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ABSTRACT

In this paper we provide an overview of an image represen-
tation approach based on the description of layout and ap-
pearance properties of groups of features. In each image a
graph of quantized features of interest is constructed. The
features that are assigned to the same codebook bin are then
grouped to produce a collapsed graph; the image contentn is
represented by the matrix of commute times of this collapsed
graph.

This novel image descriptor can be used to label satellite
image databases; we demonstrate the relevance and the effi-
ciency of our approach by addressing classification problems
on a dataset of 0.6m resolution Quickbird images.

Index Terms— Image mining, classification, spectral
graph theory

1. INTRODUCTION

In the field of satellite imaging interpretation, the means for a
human agent to access and to process the available acquired
data are not able to cope with the breadth and the quality of the
data itself. This situation is paradoxical because it meanswe,
as a scientific community, actually receive too much informa-
tion to value it according to its true worth. The bottleneck that
we face is the representation of the visual content of the satel-
lite images. An automatic method for reliably describing the
content of image subregions would allow us to index the im-
age databases and to perform content-based queries on them.
This, in turn, would open the door to precise automatic sta-
tistical measures and would therefore expand our large-scale
analysis capability.

We apply here a resolutely novel image representation in-
troduced in [1] that takes into account both the local appear-
ance of regions as well as their relative layout. It is based on
the measure of spectral properties of a graph built on a sparse
set of interest points sampled in the image. These proper-
ties represent the distances between groups of interest points,
where distance is computed in terms of similarity and spatial
proximity. The relative importance of the appearance and the
layout in the representation can be defined by two parameters;

we observe that the bag-of-visterms [2], which dismisses all
spatial information from the image representation, is a partic-
ular case of our approach. The idea of using attributed graph
to represent image content has been introduced before [3].
However the approach of [3] is based on pixels groups and as
such cannot really be applied to high resolution data.

Our representation was designed with the specific goal of
content-based image retrieval in mind: regions that display
similar but not exactly identical features and layouts should
nonetheless have close representations. On the other hand,
the information contained in the representation should be suf-
ficiently rich to be able to discriminate between a large variety
of visual classes. As a matter of fact, our approach is able to
address both problems of intra and inter class variability.

2. METHODOLOGY

The construction of our image representation proceeds in sev-
eral steps, described in full details in [1].First , we sam-
ple interest points from the image. The choice of the detec-
tor/descriptor pair is arbitrary and should be made in accor-
dance with the application and the type of visual data consid-
ered. Points can be extracted in a dense or sparse fashion, can
be described by a wide array of possible descriptors and may
be subject to certain invariances such as rotation, scale and/or
affine transformations [4].

Second, we build thefeature graphof the image: it is
an unoriented weighted graph in which each interest point is
a node and the nodes that are likely to belong to the same
visual part are all the more strongly connected. We consider
that interest points that belong to the same visual parts have
close spatial positions and similar descriptors. Therefore we
decide to connect each nodei to its M nearest neighbours
according to the distance:

∆(i, j) = ∆desc(i, j)
α∆geo(i, j)

1−α (1)

∆desc is the distance function defined to measure the sim-
ilarity of the feature descriptors.∆geo is the ”spatial” or ”ge-
ographical” distance between interest points coordinatesas



image pixels(x, y), possibly normalised by the feature scale

σ: ∆geo(Xi, Xj) =
√

(xi−xj)2+(yi−yj)2

σiσj
.

The relative contributions of the appearance and the spa-
tial proximity is weighted byα ∈ [0, 1]. Changing the value
of M determines the connectivity of the feature graph and
the typical scale of the object subparts that the graph struc-
ture will capture. α andM are the only parameters of our
approach that need to be defined experimentally.

Third , the nodes of the feature graph that are assigned to
the same codebook entries are grouped together to produce
a collapsed graph. The quantisation is made according to a
codebook of fixed sizeK that was built offline. Each node
of this graph represents a codebook entry and the weight of
the edgewkk′ between two nodesk, k′ is equal to the sum of
the weightswij of the edgesi → j that join nodes that were
assigned to codebook entriesk andk′ in the feature graph.
The collapse can be simply illustrated by figure 2 and the fol-
lowing equation, in which different colours represent different
codebook bins:w′

��
=

∑

w��.

The collapsed graph is a structure that can be used to com-
pare different images, contrary to the feature graph. The ma-
trix of distances between graph nodes is an appropriate choice
to represent the structure of the collapsed graph, but it re-
quires a definition of this distance, just like different possible
definitions of a metric exist in a euclidean space. We could
simply use the transition matrix of the graph or the matrix of
shortest paths between graph nodes. However, in problems
where the presence or the accuracy of graph nodes is uncer-
tain, as it is the case here, the shortest path distance lacks
robustness and does not provide any statistical information
about the structure of the graph. In this respect the notion of
commute timesbetween graph nodes is preferable.

2.1. Graph commute times

Considering a random walk on the nodes of the collapsed
graph started at nodek with a transition probability propor-
tional to the edge weights, the commute timeCT (k, k′) be-
tween graph nodesk, k′ is defined as the average number of
steps required to reachk′ for the first time and then to come
back tok (see [5], [6] for details). Note that commute times
can take infinite values when the graph is not connected. It
has been shown ([6], [7] for a summary) that the matrix of

commute timesCT can be computed as a function of the
eigenvectors(φk)1≤k≤K and eigenvalues(λk)1≤k≤K of the
LaplacianL of the graph:

∀k, k′ ∈ [1, K] , (2)

L(k, k′) =
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−w′
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k
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(3)

CT (k, k′) = vol

N
∑

i=2

1

λi

(

φi(k)√
dk

− φi(k
′)√

dk′

)2

(4)

(5)

with: dk =
∑

i w′
ki andvol =

∑K

i=1 di. Our image repre-
sentationχ is a normalisation of theK × K commute time

matrix: χ(k, k′) = exp
(

−CT (k,k′)
K

)

. For M = 0 the only

non-zero terms are the diagonal elements that correspond to
quantised features located in the image andχ is equal to the
binary bag-of-visterms.

The obtained representation is of dimensionK(K + 1)/2
with K of the order of a few hundreds to a few thousands.
It is thus time to note that equation 4 can also be viewed as
an embedding of the nodes of the graph in a space in which

coordinatei − 1 of nodek is equal to
√

vol
λidk

φi(k). We sort

the eigenvalues ofL by increasing order:0 = λ1 < λ2 ≤
. . . λK . The dimensionality of the embedding space can thus
be arbitrarily reduced by considering only the firstD (with
D < K) eigenvalues. We can therefore considerably reduce
the dimensionality ofχ by considering each image as a node
in a graph and by embedding the nodes of the graph in a space
of low dimension.

3. RESULTS

3.1. Dataset and Parameters

We tested our approach on two datasets composed of high
resolution (0.6m) optical panchromatic Quickbird images re-
alised in the area of Beijing (China). For each dataset and
each category, half of the images will be used to train our
classifier and the other half will constitute our testing dataset.

1. Our first dataset is composed of 251 images of size
512 × 512 containing either portions of road or veg-
etation areas. Certain images were arbitrarily assigned
to one of the two classes despite the fact that they con-
tained instances both of vegeation and roads.

2. The second dataset, illustrated in figure 1, is composed
of 878 images of size200 × 200 coming from seven
classes: (1) big buildings, (2) golf fields, (3) green-
houses, (4) small industry, (5) fields, (6) dense urban,
(7) residential area.



We employed a rotation- and scale-invariant Speeded Up
Robust Features (SURF) detector as well as the associated de-
scriptor [8] to build our feature graphs. The features extracted
from our training images were clustered by k-means relatively
to a codebook of sizeK = 500 previous to the execution of
the algorithm. The image representations are embedded in a
space of dimensionD = 20. The image classification step is
realized by 1 VS 1 AdaBoost. We set the values ofM = 2
andα = 0.5 so as to obtain optimal performances.

3.2. Performances

Experiments on the first dataset, which is relatively simple,
are meant to demonstrate the validity of our approach. Figure
2 represents the embedding of the image representations in a
space of dimension 2.

Fig. 2: Dataset 1: “Vegetation” versus “Road” image classifi-
cation. (α = 0.5, M = 2)

We can see that a linear SVM classifier in that space can
successfully classify most images. Moreover, images that are
close to the separator contain either roads crossing vegeta-
tion areas, or large vegetation areas bordered by roads. As a
matter of fact, binary classification in the embedding spaceof
dimension 20 results in a 96% good classification rate. These
results are in fact closer to total recall if we take into account
the fact that certain images are wrongly labelled. Generally
speaking, the quality of the results demonstrate the validity
and the relevance of our approach.

Dataset 2 is more representative of a true use case as it
contains image instances coming from a greater number of
classes. We visualize in tables 1, 2 and figure 3.2 the influence
of parametersα andM on the classification performances for
each class.

We observe that modifying the structure of the feature
graph has an influence on the classification performance.
Moreover, different classes have different optimal parameters
values. As a rule of thumb, we can say that high values ofα
(i.e: higher influence of the layout information on the image
representation) produce better performances. It is interesting
to observe the performance evolution as a function of parame-
terM , as the caseM = 0 is equivalent to the bag-of-visterms
representation. We notice that adding some graph structure

can greatly boost the good classification rate for classes such
asfields(+38.36%) or greenhouses(+10.9%); more gener-
ally speaking, for each class the classification performances
can be improved by setting a particular value ofM .

4. CONCLUSIONS

The approach detailed in this paper aims at describing an im-
age representation that encompasses both the content appear-
ance and the general layout of the content. The representation
is realised in a sufficiently loose way to cope with large intra-
class variation but on the other hand is more precise than the
orderless bag of features, resulting thus in an increase in per-
formance for classification tasks.

Even if there is not one single set of parameters for
which our approach improves over the bag-of-features for all
classes, we have shown that incorporating information about
the layout of regions of interest in the image representation
can be a major improvement for certain classes.
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(a) Big buildings
(68)

(b) Golf field (104)(c) Greenhouses
(111)

(d) Small industry
(122)

(e) Fields (52) (f) Dense ur-
ban(238)

(g) Residential area
(183)

Fig. 1: Dataset 2. The number of images of each class is indicated inparentheses.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Big buildings 91.18 85.29 91.18 91.18 88.24 88.24 85.29 91.18 91.18 88.24 88.24

Golf field 88.46 94.23 88.46 84.62 92.31 90.38 92.31 84.62 90.38 84.62 90.38
Greenhouses 32.73 32.73 38.18 50.91 38.18 49.09 50.91 74.55 67.37 74.55 58.18

Small industry 83.61 81.97 78.69 81.97 80.33 80.33 83.61 83.61 81.97 80.33 83.61
Fields 73.08 80.77 76.92 65.38 61.54 57.69 57.69 65.38 69.23 73.08 76.92

Dense urban 94.12 96.64 97.48 95.8 96.64 95.8 94.96 94.12 94.96 96.64 96.64
Residential area 89.01 91.21 91.21 90.11 90.11 89.01 94.51 91.21 86.81 91.21 91.21

Average 81.69 83.29 83.29 83.53 82.38 82.85 84.45 86.52 85.61 86.98 86.28

Table 1: Dataset2: performance evaluation as a function of parameterα (M = 2)

0 1 2 3 4 5 6 7 8 9 1
Big buildings 88.24 76.47 88.24 82.35 91.18 91.18 88.24 91.18 88.24 91.18 91.18

Golf field 92.31 94.23 90.38 90.38 94.23 96.15 96.15 90.38 94.23 88.46 92.31
Greenhouses 74.55 85.45 49.09 78.18 65.45 54.55 34.55 58.18 58.18 45.45 61.82

Small industry 75.41 83.61 80.33 80.33 81.97 83.61 78.69 83.61 85.25 85.25 83.61
Fields 42.41 50.00 57.69 73.08 73.08 76.92 73.08 73.08 69.23 73.08 80.77

Dense urban 97.48 93.28 95.8 94.96 95.8 94.96 94.96 95.8 95.8 94.96 95.8
Residential area 91.21 85.71 89.01 87.91 95.6 93.41 92.31 92.31 95.6 92.31 93.41

Average 85.62 85.62 82.85 86.52 88.11 86.73 82.83 86.28 87.19 84.44 87.65

Table 2: Dataset2: performance evaluation as a function of parameterM (α = 0.5)


