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ABSTRACT of different resolutions can be achieved using gaussiaa-pyr

o _ _ ~mid [3], steerable pyramid [4] or more recently wavelet de-
We propose in this paper a robust multi-resolution tech@iqu composition [5]. Alternatives to solve the same problem are
to estimate dgnse velocity field from image sequences. i COUYnulti-grid or scale-space approaches [6, 7, 8]: the proces-
ples a Gaussian pyramidal down-sampling decomposition tasing parameter (grid size or filter coefficient) varies, \etitie
gether with a multi-grid approach. At each pyramid level, bi jmage resolution is fixed. In addition, Memin [9] and Ruh-
linear interpolation and efficient warping techniques age p 5, [10] have shown that coupling techniques can improve
formed to generate a residual images. The displacement fielgq accuracy of the estimation. For specific applicatidnes, t
is computed in a Markov Random Field (MRF) framework. prightness constancy is withdrawn in favor of grey-level-gr
We compare two different methods to minimize the Gibbsgjent constancy ([11]).
energy: a modified Iterative Conditional Mode (ICM) and  computational issues regarding the search for the optimal
a Graph-Cut algorithm extended to multi-grid scheme. Wey|opal solution of the velocity field is probably the main fisc
validate and demonstrate the robustness of our approach @R attention these last years. Greedy [3, 2], variation@) i,
synthetic and real images for fluid experiment applications graph-based [12] approaches are evenly used. However,
Index Terms— Motion measurement, Fluid flow, Multi- Most of these techniques can only converge to a local salutio
resolution, Optimization methods. They are then very sensitive to initialization.
In this paper, we present an efficient formulation and com-
putational framework to estimate accurate motion between
1. INTRODUCTION two frames. The DOF equation is solved by maximizing a
posterior probability. We propose a new hybrid multi-resol
Motion estimation has received a great deal of attentiotesin tion multi-grid (MM) approach, making possible the compu-
the early days of computer vision, with applications in wide tation of large displacements while improving significgntl
tracking, structure from motion, fluid analysis, ... Thoughthe computation time. We compare two optimization tech-
much progress have been done since the first proposed teatiques: an adapted Graph-Cut algorithm converging to aaglob
nigues, some fundamental problems are still open. solution and a revised Iterative Conditional Mode (ICNlg--
Differential Optical Flow (DOF) computation, introduced local search method.
by [1], has proved to be very powerful for motion estima-  The rest of the paper is organized as follows. Section 2 in-
tion. The OF equation is based on the hypothesis of illumitroduces the essentials of optical flow and its multi-resoiu
nation constancy over two consecutive frames. Differéntiaformulation. In section 3, we detail the optimization proce
OF assumes moreover that the displacement of the object dure. Results from synthetic and read data are illustrated a
particle of interest is rather small. These are very retiggc ~ discussed in section 4. We conclude in Section 5.
constraints, satisfied by only a small number of movement
classes. In [2], Barroet al. made a survey of differentclas- 2. DESCRIPTION OF THE DOF+MM APPROACH
sical methods for OF computation.
To cope with large displacements, multi-resolution tech-2.1. Problem statement
nigues have been proposed. The general idea consists-in esti The velocity fieldv is computed within an MRF frame-

mating the OF at different resolutions from coarse to fine, iny o via Maximum a Posteriori estimation. Using a Bayesian
an iterative and incremental way. The generation of imageéecomposition the total Gibbs energyis defined by:
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Algorithm 1 DOF+MM algorithm
Pyramid creation from level 0 (Original) to K (coarsest)
Multi-Resolution Scheme
for k = K to0do
if k # K Consider estimated velocity at coarser lethedn
VL = Int(vFTh). Interpolation ofv fromk + 1 to k
= Warp(I§, 5. Warp Image 2 byr*+!

elsg
I =1}
end if o
Compute Gradient VI, IF
Two Steps Multi-Grid -k
Compute Gradient GridV1I,, It
Estimatedv®*
Estimatedvf*
End Two Step Multi-Grid
Updatev®* + = vF+1 4 qvF*
end for
return The dense displacement fiel*
End Multi-Resolution

Coarsest level of the pyramid: No warping

on imagels

By ICM or Graph Cut
By ICM or Graph Cut

where! is the observed datd/; andV), are respectively the
data potential (or likelihood term) and prior potential (er
gularization term); is a site;C; andC, are respectively the
single-site and pair-site cliques, aag is a weighting coeffi-
cient.

wherev**! is the interpolated velocity estimated froni*".
The data potential at levélnow writes:

VEE ) = (VIR avh+ TF) (5)
whereV I} is the spatial gradient off andI} = I} — IF.
dv* is the differential velocity vector computed at level
Thus, at each levéd of the pyramid, the velocity field is given
by: vF = v(-HD L gvF* with0 < k < K andv — (v)*.

2.3. Multi-grid computation

In order to speed up the computation, we make use of a coarse
to fine (or multi-grid) approach originally proposed in [14]

At each level of the Gaussian pyramid, the velocityis de-
composed into a global componetv, —average over a mesh
size— and a local componeiit; —local deviation fromiv,,.

dv, is, per construction, very fast to compute, and furnishes
a very good approximation of the final displacement.

3. OPTIMIZATION

At each pyramid levek < K, we search for the optimalv*
that minimizes (1) using (3) and (5). At firstyv is com-
puted over grid cells, considering thé¢ = dv, (dv; =0).

The data potential is given by the illumination constancydv; is then duplicated or interpolated at each pixel. Secondly,

constraint in its differential formulation [1]:

Va(Is,vs) = (VIa(s, t +1).ve + (s, 1)) 2)
whereI; and I, are two consecutive frames at timeand
t+1; VIy(s,t + 1) andl;(s,t) = Ix(s,t + 1) — I (s, t) are
the spatial and temporal gradients respectively.

The regularization term is given by:

3)

wherea,(s) is a weighting function of for each sites; ||.||
is the L2 or L1 norm.

The searched displacement field between imagand /.
is given by the optimal configuration®* that minimizesk.

V;I)(V87VS’) = 0‘;0(5) [[vs — vl

2.2. Multi-resolution formulation

Because the direct integration of (2) into (1) does not emnabl

to retrieve large displacements, we derive a multi-regmtut
pyramidal scheme. The images at multi-levE{sare com-
puted with a gaussian pyramid [13].

At the lowest resolutionk’, the velocity field(v¥)* is

retrieved by minimizing (1), using (2) and (3), from images

I andIX. Atlevel k < K, the imagel¥ is wrapped into an
imagel’ by the following transformation:
Th(s.t+1) = If(s

— vl 1) (4)

dv} is estimated, while keepingv, constant. We compare
two different minimization methods: an extended ICM and an
adapted Graph-Cut.

Iterative Conditional Modes Using ICM [15], we intro-
duce an iteration-dependent weighting functiam,(s) —
ap(s,4), wherei counts for the iteration number aag (s, i)

is increasing withi. The energy decrease is mainly data-
driven at the beginning of the iterations, and it is only when
the energy is close to stabilization that the regularizetgym

is reinforced. By this way, the convergence is fast and rhbus
with a final configuration which is properly smoothed.

Graph Cuts Inthea-expansion algorithm [16], the compu-
tational time depends on the graph size and number of labels.
Since the velocity field (our labels) is composed of real va-
lued 2D vectors, a direct application of [16] is extremetyei
consuming. We propose a locally adaptive algorithm as fol-
lows: dv, is restricted to integer values (between -5 to +5, for

1. Grid level

2. Pixel level

Fig. 1. lllustration of label repartition from grid to pixel level



AE(degree)
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each component); the number of possible configurations
then kept relatively smalldv; is restricted to decimal values
(laying within a range from -1 to +1, with a step that fixes =5
the accuracy of the final velocity field) (see figure 1). This?.”
digressive approach enables to reduce the computation co|

without affecting the final result. F |

i

4. RESULTS

We evaluate the efficiency of our approach on synthetic dat
and real fluid flow sequences. We use the Average Angl
Error (AAE) criteria to compare with results obtained from
other methods proposed in the literature [2, 10]:

AE = arccos (M) (6)

[ ()] | ()]l

AE is the angle between the correct veloaity and the esti-
mated velocCity, , wherew, .(s) = (uc.o(s), vee(s), 1). As (c) DOF+MM - ICM (d) DOF+MM - Graph Cut

in [2], we pre-process the data by convolving each frame oFig. 3. Angle Error map for ICM and Graph Cut minimization
the sequence with a smoothing Gaussian filket=(0.5).

estimate regular zones of identical label, due to a strogg-re

Yosemite sequence larization (no time dependent weight) and a limited numbber o

The Yosemite sequence [2] is processed with our DOF-MMgpels: note that if one attenuates the regularizatiomfatite
algorithm, using a pyramid level of 3, and a grid siz&0f 5 g1 rate increases. In our experiments, minimizatiorwit

pixels for the computation afv,. When computing the AAE 551 _cuts takes about 3 more times than with ICM.

value, we take an offset of 10 pixels on the borders of the Figure 2 gives the AAE and the Standard Deviation (STD)

image, for the sake of comparability. The Yosemite sequencgs ag optained from several optical flow algorithms, ordered
contains large displacements over 4 pixels in between tWg, . the worst to the best (in term of AAE) from left to

frames. _ _ right. Our approaches are underlined. Most of the algorithm

Figure 3 illustrates the spatlal map of the AE obtained b3having a AAE superior to 9 degrees do not integrate multi-
ICM and Graph-Cuts. In Fig. 3(c) and 3(d), small AE are gqo|ytion techniques. They cannot detect true motion over
observed in blue. The AE in lower half of the image is very pixel per frame. All approaches that outperform ours, call
small. We observe a difference in the smoothness of the Vg 4 more sophisticated energy function: they include stbu
locity error field. It stems from the fact that, for ICM, the f,nctions [10, 9, 7], or add new assumptions, such as the in-
regularization term uses a L2 norm, whileexpansion uses  onsity gradient constancy [11]. Approaches which define an
a L1 norm [16]. Moreover, Graph-Cut minimization tends toenergy function identical to ours (Prinet [14], H&S imple-
mented by Panenberg [11] and Yang [8]) give worse results,
both in terms of AAE and STD. Our results from DOF+MM-
ICM give lower AAE than from DOF+MM-Graph, but higher
STD.

Real fluid flow sequence
The fluid flow sequence that we analyze was acquired in la-
boratory [17]. The experiment consists of a box filled with
water animated with induced movement: a non-homogeneous
non-uniform spatial distribution of the temperature in tiuéd
leads to natural phenomena of convection [17]. Images are ac
quired in a plane perpendicular to the particle displacdamen
The average displacement is about 4 pixels per frame, the
maximum displacement about 15 pixels per frame.

Figure 4 illustrates the input data and the estimated velo-
Fig. 2. Algorithm result's comparison on Yosemite. AAE: city field computed from Ruhnau algorithm [10] (top right)
Average Angle Error; STD: Standard Deviation (degree).  and from ours (DOF-MM, bottom). Graph-Cut gives poor

o

s

&

S
o
(ba?

o




results, unable to retrieve correctly large amplitude ldisg-

to the chosen application. Further works will focus on fluid

ments in non homogeneous regions. Results from DOF-MMmotion for the analysis of turbulent flows.

+ICM show that the regularization term tends to oversmooth
the velocity field. Visually, DOF-MM+ICM gives results si-
milar to Ruhnau’s one. Note that Ruhnau’s approach is dedi—m
cated to the study of fluid motion, while ours are not; in par-
ticular, he integrates specific function to conserve theatis [
tinuities. The simple DOF-based energy function that we use
gives very encouraging results, hardly achieved with ather [3]
algorithmic implementations.
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(c) DOF+MM - ICM
Fig. 4. Velocity field estimation from a fluid flow sequence.
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5. CONCLUSION AND PERSPECTIVES [16]

We introduced a hybrid multi-resolution multi-grid appobea
to efficiently estimate dense displacement fields between twj17]
consecutive frames. Based on the Differential Optical Flow
formulation, it estimates large displacement vector fieithw [18]
a significant improvement of the computation time. We com-
pared two energy minimization techniques. We observed em-
pirically (it could not be illustrated in this paper due tcasp ~ [19]
limitation) that the improved ICM always converges to the
same minimum (hopefully global minimum). We showed
from synthetic and real sequences that our DOF-MM+ICM
framework outperforms all existing methods using similar e
ergy function. [21]

However, not only the algorithmic scheme but also the
definition of the energy function is crucial for an accurage e
timation. The energy function has to be defined according

[20]

6. REFERENCES

B.K.P. Horn and B.G. Schunck, “Determining optical flowArtificial
Intelligence vol. 17, no. 1-3, pp. 185-203, August 1981.

J.L. Barron, D.J. Fleet, and S.S. Beauchemin, “Perforcezof optical
flow techniques,”lJCV, vol. 12, no. 1, pp. 43—77, February 1994.

J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingoranigrédchical
model-based motion estimation,” Rroc. ECCV 1992, pp. 177-189.

E.P. Simoncelli and W.T. Freeman, “The steerable pydanAi flexi-
ble architecture for multi-scale derivative computatian, Proc. ICIP,
Washington, DC, USA, October 1995, vol. 3, pp. 444-447.

H. Liu, A. Rosenfeld, and R. Chellapa, “Two-frame mudtiale optical
flow estimation using wavelet decomposition,”Rmoc. ICASSP2002.

E. Memin and P. Perez, “A multigrid approach to hieragethimotion
estimation,” inProc. ICCV, 1998, pp. 933-938.

L. Alvarez, J. Weickert, and J. Sanchez, “Reliable eation of dense
optical flow fields with large displacementslJCV, vol. 39, no. 1, pp.
41-56, August 2000.

L. Yang and H. Sahli, “A nonlinear multigrid diffusion ndel for ef-
ficient dense optical flow estimation,” iAro. ICIP, September 2005,
vol. 1, pp. 149-152.

E. Memin and P. Perez, “Dense estimation and objectébhasgmenta-
tion of the optical-flow with robust techniquedEEE on IR, vol. 7, no.
5, pp. 703-719, May 1998.

P. Ruhnau, T. Kohlberger, H. Nobach, and C. Schnorr, rid#tonal
optical flow estimation for particle image velocimetnExp. in Fluids
pp. 21-32, 2005.

N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. WeickéHighly
accurate optic flow computation with theoretically justifiearping,”
1JCV, vol. 67, pp. 141-158, 2006.

S. Roy and V. Govindu, “Mrf solutions for probabilistmptical flow
formulations,” inProc. ICPR 2000, vol. 3, pp. 1041-1047.

P.J. Burtand E.H. Adelson, “The laplacian pyramid asmpact image
code,” IEEE on Communicatigrnvol. 31, no. 4, pp. 532-540, 1983.

V. Prinet, C. Cassisa, and F.F. Tang, “Mrf modeling fatical flow
computation for multi-structure objects,” Proc. ICIP, 2006.

J. Besag, “The statistical analysis of dirty pictutes. of the Royal
Society vol. 48, no. 3, pp. 259-302, 1986.

Y. Boykov and V. Kolmogorov, “An experimental compauis of min-
cut/max-flow algorithms for energy minimization in visibnlEEE on
PAMI, pp. 1124-1137, 2004.

G.M. Quenot, J. Pakleza, and T.A. Kowalewski, “Piv waiftical flow,”
Exp. in Fluids pp. 177-189, 1998.

D. Bereziat, I. Herlin, and L. Younes, “Motion estimati using a
volume conservation hypothesis,” Rroc. ICASSPMarch 1999, pp.
3385-3388, Phoenix.

L.K. Suand W.J.A. Dahm, “Scalar imaging velocimetryasarements
of the velocity gradient tensor field in turbulent flows. isassment of
errors,” Phys. of Fluid vol. 8, pp. 1869-1882, 1996.

J. Weickert and C. Schnorr, “Variational optic flow couatation with
a spatio-temporal smoothness constraingMIV, vol. 14, no. 3, pp.
245-255, May 2001.

T. Corpetti, E. Memin, and P. Perez, “Dense estimatibfiuid flow,”
IEEE on PAM| pp. 365-380, 2002.



