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Subgrid scale formulation of optical flow for the study of turbulent flow
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Abstract We propose a new formulation of optical flow in
the case of passive scalar or solid particles spreading in tur-
bulent flows. The flow equation is defined from the scalar
transport equation and a decomposition of our physical quan-
tities (velocity and concentration fields) into two contribu-
tions, large and small scales, to account for the lack of spa-
tial resolution in processed images. A subgrid scale model
is introduced to model the small scale contribution. Com-
parisons are made with existing optical flow methods and
Particle Image Velocimetry (PIV) on synthetic and real se-
quences. The improvement of the estimation of velocity field
by the proposed formulation is discussed in the case of a
scalar turbulent propagation.

Keywords Motion Estimation · Differential Optical Flow ·
Turbulence · Large Eddy Decomposition · Subgrid Model

1 Introduction

The study of fluid flow is one of the main challenge in ap-
plication domains such as aeronautic, acoustic, or environ-
mental sciences. Conclusions drawn from the analysis of ex-
periments are strongly linked to the methodology used for
motion estimation.

Particle Image Velocimetry (PIV) technique (Adrian [1])
is most commonly used in laboratories to compute the ve-
locity field of fluids from image sequences. It requires a
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good synchronization between the successive acquisitions
of images of particles seeding a flow. A laser pulse illumi-
nate the fluid with a sheet of light. The particle images are
then recorded at two consecutive instants on a CCD camera.
This allows to freeze the particles seeding the fluid at two
successive times of their displacements. The particles ve-
locity field can then be estimated from the resulting image
sequence (pairs of images or long temporal sequence).

PIV technique is attractive for its simplicity. The motion
field is retrieved by searching the local displacement that
maximizes the cross-correlation between two interrogation
windows placed in each of the two images. This approach
has proved to be very efficient when satisfying various crite-
ria related to the density of particles or to the local gradient
of the studied flow. Nevertheless, there are several limiting
factors. At first, the size of the window needs to be chosen
carefully: if too small, the cross-correlation peak might not
be reliable ; if too big, the particles in the windows might
be animated by different movements due to local inhomo-
geneities of the flow; because PIV method estimates a sin-
gle velocity vector representing the majority displacement
of particles in the window, the resulting velocity field will
be over-smoothed. In these two cases, the estimated velocity
field might be either noisy, either too smooth, or even incor-
rect. In addition, PIV approach cannot be used for scalar
field sequences, due to the absence of clear correlation peak
in this type of images.

Optical Flow-based approaches have for advantage to
provide a dense estimation of the flow velocity field. Nev-
ertheless Optical Flow (OF) is less popular than PIV in fluid
mechanic community because it is more sensitive to exper-
imental noise and imaging conditions. An other reason is
the seeding of the studied flows. OF methods are not usable
where there is no seeding whereas PIV can be used as soon
as there is a background homogeneous seeding. Neverthe-
less OF is particularly efficient to estimate a dense velocity



2

field from scalar images acquired at successive instants (e.g.
smokes propagation or clouds in meteorological images).

Optical Flow, as defined by Horn & Shunk [25] in the
early 80’s, is based on an assumption of brightness conser-
vation over a small time interval : the grey-level I of a given
object does not change locally between two image acquisi-
tions at t and t + δ t : I(s, t) = I(s+ δd, t + δ t), with s the
coordinates of the object at time t and δd its shift between
the two acquisitions. A first order Taylor development leads
to the differential form of the OF equation:

∂ I(s, t)
∂ t

+v .∇I(s, t) = 0 (1)

where v = δ d
δ t is the apparent velocity of the object and ∇

represents the spatial gradient. This basic equation estab-
lishes the relationship between the observed data/image I
and the displacement vector δd to estimate. However, be-
cause the motion is computed in a two or three dimensional
space, equation (1) is under-constrained and a regularization
term needs to be added in order to satisfy the unicity of the
solution. This regularization term takes commonly the form
of a ’smoothing factor’, which put spatial and/or temporal
constraints on v.

The brightness consistency hypothesis, on which most
OF-based approaches lie, is well suited for the estimation
of rigid motions. However, insofar we are concerned with
fluid motion, it is not a valid assumption any more. In an
attempt to model the physical behaviour of fluid flow, al-
ternative formulations have been proposed : volume con-
servation (Amini [2], Bereziat et al. [8]), continuity equa-
tion (Corpetti et al. [17]), and generalized transport equation
applied to particle images (Liu and Shen[29], Heitz et al.
[22]). Besides, efforts have been put to improve the regula-
rization term: some authors enforce divergence and vortic-
ity constraints (Suter [46], Corpetti et al. [17]) or integrate
Navier-Stokes equation (Ruhnau and Schnorr [35], Heitz et
al. [22]). In particular in [22], Heitz et al. combine correla-
tion and OF methods: they use the robustness (w.r.t. to noise
and large displacements) of correlation technique to first es-
timate a coarse field, then to constrain the OF estimation.
The idea is interesting but fails when applied to scalar quan-
tities, because gradients become small and correlation peaks
hardly detectable. A review paper Heitz et al. [23] (2010) re-
ports and compare different solutions devised for fluid mo-
tion analysis and measurement.

The problem of turbulence is generally ignored in the
flow equation of existing methods. However, in the reality
most of the fluid flows around us are highly turbulent: atmo-
spheric motions, ocean currents, vascular flows... Level of
turbulence of the flow is controlled by the Reynolds number
Re = UL/ν where U , L are the velocity and length scales
of the flow and ν the kinetic viscosity of the fluid. For high
Re, the flow is turbulent. The ratio between scale of large

eddy and smallest wave length of mouvements that can ap-
pear in the fluid (Kolmogorov scale [26]) is proportional to
Re3/4. This implies, that to get all scales which appear in the
turbulent flow, time and space resolution have to be equiva-
lent to Re3/4 (for example, for atmospheric flows Re≈ 1010).
Generally, time and space image resolution are much sparser
than the smallest scales. Depending to the rate of turbulence,
missing information in the image sequence may not be ne-
glected. The influence of these small scales cannot be com-
puted but should be modeled.

In this work, we analyse turbulent fluid flows from image
sequences, by linking the concentration of particles to the
observed intensity in images. We propose a Large Eddy Sim-
ulation (LES) decomposition (Le Ribault et al. [34]) of the
transport equation (Su and Dahm [44,45]), where the influ-
ence of small scales is incorporated via a subgrid scale tur-
bulent viscosity term. We add a spatial regularization func-
tion for unicity of the solution. The proposed mathematical
formulation is a new approach for optical flow estimation.
The estimated velocity field take into account effect of small
scales through the turbulent viscosity.

Experimental results are illustrated on a synthetic se-
quence generated by Direct Numerical Simulation (DNS)
(Carlier and Heitz [11]) and a fluid flow image sequence
from laboratory experiment (Simoens et al. [38,39]). We
compare and validate our approach against correlation tech-
nique (Davis Lavision software [28]) and a state-of-the-art
algorithm (Corpetti et al. [17]).

The rest of the paper is organized as follows. In sec-
tion 2, we first present our sub-grid transport equation model
(TE-SGS) and formulate the problem of velocity field esti-
mation from images as a maximum a posteriori estimation ;
to retrieve the optimal solution, we propose a new efficient
algorithmic based on a multigrid multi-resolution scheme.
In section 3, we describe the experimental data and vali-
dation cases. We compare the results obtained from differ-
ent approaches and discuss the advantages of our TE-SGS
model in section 4. We conclude in section 5.

2 Methodology

This section describes our motion equation for the estima-
tion of turbulent flows. The transport equation is filtered and
small scale terms are modeled by a turbulent diffusion. The
problem is formulated by a maximum a posteriori estima-
tion. Solution is obtained by direct descent energy using an
hybrid multiresolution technique.

2.1 Scalar transport equation (TE)

The velocity field of a passive scalar concentration C of a
specy spreaded in a fluid is described by the scalar transport
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equation (TE). In dimensionless form, it writes as follows
(Batchelor [7]):

∂C
∂ t

+∇.(Cv)− 1
Re Sc

∆C = 0 (2)

where v is the velocity of the concentration field. Time and
space partial derivatives are noticed ∂

∂ t and ∇ respectively;
∆ is the Laplacian operator. Re and Sc are the Reynolds and
Schmidt numbers.

If we assume that the fluid is incompressible, i.e. ∇.v =

0, then equation (2) becomes :

∂C
∂ t

+v . ∇C− 1
Re Sc

∆C = 0 (3)

To account for the lack of 3D information contained in
images, we make the coarse hypothesis that the fluid is in a
two-dimensional (2D) turbulence, where the transport equa-
tion is considered only on the plane (x,y). Hence, the motion
analysis is entirely performed in the 2D space. The velocity
component along the z-axis is considered null, i.e. v= (u,v),
and first and second order spatial derivative operators writes
∇ =

(
∂
∂x ,

∂
∂y

)
and ∆ = ∂ 2

∂x2 +
∂ 2

∂y2 respectively. It is note wor-
thy that it is possible to link a real 3D transport equation
to a 2D apparent motion in the image (Liu and Shen [29]),
thought we do not address this issue in the present work.

The concentration C of a scalar quantity (dust particles,
humidity, ...) can be related to the image pixel intensity value
I. For cloud motion analysis, some authors established em-
pirically the following relation: I ∝

∫
Cdz (Corpetti et al.

[17]) or I ∝ (
∫

Cdz)−1 (Zhou et al. [51]), where z is the ob-
servation depth. More recently an more physical relationship
was established for cloud motion in Heas et al. [24].

It is clear that depending on the substance carried by the
flow studied this relationship must be modified In this paper,
we consider a simpler case, and assume that the pixel grey-
level value is directly proportional to the concentration C:

I(s, t) ∝ α C(s, t) (4)

where α is a constant independent of time and space. In
other words, we consider that δ z/δx << 1, δ z/δy << 1.

We can notice that for case with apparent diffusion (solid
particle) of the transported quantity (Sc >> 1), equation (3)
becomes equivalent to the differential OF equation as pro-
posed by Horn and Schunck [25] (c.f. equ. 1).

2.2 Filtered transport equation with a subgrid scale model
(TE-SGS)

Scalar transport equation defines the evolution of passive
scalar concentration C as a function of velocity v. Thus,
knowing the passive scalar concentration at two successive
instants in a plane of interest, we could simply retrieve the

velocity field by solving the TE (equation 3). However, in
images acquired under controlled conditions during labora-
tory experiments or in satellite images for the study of atmo-
spheric phenomena, we are limited by spatial and time reso-
lutions: acquisition period δ t and pixel size δ = (δx,δy) are
both fixed. In most cases (especially for Re >> 1), they are
too large compared to the characteristic scales of turbulence
itself. Nevertheless small scales displacements are impor-
tant because they strongly influence the observed large sale
motion of the studied concentration field (Cui et al. [18]).
In this sub-section, we derive a new fluid motion equation,
by integrating sub-pixels (i.e. non-observed) effects into the
scalar transport equation.

Let us write C+ the observed scalar concentration related
to large scales. C+ is the filtered value of the instantaneous
scalar C over the pixel size δ . Formally, it results from the
convolution of C with a filter G() in 2D :

C+(s) =
∫

δ
C(s− r) G(r) dr (5)

where s = (x,y) is a pixel, r = (rx,ry) is the characteristic
length of the filter in the x and y directions, δ the integration
surface. The filter G(r) can be defined as:

G(r) =
{

1/δ if |r|< δ/2
0 elsewhere

(6)

Now, filtering the scalar transport equation (equ. 2) by G(),
and taking advantage of the linearity of the filter, we obtain :

∂C+

∂ t
+∇.(Cv)+− 1

Re Sc
∆C+ = 0 (7)

In addition, similarly to Large Eddy Simulation (LES)
(Le Ribault et al. [34]), we consider that the instantaneous
passive scalar concentration field verifies: C = C+ +C−,
where C− represents the small scale contribution. Accord-
ingly, we propose to re-write (Cv)+ :

(Cv)+ =C+v++ τ (8)

where τ is the residual stress tensor: τ =L+R+CS and L=
(C+v+)+−C+v+ is the Leonard stress, R = (C−v−)+ is the
subgrid Reynolds stress, and CS = (C+v−)+− (C−v+)+ is
the Cross-stress. Hence, the filtered TE becomes :

∂C+

∂ t
+∇.

(
C+v+

)
+∇.τ− 1

Re Sc
∆C+ = 0 (9)

For incompressible fluid, equation (9) can be simplified and
expresses as :

∂C+

∂ t
+v+. ∇C++∇.τ− 1

Re Sc
∆C+ = 0 (10)

To define τ , we borrow the concept of turbulent viscosity :

τ =−Dt ∇C+ (11)
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with Dt a turbulent diffusion coefficient ; we define it as a
statistical constant over the space domain.

Finally, inserting equation (11) into (10) leads to:

∂C+

∂ t
+v+. ∇C+−

(
1

Re Sc
+Dt

)
∆C+ = 0 (12)

Such subgrid scalar transport equation (TE-SGS) is a new
approach for OF estimation. At the best of our knowledge
nobody took into account for subgrid scale effect of the small
turbulent scale on flow motion estimation with OF formu-
lation. Note that for high Reynolds number (Re >> 1) or
scalar with low molecular diffusion (Sc >> 1), the contri-
bution from turbulent diffusion becomes large compared to
molecular diffusion ; it is the case, for example, for dust
cloud particles in the atmosphere. Some works as Nomura et
al. [30], Haussecker and fleet [21] or Garbe and al. [20] add
a diffusion term with space and time variability but they ac-
counted for physical effect under molecular or thermal sim-
ilarity concept. 2) The problem of variability of Dt is classic
in turbulent subgrid scale theory modelling discussions. It is
known ([36,37]) that even in case of the strong inhomoge-
neous turbulent flow, for such proposed diffusion modelling
at subgrid scale level, if this scale is small compared to the
largest turbulent scales (that is the case most of time). The
diffusion coefficient Dt can be approximated by a constant,
except near the wall in wall bounded turbulent flow which
is not the present case. This significates non variability nei-
ther in time and space. The main part of spectral subgrid
scale modelling (Chollet and Lesieur [15]) demonstrates the
validity of such hypothesis. Nevertheless to discuss such hy-
potesis is beyond the scope of this paper. The last point con-
cern with establishing the constant diffusion coefficient via
the formula of Deardorff [19]:

qsgm =Csgm ∗
(

Dt

∆

)2

(13)

where ∆ is the filter size (mesh size), qsgm is the turbu-
lent subgrid scale kinetic energy. Generally it is unknown
but can be approximated by the knowledge of the power
spectrum Euu that is given or deductible from experimen-
tal fact or theory even for real atmosphere. In the present
case, Euu is estimated with a simple theoretical model using
power law assumption from Kc to ∞ for Euu (Comte-Bellot
and Corsin [16]). This gives :

qsgm =
3
2
∗
∫ ∞

Kc

Euu(K)dK (14)

where Kc =
π
∆ .The constant Csgm usually takes values around

0.1 (Deardorff [19]). This is what we have done for the two
below tests.

From equations (13) and (14) we obtain :

Dt = ∆ ∗
(

3
2 Csgs

∫ ∞

Kc

Euu(K)dK
) 1

2
(15)

Our modelling, to account for subgrid scale turbulence
in the estimation of the local velocity field, is thus perfectly
determined knowing the power spectrum and the filter size.

2.3 Motion field estimation

2.3.1 Introduction

Equation (12) defines the subgrid transport equation of the
scalar C+. It establishes the relationship between the ob-
served quantity C+ and the unknown velocity vector v+, at
each point s of the image domain. However, the resolution of
equation (12) is not possible (it is a mathematically ill-posed
equation), unless a regularization term is added.

At this point, one should make two remarks. The first
one concerns the nature of the observed variable C+ and
of the unknown v+. Fluid mechanics would consider equa-
tion (12) as a pure deterministic model. However, the ob-
servation C is known with a certain degree of uncertainty,
due in particular to the stochastic process of imaging condi-
tions. Consequently, the estimated velocity field, itself, can
be estimated only up to a certain accuracy.
As for the second remark, one can notice that equation (12)
describes the evolution of each point, or particle, indepen-
dently, in the fluid. It is reasonable however to assume that
nearby points are not totally independent, but are animated
by similar motions. Hence, contextual constraints ought to
be added to the model.

The two comments above motivated us to formulate the
problem of motion estimation, as defined primarily by equa-
tion (12), in a probabilistic framework. More precisely,
Markov Random Fields (MRF) theory provides us with the
theoretical foundations necessary to deal with the issues of
i) modelling the uncertainty , ii) modelling interdependen-
cies between neighbor variables. A recall on MRF is not the
scope of this article, we refer to Stan [43] or Winkler [50]
for interested readers. In the rest of the section, for the sake
of simplicity, we will use the notation v instead of v+, and
C, instead of C+.

We treat v and C as two random variables, the unknown
and the observation respectively, defined at each point s of
the domain. C(s) takes values in IR+, while v(s) is a conti-
nuous 2D variable bounded by Γ =]vmin,vmax[. Hence,
v = {v(s) | ∀s ∈ Ω} describes the velocity field on the en-
tire image domain Ω , with card(Ω) = N. similarly, we coin
C = {C(s)| ∀s ∈ Ω}. Using Hamersley-Clifford theorem
(Stan [43]), we define the probability to retrieve v, given the
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observation C, as follows:

P(v |C) = 1
Z

exp{−E (v,C)} (16)

E (v,C) = ∑
k∈K

Vk(v,C) (17)

Z is the normalization factor known as the partition constant.
K is the set of all cliques. E() is the so-called Gibbs energy
and Vk the associated potential functions.

Hence, we seek for the best solution v̂ that maximizes
the posterior probability P(v |C), or equivalently, that mini-
mizes the energy E (v,C) :

v̂ = arg min
v∈Γ N

E (v,C) (18)

The choice of an MRF framework, associated to efficient
optimisation technique on graphs, enables to define the func-
tional E() with a certain flexibility (Szeliski and al. [47],
Kolmogorov and Zabih [27]). Alternative methods to solve
energy minimisation problems defined similarly to (18), such
as variational approaches (Horn and Schunk [25], Heitz and
al. [23]), are efficient in practice only if E() is a convex
function of the unknown v. In the following, we detail the
formulation of E() and the optimization procedure.

2.3.2 Energy model

In a classical way, we define single-site clique S = {s ∈Ω},
and pairwise cliques S2 = {s, t ∈Ω 2|t ∈Ns}, such that K =
{S,S2}.Ns defines here a 4-pixels neighbor around s.

Thus we rewrite more specifically the right hand side of
equation (17) :

∑
s∈S

Vd (v(s),C(s)) + αp ∑
(s,t)∈S2

Vp (v(s),v(t)) (19)

The weighting coefficient αp balances the contribution of Vd
w.r.t to Vp. Note that Vp is independent of the observation C.
Lets explain each of these two terms.

Vd is called the data potential function. It establishes the
link between data and unknown, and is defined according to
the application. Here, Vd is given by our TE-SGS model :

Vd (v(s),C(s)) =

Φ
(

∂C(s)
∂ t

+v(s) . ∇C(s)−
(

1
Re Sc

+Dt

)
∆C(s)

)
(20)

The potential function Vp corresponds to a prior term;
it encodes the knowledge we have a priori about v. In par-
ticular, it can model local dependencies between variables
v in a given neighbor. In equation (19), Vp acts as a regu-
larization factor. Here, we model the spatial continuity of
the velocity and express Vp as the amplitude of the velocity

vectors difference between two neighbor points (Horn and
Schunk [25] and Su and Dahm [44]). Noting (u,v) the x and
y components of the velocity vector v, we write:

Vp (v(s),v(t)) =
Φ (|u(s)−u(t)|)+Φ (|v(s)− v(t)|) (21)

This term will constrain the solution v̂ to be smooth spatially
and uniformly.

The function ϕ() is here chosen quadratic, both in the
data term and regularization term. Note that our methodo-
logical framework does not prevent us from using robust
functions (e.g. truncation function, L1 norm) instead of a
quadratic cost. This choice is motivated by its simplicity of
implementation and its robustness for optimization. How-
ever, as a drawback, it tends to oversmooth the real disconti-
nuities of the velocity field. Some authors proposed other ro-
bust functions to overcome this limitation (Black and Anan-
dan [9] or Papenberg et al. [32]). The aim of this work is
to analyse the influence of the subgrid scale transport equa-
tion model, this is the reason why we choose the quadratic
simple function and we do not focus on ϕ .

Moreover, the first order derivative constraint of the ve-
locity field (c.f. equ. (21)) can be too restrictive, depending
on studied motion. However, this constraint has simple spa-
tial coherence which allows us to properly compare TE and
TE-SGS formulations. Other regularization functions more
adapted to fluid motion can be incorporated, such as spa-
tial div-curl equation (Corpetti et al. [17]), spatio-temporal
equation (Weickert and Schnorr [49]) or simplified Navier
Stokes equation (Ruhnau and Schnorr [35], Heitz et al. [22]).

2.3.3 Efficient pyramidal decomposition and multi-grid
scheme

The acquisition time step δ t is fixed during the acquisition
procedure. For existing large velocity gradients on a given
instantaneous image, the partial derivatives do not contain
accurate motion information anymore in different zones of a
same image. Generally, multi-resolution techniques is used
to overcome the problem of large displacements. It has been
shown that multi-resolution pyramidal decomposition, from
coarser to finer resolution, is numerically useful for OF esti-
mation in cases of large displacement (Papenberg et al. [33]).

The image resolution is progressively reduced ; the set
of images thus obtained form a pyramid of K different lev-
els (Burt and Adelson [10]) (see Fig. 1). Assuming the ori-
ginal images are of size N2, then subsequent reduced ima-
ges in the pyramid will generally be of size N2/22k, for
k = {1, ..,K}. At each pyramidal level k, the velocity vec-
tor is vk = ṽk+1 + v′k where ṽk+1 is the (bilinearly) interpo-
lated velocity vector computed at coarse resolution (k+ 1)
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Algorithm 1: Multi-resolution/Multi-grid algorithm
without warping
1 Pyramidal creation from level 0 (original) to K (coarsest) ;
2 Multi-Resolution Scheme ;
3 for k = K to 0 do
4 if k ̸= K Consider estimated velocity at coarser level then
5 ṽ+k+1 = Interpolate(2.v+k+1) from k+1 to k ;

6 Compute Pixel Gradients: ∇C+
k , ∆C+

k and
̂( ∂C+

∂ t

)
k

;

7 else
8 Compute Pixel Gradients: ∇C+

k , ∆C+
k and

(
∂C+

∂ t

)
k

9 Two Steps Multi-Grid ;
10 At grid level: ;

11 Compute Grid Gradients: ∇Cg
+
k , ∆Cg

+
k ,
(

∂Cg
+

∂ t

)
gk

;

12 Estimate vg
+′
k Optimization by DDE ;

13 At pixel level: ;
14 v+

′
k ← vg

+′
k Interpolation from grid to pixel level ;

15 Estimate vl
+′
k Optimization by DDE ;

16 v+
′

k ← vg
+′
k +vl

+′
k ;

17 End Two Step Multi-Grid ;

18 Update v+k = ṽ+k+1 +v+
′

k ;

19 Return the dense velocity field: v+0 ;
20 End Multi-Resolution ;

to image resolution of level k, and v′k is the incremental ve-
locity at level k.

Let us first write each of our two potential functions at
level k:

Vd (vk,Ck) =( ̂(∂C
∂ t

)
k
+v′k. ∇Ck−

(
1

Re Sc
+Dt

)
∆Ck

)2

(22a)

Vp (vk(s),vk(t)) =

(uk(s)−uk(t))2 +(vk(s)− vk(t))2 (22b)

where

uk = ũk+1 +u′k vk = ṽk+1 + v′k (23)

are respectively the x and y components of the total velocity
at level k, vk.

For the sake of clarity, we do not write the dependency
on s in Vd (equ. 22a). The first term on the RHS,

(
∂̂C/∂ t

)
k
,

is approximated by (C1(s+δd, t +δ t)−C2(s, t))/δ t , with
δd = ṽk+1(s) δ t ; it is the only term that depends on the ve-
locity estimated at coarser level ṽk+1. C1 and C2 correspond
to the two successive images at time t and t + δ t, via the
relation I ∝ C. This expression differs from most existing
methods, which usually rely on a wrapping step (Papenberg
et al. [32], Corpetti et al. [17]). We argue here and demon-
strate experimentally that warping is in fact an unnecessary

(a) (b)

Fig. 1 Coarser to finer resolution with multiresolution rep-
resentationof images (a) and corresponding estimated ve-
locity field for each pyramidal level (b)

step which may lead to a loss of accuracy in the computation
(Cassisa et al. [13]).

Therefore, at each level of the pyramid, except K, only
the optimal incremental component of the velocity field is
estimated. Still, in order to speed up the computation time,
we further decompose v′k(s) into a global and a local compo-
nent : the global component (v′g)k is defined as the average
velocity increment over a cell of size pxp; the local compo-
nent (v′l)k corresponds to the local deviation from (vg

′)k at
each pixel within the cell. In practice, we first estimate (v′g)k,
which is fast, then refine the estimation by adding a second
(2D) variable (v′l)k in the computation.The entire algorithm
scheme is shown in Algo 1. More details can be found in
Cassisa et al. [12].

2.3.4 Optimization procedure

Our total energy computed at levels k ∈ {K − 1,0} of the
pyramid, is fully defined by equations (19), (22a), (22b),
(23), and further by the decomposition into a local compo-
nent and a global component. At level k = K, the energy
functional is given by equations (19), (20), (21). We now
seek for the solution v̂ s.t. :

v̂ = v̂0 = v̂K +
0

∑
k=K−1

v̂′k

v̂′k = arg min
v′k∈Γ N

Ek
(
v′k,Ck

)
(24)

v̂K = arg min
vK∈Γ N

EK (vK ,CK)

In order to minimize the energy Ek() k ∈ {K,0} , we use
a direct descent energy (DDE) ( Snyman [41], Cassisa et al.
[14]). For clarity, lets call F() = Ek(), with the appropri-
ate change of variables. DDE will minimize F(v(s),C(s)),
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at each pixel s, by successive iterations. At each iteration i,
a small incremental random value δv(s) is drawn. The in-
crement δvk(s) is retained only if F(v(s)+ δv(s),C(s)) <
F(v(s),C(s)) ; v(s) is then replaced by v(s)+δv(s) at point s.

Because only point-wise minimization is performed, the
process may converge to a local minimum of the energy: in
principle, the resulting optimal solution v̂ depends on the
initial value of the v(s) ∀s (chosen randomly). In order to
avoid irrelevant sub-optimal local minima, we define the
weighting coefficient αp (c.f. equation 19) as a logarithm
function of i, varying from 0 to αmax

p . This way, the solution
is mainly driven by the data term at the beginning of the ite-
rations, while at the end of the iterations the quadratic prior
term takes more importance. It is worth noticing that similar
approach has been used successfully by others before (Bail-
loeul et al. [4]). Coupled to the multi-resolution technique,
we observe experimentally that the solution at convergence
is stable.

3 Description of validation tests

3.1 Numerical Simulation (DNS) of a scalar mixing in a
turbulent flow

Data acquisition

A passive scalar concentration synthetic image sequence is
generated by Direct Numerical Simulation (DNS) for a 2D
turbulence of an incompressible fluid. The 2D vorticity equa-
tions and the equation of advection-diffusion are used to cal-
culate the velocity and passive scalar concentration fields at
each instant. The size of each frame is 256×256 pixels. We
have a sequence of 100 successive frames. The Reynolds
number is Re = 3000 and the Schmidt number is Sc = 0.7.
This sequence was provided by the Cemagref of Rennes.
Details can be found in Carlier and Heitz [11].

Validation

Using the true velocity field from the DNS computation, we
calculated the statistical errors to evaluate quantitatively the
quality of algorithm results. In a standard way (Barron et
al. [6], Baker et al. [5]), we computed the Average Angle
Error (AAE) and RMS Velocity Error as follows:

AAE =
1
S

S

∑
s=0

arccos
(

v+c (s).v+e (s)
||v+c (s)|| ||v+e (s)||

)
(25a)

RMS =
1
S

√
S

∑
s=0
||v+c (s)−v+e (s)||2 (25b)

with v+c and v+e are respectively the DNS and the estimated
velocity vector fields.

We also compare our results with the state-of-the-art on
fluid motion analysis introduced in Corpetti et al. [17]. Note
that, for passive scalar concentration spreading sequence,
cross-correlation algorithms, as the one of PIV Davis Lav-
ision software, are not adapted because no particle was in-
cluded in the simulation; it is thus not appropriate for com-
parison with our approach.

The model proposed in Corpetti et al. [17] uses a flow
equation based on 2D projection of continuity equation (ICE).
The authors defines a regularization term based on diver-
gence and vorticity (DivCurl) constraints of the flow, which
is specifically adapted to velocity field of fluids. We note it
the ICE-DivCurl model. Parameter setting for ICE-DivCurl
were not available. Only the estimated velocity field were
provided by the authors. These estimated velocity fields are
published in [31] applying on the same scalar DNS sequence
as presently.

For incompressible fluid with apparent molecular diffu-
sion or high Reynolds number, ICE-DivCurl and TE meth-
ods become similar to the differential optical flow (see sec.1).
They only differ from the regularization function. For low
Reynolds number, turbulent diffusion is small compare to
convective terms, TE-SGS is similar to TE. However, when
Re becomes high, turbulent diffusion cannot be anymore
neglected. This is especially important in this case (this is
for the majority of satellite images for instance) as the spa-
tial resolution is far to reach the smallest turbulent scales.
The coefficient Dt models the small scale effects in TE-SGS
equation.

Our algorithm settings

We set identically the parameters for TE and TE-SGS for a
fair comparison. Maximum displacement field between two
successive images is about vmax = −vmin = 3.5 pixels. We
use a 3-level pyramidal decomposition and a grid size of
2×2 pixels for multigrid. Images are first filtered by a Gaus-
sian filter of variance σ2 = 1 at each level of the pyramid.
This reduces the influence of noise . Applying Gaussian fil-
ter suppresses small scales of the DNS. Moreover, the pro-
cessed DNS image sequence only contain 1 over 10 time
DNS calculation. The weighting coefficient αmax

p is set to
1. For TE-SGS, the coefficient Dt was determined using the
equation 15 and the power spectrum of the case with Kc = 33
and Csgm = 0.1. This gives us Dt ≈ 0.25.

3.2 Wind tunnel experiment

Data acquisition

Experiment and image acquisition were conducted at LMFA
(Simoens et al. [38,39]), in order to study the dispersion of
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(a)

(b)

Fig. 2 Sketch of channel (a) and optical set-up arrangements to create laser light sheet (b).

passive scalar within an atmospheric boundary layer in pres-
ence of obstacles. The source is located in the middle of a
canyon represented by two lines of squares whose sections
are h2. Obstacles are transversally disposed in order to be
perpendicular to the mean flow; the distance between them
is h = 1cm. The momentum Reynolds number at source lo-
cation without obstacle is Re ≈ 103 and the Schmidt num-
ber is Sc ≈ 106. The sketch of the tunnel is represented in
Figure 2a. The passive scalar is incense smoke. At a given
zoom, this provides images of the solid sub-microscopic par-
ticles constituting smoke. There, like at zoom of Mie scatter-
ing diffusion, light is linked to the number of solid particles
leading to their concentration. We used the images obtained
with the higher zoom that individualizes particles.

The acquisition was made by synchronization of two
YAG lasers and a CCD camera. YAG lasers delivered 300mJ
energy per pulse and had a pulse frequency of 10Hz that
determined the acquisition frequency of image pairs. Time
step between the two laser pulses, δ t, for first and second
image acquisition of each pair, was 0.2ms. Synchronization
between camera and laser pulses was achieved by Lavision
device. PIV from software Davis Lavision allowed to obtain

good results using a recursive mesh size method with re-
finement from 128×128 to 4×4 pixels. The optical set-up
arrangements are shown in Figure 2b. More details can be
found in Vincont et al. [48].

Validation

We compare our results with PIV technique from Davis LaV-
ision software [28] on mean velocity field profiles and RMS
fluctuated velocity field profiles.

Our algorithm settings

As for DNS sequence, settings are the same for TE and TE-
SGS. Maximum displacement of the velocity field between
two instants t and t + δ t is about 6 pixels. We use a 3-level
pyramidal decomposition and a grid size of 2×2 pixels for
multigrid resolution. The images are filtered by a Gaussian
filter of variance σ2 = 1. αmax

p equals to 1. For TE-SGS, the
coefficient Dt was determined using the equation 15. The
power spectrum was the one by Spalart [42] cited in [48]
as characterizing the boundary layer of their experiment.
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Fig. 3 Instantaneous results on DNS sequence at times (t = 50): exact DNS vorticity map (a), estimated vorticity maps
with superposition of flow vectors obtained by ICE-DivCurl (b), TE (c) and TE-SGS (d). Input passive scalar concentration
field at time t = 50 is illustrated in figure 4(a).

The filter size is deduced from the given spatial resolution,
Kc = 211.5 and Csgm = 0.1. This gives us Dt ≈ 2.

4 Results and discussion

4.1 Validation of the subgrid scale model on synthetic DNS
image sequences

Figure 3 shows the estimated velocity field and vorticity map
obtained from each method at time t = 50. Figure 3(a) shows
the exact DNS vorticity fields (with velocity vector super-
posed to the vorticity map). Figure 3(b) illustrates the esti-
mated fields from ICE-DivCurl; (c) and (d) are respectively
the estimated fields from our TE and TE-SGS algorithms.
The color legend is identical for all these results. The vec-
tor field and vorticity map obtained from ICE-DivCurl and

the ones obtained from TE are visually very similar. Lets
remind that the ICE-DivCurl and TE differ only by the re-
gularization term and the molecular diffusion factor; how-
ever, in this DNS simulation with high Reynolds number
(Re = 3000), the molecular diffusion term of equation (12)
will be negligible ; therefore only the regularization (which
in ICE-DivCurl was specifically designed for fluid motion)
distinguishes the two models. TE-SGS performs better than
TE and ICE-DivCurl: TE-SGS detects more accurately the
vortices and globally behaves more like the original DNS
fields.

Figure 4 illustrates an example on a zoom area of a pas-
sive scalar concentration field image at time t = 50 where
vortices are strong. Figures 4(a) and 4(b) show the extracted
and zoomed passive scalar concentration field area. In Fig-
ures 4(d), (e), (f), are represented, respectively, the diver-
gence and vorticity maps and the DNS exact vector field.
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Fig. 4 Illustration over a zoomed area at time t = 50. Area representation on passive scalar concentration field image (a,b).
Exact DNS divergence (d) and vorticity (e) maps (color map legend (c)) and exact DNS flow vector field (f). Estimated
velocity vector field for ICE-DivCurl (g), TE (h) and TE-SGS (i) methods. (j,k,l) represent the velocity difference between
exact DNS and estimated velocity for ICE-DivCurl, TE and TE-SGS methods respectively.
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Fig. 5 AAE (a) and RMS (b) errors of ICE-DivCurl, TE and TE-SGS for DNS passive scalar concentration sequence.
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Fig. 6 Power spectral analysis of the turbulent horizontal (a) and vertical (b) velocity components over the lines (log-log
scale). Exact DNS spectrum (black) is compared with spectra obtained with ICE-DivCurl (red) TE (green) and TE-SGS
(blue) methods.

The third raw in Figures 4(g), (h), and (i) show the esti-
mated velocity vector fields computed from ICE-DivCurl,
TE and TE-SGS methods. For a better comparison, we rep-
resent the difference velocity vector fields between the ex-
act DNS and the estimations in Figures 4(j), (k) and (l) from
ICE-DivCurl, TE and TE-SGS methods respectively. On this
figures, we can see that estimated velocity field from TE-
SGS is closer to the DNS results than the other methods.
TE and ICE-DivCurl show similar difficulties in retrieving
vortices around area of strong concentration variations. The
subgrid model in TE-SGS seems to overpass these difficul-
ties.

Figure 5 shows the statistical error AAE (left) and RMS
(right) for the 100 successive images. The evolution of TE
error has the same behaviour as ICE-DivCurl for both AAE

and RMS. This confirms the remarks made above. The TE
estimation is however slightly less accurate. It is quite nor-
mal, because we use a first order quadratic regularization
function while ICE-DivCurl uses a robust semi-quadratic
function of div-curl regularization that is more appropriate
to fluid motion. TE-SGS model, including subgrid scale mo-
del in passive scalar transport equation, provides a strong
improvement in the estimation of the velocity field com-
pared to TE. Estimations are also much better than ICE-
DivCurl. The evolution error, over the sequence, behaves
differently than TE and ICE-DivCurl methods. The TE-SGS
method deals with limitations due to the lack of information
on passive scalar images and retrieves a closer velocity field
compare to the exact passive scalar motion.
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Fig. 7 Instantaneous Mie scattering diffusion image from solid particle seeding the flow with 2 obstacles (a)
and amplitude map of the average horizontal velocity with the velocity vector representation obtained by PIV
(b)

x/h

y/
h

-1 0 1 2 3

0

1

2

3

U/Ue: -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

x/h

y/
h

-1 0 1 2 3

0

1

2

3

U/Ue: -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

Fig. 8 Maps of amplitude of horizontal velocity with mean vector representation of velocity fields obtained by the method
of to the original sequence (a) and pretreated (b)

The Figure 6(a) and 6(b) show plots of the average ki-
netic energy spectra of horizontal (left) and vertical (right)
velocity components. We can see that the spectrum obtained
by TE-SGS (blue) method is closer to the exact DNS spec-
trum (black) than the ones obtained by TE (green) and ICE-
DivCurl (red) methods. Observed differences between TE
and ICE-DivCurl results traduce the fact that TE velocity
field is smoother than the one from ICE-DivCurl. It is due to
the regularization function and the importance of the weight-
ing coefficient. As, we set the same parameters for TE and
TE-SGS methods, we cannot only explain the differences
between the spectrum by a less noisy field. We observe, for
both large and small wavelengths that TE-SGS method gives
a better representation of the velocity spectrum. The pro-

posed subgrid formulation improves the shape of the flow
field while performing a better estimation of the finest struc-
tures.

One important conclusion to draw from these experi-
ments, is that, improving the data term of the energy func-
tional —in particular via a ’physical’ modeling such as our
TE-SGS—, is a necessary step to estimate a velocity field
closer to the exact ground truth. The role of the regulari-
sation term, thought important, is not as crucial as the role
of the data term. This can be understood by observing that
the main ”driving force” which leads the algorithm towards
the optimal solution is precisely the data energy, while the
regularisation is acting ”only” to smooth out unacceptable
solutions.
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Fig. 9 Mean velocity field for the study area with 200 pairs of images with PIV (a) (black arrows in (d)), our
method TE (b) (blue arrows in (d)) and TE-SGS (c) (red arrows in (d)). In (d) superimposed estimated fields.
The color map represents the displacement amplitude normalized.

4.2 wind tunnel PIV acquisition sequence

In this subsection evaluate the robustness of our approach on
solid particles seeding a flow. For this experiment, we have a
series of 200 pairs of images for PIV analysis. We compute
instantaneous velocity fields and average these fields. Fig-
ure 7 shows an instantaneous image of the scattering diffu-
sion intensity from solid particle seeding the flow (Fig. 7(a))
and the mean velocity field, over the 200 pairs, from PIV
results (Fig. 7(b)). On background of the PIV mean velocity
field, we visualize the horizontal velocity component ampli-
tude color map. Length and velocity scales are normalized
by length h and outside boundary layer velocity
Ue ≈ 2.3m.s−1.

On input images, we define a binary mask that identifies
the ground and obstacles. Notice that we have a vertical line
in the mask at the front of the first obstacle. It is due to a
burnt pixel column of the camera. This line influences the
estimation of the velocity field around this area as we can
see on Figure 7(b). However, this line is far from the canyon
where the test is significant. The mask is used to help the
algorithms not to be disturbed by light reflection on the ana-

lyzed area (on the obstacle walls and flat plane of the tunnel).
PIV Davis software can take into account this mask. In our
TE-SGS algorithm, we add the possibility to use a mask. Ve-
locity value in the mask area is set to 0. Graph edges between
a pixel on the border and a pixel in the mask is deleted. Es-
timation of the velocity field at the mask border is then not
influenced by inside border information.

These laboratory experiment results are very sensitive
to the quality of acquisitions. Measured image intensity de-
pends on the light exposure on CCD captors. The inten-
sity contains information on seeding particle concentration
but also information from experiment materials and noise.
As mentioned in section 2.1, we consider in this work that
image intensity is directly linked to solid particle concentra-
tion. In practice, this is not the case as main part of particle
images are individualized. We had then to identify and sup-
press experimental noise to be able to correctly apply TE-
SGS.

This noise is due to two main causes:

1. The reflections of light on the walls. This results in a
background image. It is obtained in the same experimen-
tal conditions without seeding the flow.
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Fig. 10 Vertical profiles of average velocity field of normalized a) horizontal and b) vertical components with PIV, TE
and TE-SGS methods. The profile is taken at the center of the canyon (h = 0)
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Fig. 11 Vertical profiles of the RMS fluctuating field of normalized a) horizontal and b) vertical components with PIV, TE
and TE-SGS methods. The profile is taken at the center of the canyon (h = 0)

2. The laser pulse frequency of a laser that is too low to
generate pulse for both images. Thus, images 1 and 2
of a pair came from two pulses of two different lasers.
Laser light intensity is then different for both images.
This results on an independent brightness variation be-
tween images 1 and 2 in a pair. Such noise was classi-
cally removed as in Ayrault and Simoens [3].

We preprocessed the image pairs to remove the noise
and to represent dimensionless information of the particle
intensity image.

Figure 8 shows the computed mean velocity field ob-
tained by the TE algorithm on the original images (left) and
on the preprocessed images (right). Without preprocessing,

estimated field is strongly perturbed around particle inten-
sity contours. Particle intensity contours are the most af-
fected area by light variations due to experimental noise;
preprocessing proves to remove this light variations. The es-
timated field on preprocessed images is not influenced by
experimental noise. It is more relevant than estimated ve-
locity field on original sequence and it is coherent with PIV
field (Fig. 7(b)). We can also observe that TE algorithm does
not estimate correctly the velocity field over the entire exper-
imental domain. Our approach computes the velocity field
of the fluid based on scalar transport equation. Motion field
can only be computed where there is enough particle seed-
ing the field. For y/h ≥ 1.3, there is no more solid particle



15

concentration. Due to a background fluid particle seeding in
the tunnel, PIV can retrieve the flow field.

To compare PIV, TE and TE-SGS, we focus the analy-
sis on particle concentration displacement inside and close
around the canyon. Figure 9 shows the mean velocity field
vectors from PIV, TE and TE-SGS methods. Results for all
methods are similar. To exhibit clearly difference between
TE and TE-SGS approaches, we plot the vertical profiles
of normalized horizontal (left) and vertical (right) velocity
components at the middle of the canyon. Figure 10 repre-
sents the profiles for the mean velocity field and Figure 11
shows the RMS profiles for the different methods. On these
figures, it seems that TE-SGS method estimates a better RMS
and mean velocity field. It tends to retrieve a profile closer
to PIV than TE does.

Note that the experiments was done on PIV Mie scat-
tering diffusion requirements with particle density adapted
to Mie diffusion approach. For further concentration field
determination, particle concentration is thus not fully dis-
tributed over the image domain. This can introduce locally
no results.

However, our TE model can correctly estimates the flow
field over scalar concentration requirement area. TE-SGS
method allows to improve flow field estimation and char-
acteristic of the flow.

5 Conclusion

The subgrid transport equation we have proposed in this pa-
per takes into account the limitations of observed informa-
tion in images, incorporating a sub-pixel scale model based
on a turbulent diffusion in the scalar transport equation. Val-
idation on synthetic and experimental sequences, shows that
the new model improves the estimation of the velocity field
for study of passive scalar concentration propagation and is
robust enough to be applied to non homogeneous solid parti-
cle seeding displacements. Subgrid scale model advantages
are less important on experimental acquisitions because the
illustrated experiment does not fully represent the passive
scalar concentration field (in the original laboratory experi-
ment concentration field is obtained only for one instant as
this was sufficient for obtaining mass fluxes). However, on
the DNS sequence, subgrid scale model outperforms exist-
ing optical flow algorithms by considering influence of small
scales at subgrid level on the filtered flow field. TE-SGS bet-
ter estimates vortices by modelling the turbulence influence.
It would be interesting to combine advantages of PIV meth-
ods with optical flow (Heitz et al. [22]) not only by con-
straining the optical flow estimation by the correlation esti-
mations, but also by using a confident weighting coefficient
depending on the properties of the studied flow (solid parti-
cle or passive scalar transport). A more complex definition

of the turbulent diffusion could also bring an improvement
to our model (Smagorinsky [40], Cui et al. [18]).
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