estimation. Using a Bayesian
decomposition, the total Gibbs energyE is defined by:

E(v, I) =
X

s∈C1

Vd(Is,vs) +
X

s,s′∈C2

αpVp(vs,vs′) (1)



Algorithm 1 DOF+MM algorithm
Pyramid creation from level 0 (Original) to K (coarsest)
Multi-Resolution Scheme
for k = K to 0 do

if k 6= K Consider estimated velocity at coarser levelthen
ṽ

k+1 = Int(vk+1). Interpolation ofv from k + 1 to k
eIk
2 = Warp(Ik

2 , ṽk+1). Warp Image 2 bỹvk+1

else
eIk
2 = Ik

2 Coarsest level of the pyramid: No warping
end if
Compute Gradient :∇eIk

2 , eIk
t on imageI2

Two Steps Multi-Grid
Compute Gradient Grid :∇eI

k

2 , eI
k

t

Estimatedvk∗
g By ICM or Graph Cut

Estimatedvk∗
l By ICM or Graph Cut

End Two Step Multi-Grid
Updatevk∗+ = ṽ

k+1 + dvk∗

end for
return The dense displacement field:v0∗

End Multi-Resolution

whereI is the observed data.Vd andVp are respectively the
data potential (or likelihood term) and prior potential (orre-
gularization term);s is a site;C1 andC2 are respectively the
single-site and pair-site cliques, andαp is a weighting coeffi-
cient.

The data potential is given by the illumination constancy
constraint in its differential formulation [1]:

Vd(Is,vs) = (∇I2(s, t + 1).vs + It(s, t))
2 (2)

whereI1 and I2 are two consecutive frames at timet and
t + 1;∇I2(s, t + 1) andIt(s, t) = I2(s, t + 1)− I1(s, t) are
the spatial and temporal gradients respectively.

The regularization term is given by:

Vp(vs,vs′) = αp(s) ||vs − vs′ || (3)

whereαp(s) is a weighting function ofI for each sites; ||.||
is the L2 or L1 norm.

The searched displacement field between imageI1 andI2

is given by the optimal configurationv∗ that minimizesE.

2.2. Multi-resolution formulation

Because the direct integration of (2) into (1) does not enable
to retrieve large displacements, we derive a multi-resolution
pyramidal scheme. The images at multi-levelsIk are com-
puted with a gaussian pyramid [13].

At the lowest resolutionK, the velocity field(vK)∗ is
retrieved by minimizing (1), using (2) and (3), from images
IK
1 andIK

2 . At levelk < K, the imageIk
2 is wrapped into an

imageĨk
2 by the following transformation:

Ĩk
2 (s, t + 1) = Ik

2 (s− ṽ
k+1, t + 1) (4)

whereṽk+1 is the interpolated velocity estimated fromvk+1.
The data potential at levelk now writes:

V k
d (Ik

s , vk
s ) =

(
∇Ĩk

2 . dvk
s + Ĩk

t

)2

(5)

where∇Ĩk
2 is the spatial gradient of̃Ik

2 and Ĩk
t = Ĩk

2 − Ik
1 .

dvk is the differential velocity vector computed at levelk.
Thus, at each levelk of the pyramid, the velocity field is given
by: vk = ṽ

(k+1)+dvk∗, with 0 ≤ k < K andṽK ← (vK)∗.

2.3. Multi-grid computation

In order to speed up the computation, we make use of a coarse
to fine (or multi-grid) approach originally proposed in [14].
At each level of the Gaussian pyramid, the velocitydv is de-
composed into a global componentdvg –average over a mesh
size— and a local componentdvl –local deviation fromdvg .
dvg is, per construction, very fast to compute, and furnishes
a very good approximation of the final displacement.

3. OPTIMIZATION

At each pyramid levelk < K, we search for the optimaldv∗

that minimizes (1) using (3) and (5). At first,dv∗

g is com-
puted over grid cells, considering thatdv = dvg (dvl = 0).
dv∗

g is then duplicated or interpolated at each pixel. Secondly,
dv∗

l is estimated, while keepingdvg constant. We compare
two different minimization methods: an extended ICM and an
adapted Graph-Cut.

Iterative Conditional Modes Using ICM [15], we intro-
duce an iteration-dependent weighting function:αp(s) →
αp(s, i), wherei counts for the iteration number andαp(s, i)
is increasing withi. The energy decrease is mainly data-
driven at the beginning of the iterations, and it is only when
the energy is close to stabilization that the regularization term
is reinforced. By this way, the convergence is fast and robust,
with a final configuration which is properly smoothed.

Graph Cuts In theα-expansion algorithm [16], the compu-
tational time depends on the graph size and number of labels.
Since the velocity field (our labels) is composed of real va-
lued 2D vectors, a direct application of [16] is extremely time
consuming. We propose a locally adaptive algorithm as fol-
lows: dvg is restricted to integer values (between -5 to +5, for

Fig. 1. Illustration of label repartition from grid to pixel level



each component); the number of possible configurations is
then kept relatively small.dvl is restricted to decimal values
(laying within a range from -1 to +1, with a step that fixes
the accuracy of the final velocity field) (see figure 1). This
digressive approach enables to reduce the computation cost,
without affecting the final result.

4. RESULTS

We evaluate the efficiency of our approach on synthetic data
and real fluid flow sequences. We use the Average Angle
Error (AAE) criteria to compare with results obtained from
other methods proposed in the literature [2, 10]:

AE = arccos

„
~wc(s). ~we(s)

||~wc(s)|| ||~we(s)||

«
(6)

AE is the angle between the correct velocity~wc and the esti-
mated velocity~we , where~wc,e(s) = (uc,e(s), vc,e(s), 1). As
in [2], we pre-process the data by convolving each frame of
the sequence with a smoothing Gaussian filter (σ = 0.5).

Yosemite sequence
The Yosemite sequence [2] is processed with our DOF-MM
algorithm, using a pyramid level of 3, and a grid size of5× 5
pixels for the computation ofdvg. When computing the AAE
value, we take an offset of 10 pixels on the borders of the
image, for the sake of comparability. The Yosemite sequence
contains large displacements over 4 pixels in between two
frames.

Figure 3 illustrates the spatial map of the AE obtained by
ICM and Graph-Cuts. In Fig. 3(c) and 3(d), small AE are
observed in blue. The AE in lower half of the image is very
small. We observe a difference in the smoothness of the ve-
locity error field. It stems from the fact that, for ICM, the
regularization term uses a L2 norm, whileα-expansion uses
a L1 norm [16]. Moreover, Graph-Cut minimization tends to

Fig. 2. Algorithm result’s comparison on Yosemite. AAE:
Average Angle Error; STD: Standard Deviation (degree).

(a) Original Image (b) Color Legend

(c) DOF+MM - ICM (d) DOF+MM - Graph Cut

Fig. 3. Angle Error map for ICM and Graph Cut minimization

estimate regular zones of identical label, due to a strong regu-
larization (no time dependent weight) and a limited number of
labels; note that if one attenuates the regularization factor, the
error rate increases. In our experiments, minimization with
Graph-Cuts takes about 3 more times than with ICM.

Figure 2 gives the AAE and the Standard Deviation (STD)
of AE obtained from several optical flow algorithms, ordered
from the worst to the best (in term of AAE) from left to
right. Our approaches are underlined. Most of the algorithms
having a AAE superior to 9 degrees do not integrate multi-
resolution techniques. They cannot detect true motion over
1 pixel per frame. All approaches that outperform ours, call
for a more sophisticated energy function: they include robust
functions [10, 9, 7], or add new assumptions, such as the in-
tensity gradient constancy [11]. Approaches which define an
energy function identical to ours (Prinet [14], H&S imple-
mented by Panenberg [11] and Yang [8]) give worse results,
both in terms of AAE and STD. Our results from DOF+MM-
ICM give lower AAE than from DOF+MM-Graph, but higher
STD.

Real fluid flow sequence
The fluid flow sequence that we analyze was acquired in la-
boratory [17]. The experiment consists of a box filled with
water animated with induced movement: a non-homogeneous
non-uniformspatial distribution of the temperature in thefluid
leads to natural phenomena of convection [17]. Images are ac-
quired in a plane perpendicular to the particle displacement.
The average displacement is about 4 pixels per frame, the
maximum displacement about 15 pixels per frame.

Figure 4 illustrates the input data and the estimated velo-
city field computed from Ruhnau algorithm [10] (top right)
and from ours (DOF-MM, bottom). Graph-Cut gives poor



results, unable to retrieve correctly large amplitude displace-
ments in non homogeneous regions. Results from DOF-MM-
+ICM show that the regularization term tends to oversmooth
the velocity field. Visually, DOF-MM+ICM gives results si-
milar to Ruhnau’s one. Note that Ruhnau’s approach is dedi-
cated to the study of fluid motion, while ours are not; in par-
ticular, he integrates specific function to conserve the discon-
tinuities. The simple DOF-based energy function that we use
gives very encouraging results, hardly achieved with others
algorithmic implementations.

(a) Image of the fluid flow seq. (b) H&S R+S [10]

(d) DOF+MM - Graph Cut (c) DOF+MM - ICM

Fig. 4. Velocity field estimation from a fluid flow sequence.

5. CONCLUSION AND PERSPECTIVES

We introduced a hybrid multi-resolution multi-grid approach
to efficiently estimate dense displacement fields between two
consecutive frames. Based on the Differential Optical Flow
formulation, it estimates large displacement vector field with
a significant improvement of the computation time. We com-
pared two energy minimization techniques. We observed em-
pirically (it could not be illustrated in this paper due to space
limitation) that the improved ICM always converges to the
same minimum (hopefully global minimum). We showed
from synthetic and real sequences that our DOF-MM+ICM
framework outperforms all existing methods using similar en-
ergy function.

However, not only the algorithmic scheme but also the
definition of the energy function is crucial for an accurate es-
timation. The energy function has to be defined according

to the chosen application. Further works will focus on fluid
motion for the analysis of turbulent flows.
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