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Abstract

Local spatio-temporal features have been shown to be effective and robust
in order to represent simple actions. However, for high level human activi-
ties with long-range motion or multiple interactive body parts and persons,
the limitation of low-level features blows up because of their localness. This
paper addresses the problem by suggesting a framework that computes mid-
level features and takes into account their contextual informations.

First, we represent human activities by a set of mid-level components,
referred to as activity components, which have consistent structure and mo-
tion in spatial and temporal domain respectively. These activity components
are extracted hierarchically from videos, i.e., extracting key-points, group-
ing them into trajectories and finally clustering trajectories into components.
Second, to further exploit the interdependencies of the activity components,
we introduce a spatio-temporal context kernel (STCK), which not only cap-
tures local properties of features but also considers their spatial and tempo-
ral context information. Experiments conducted on two challenging activity
recognition datasets show that the proposed approach outperforms standard
spatio-temporal features and our STCK context kernel improves further the
performance.
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1. Introduction

Human activity recognition is one of the most challenging problems in
computer vision. By “activity”, we refer to a high-level combination of
micro-actions with particular spatial and temporal relationships, e.g., hand-
shaking, hugging, eating food with a silverware, etc. Besides the extrinsic
properties of actions, related to camera motion, illumination, occlusion, etc,
the challenge of activity recognition stems also from their intrinsic aspects
related to complex spatio-temporal interactions between micro-actions, for
instance moving body parts for multiple persons.

Local interest point features, including 2d corner-based [1, 2] and 3d
space-time features [3, 4, 5], have been widely employed for both action and
activity1 recognition. They form sparse and effective action representations
usually coupled with machine learning techniques. Their success is also due
to their avoidance of pre-processing (such as background subtraction, body
modeling and motion estimation) and their robustness to camera motion and
illumination changes. Impressive results have indeed been reported in both
synthetic and realistic scenarios, see for instance [1, 2, 3, 4, 5, 6, 7, 8]. How-
ever, the limitation of these low-level features blows up when used in order
to represent complex activities with long-range motions or multiple interac-
tive body parts, since they describe only the local information in a spatio-
temporal volume, and their variants (e.g., bag-of-features) usually discard
the geometric and the temporal relationships.

Much effort has therefore been undertaken in order to overcome the lim-
itation of local features [1, 8, 9, 10]. Matteo et al. [8] extract holistic spatio-
temporal features from clouds of interest points accumulated over multiple
temporal scales. Andrew et al. [1] propose a hierarchical grouping of dense
2d corners in both space and time neighborhood in order to produce an over-
complete feature set compound. In this approach, frequently reoccurring
feature patterns are hierarchically grouped; as the level of their hierarchy
increases, the mined feature compounds become more and more complex,

1The terms of action and activity may be used inconsistently when citing related works
in the follows, since the differentiation of action and activity is not clear in literatures.
However, in this paper, we refer to an activity as a higher-level combination of micro-
actions.
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sparse and discriminative. In [10], the authors introduce a spatio-temporal
match kernel designed to measure the structural similarity between two sets
of features extracted from different videos. This kernel explicitly compares
temporal relationships (e.g., before and during) as well as spatial relation-
ships (e.g., near and far) between the extracted features in the XY-t space.

Global information is also considered in the literature in order to achieve
action recognition [11, 12, 13, 14]. These methods are based on extracting
and matching global templates from different videos, but their success is
highly dependent on the flexibility of these templates, especially for action
categories exhibiting large intra-class variations. In order to improve the
flexibility of templates, [13] introduces a deformable action template model
based on a learned weighted set of primitives. In [14], the authors split the
entire template into parts, which are matched individually. Variants of these
approaches rely on mid-level features. For instance, the representative human
body model requires a preliminary step of pose-estimation and it is based on
a pictorial structure model [15]. The latter is a deformable constellation of
parts, where each part corresponds to an appearance model and parts are
linked using spring-like connections. In [16], the authors introduce a discrim-
inative part-based approach, in which a human action is also modeled as a
flexible constellation of parts. The method in [17] is based on a hierarchical
action model, in which the bottom of that hierarchy corresponds to local
features, while top levels describe constellations of parts; each part is associ-
ated to a bag of features, and the relative positions of parts are also modeled.

Other categories of action description and recognition techniques are in-
troduced in the literature. Recently, trajectory-based methods aim to extract
long-term motion information [2, 18, 19, 20, 21]. For instance, in [2], each
video clip is processed in order to extract trajectories by tracking 2d inter-
est points and these trajectories are described using the bag-of-word model.
Another important category of methods seeks to represent the activity in a
hierarchical way [22, 23, 24, 25, 26, 27]. In these methods, a complex activity
is decomposed into several levels with different semantics, such as “atomic
action”, “composite action”, “single-thread composite events”, “multi-thread
composite events”, etc. In [24], complex spatio-temporal events are ab-
stracted into three hierarchies: “primitive events”, “single-thread composite
events” and “multi-thread composite events”, here i) a “primitive event” is
defined as a single, coherent unit of movement achieved by one agent, ii)
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a “single-thread composite event” corresponds to a consecutive occurrence
of multiple primitive events, and iii) a “multi-thread composite event” is a
composition of multiple single-thread events with some logical, temporal or
spatial relationships. In [26], human activities are classified into three classes:
“atomic action”, “composite action”, and “interaction”, based on gestures
estimated from different frames; spatial and temporal relationships between
atomic actions are also explicitly modeled in order to exploit the structural
property of activity. Pinhanez and Bobick [22] propose to represent the tem-
poral structure inherent in human actions using a simplified “past, now, fut”
(PNF) network based on Allen’s interval algebra, where 13 possible primi-
tive relationships between two time intervals are employed, including equal,
before, meet, overlap, during, start, finish, and their inverses. Shi et al. [25]
introduce Propagation Networks (P-Nets) for representing and recognizing
sequential activities, where each activity is represented by partially ordered
intervals. Each interval is characterized by information about its duration
and its temporal relationship with other intervals.

Context has also been considered as an important cue for action recog-
nition [9, 28, 29]. Authors in [9] propose to learn neighborhood shapes of
the space-time features which are discriminative for a given action category,
and recursively map the descriptors of the variable-sized neighborhoods into
higher-level vocabularies resulting into a hierarchy of space-time configura-
tions. More recently, Wang et al. [28] introduce a contextual model in order
to capture contextual interactions between interest points. Multiple chan-
nels of contextual features for each interest point are computed in multi-scale
contextual domains with different shapes, where an individual context is rep-
resented by the posterior density of this particular feature class at this pixel
location. Then multiple kernel learning is used to select the best combina-
tion of channels in a multi-channel SVM classification. In [29], objects and
human body parts are considered as mutual context and their interactions
are modeled using random fields. Authors in that work, cast the learning
task as a structure learning problem, by which the structural connectivity
between objects, overall human poses, and different body parts are estimated.

In this paper, we present an approach for action recognition based on
mid-level features and spatio-temporal context modeling. First, we represent
complex human activity by a set of mid-level features, called activity com-
ponents. We define an activity component as a connected spatio-temporal
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part having consistent spatial structure and consistent motion in temporal
domain. As we shall see, most of these activity components have physical
meanings, for instance, the extracted activity components in “hand-shaking”
include “extending arms” and “shaking hands”. These activity components
are extracted by grouping similar trajectories; key-points are first extracted
and tracked frame by frame, in order to form a set of trajectories. Then, tra-
jectories are assigned to different clusters, depending on their appearance and
motion, resulting into activity components. Finally, a hierarchical descriptor
is used for each activity component in order to encode its appearance, motion
and shape informations.
It is worth noticing the difference between our activity components and the
part-based models, such as hidden part models [16] and constellation mod-
els [17]. In these cited works, parts are hidden or abstract without any
physical meaning, in contrast to the proposed components which, in prac-
tice, correspond to consistent moving physical body parts. Furthermore, in
our work, the extraction of these parts is model-free, i.e., it does not rely on
any part-based model, either learned or fixed.

In the second main contribution of this paper, we introduce a spatio-
temporal context kernel (STCK) that exploits the structural and the dy-
namic properties of activity components. We argue that an activity may be
decomposed into several components, which interact with each other both
in the spatial and the temporal domain. In our preliminary work [30], we
already investigated the issue of modeling pairwise relationships between ac-
tivity components. In contrast to that previous work [30], the similarity of
two activities depends on both the local properties of the underlying com-
ponents and their pairwise and higher order spatio-temporal interactions.
Moreover, STCK defines a positive definite kernel suitable for SVM learning
and classification. Indeed, when plugged into SVMs, it achieves good gener-
alization performance on challenging activity recognition databases.

The rest of this paper is organized as follows. Section 2 gives a detailed
description of our approach for extracting and representing mid-level com-
ponents. In Section 3, we present the spatial-temporal context kernel. We
illustrate and interpret the experimental results in Section 4, and finally con-
clude the paper in Section 5.
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2. Activity-Components: a mid-level activity representation

2.1. From trajectories to activity-components

Consider a video V as a succession of T frames {It}
T
t=1 and P(t) = {p

(t)
k }Kt

k=1

the key-points associated with a frame It. Let τ = (p
(t)
i , p

(t+1)
j , . . . , p

(t+Δ−1)
k )

be a trajectory including matched key-points belonging to Δ successive frames
and let T = {τn}

M
n=1 be the collection of all trajectories in V . Considering

these definitions, a given video V may be hierarchically defined as

{P (t)}Tt=1 −→ T −→ V . (1)

Existing related works start from this video representation [18, 19, 20, 21],
where trajectories are assumed independent and used as elementary activity
units. Each trajectory is described by its motion and appearance informa-
tion, and videos are finally described using the bag-of-word model.

This section presents our first contribution: a novel mid-level representa-
tion of activities by relying on video trajectories T . We argue that these tra-
jectories can be partitioned into different clusters where each one corresponds
to a meaningful activity unit (such as a moving arm). In what follows, we
call these meaningful clusters as activity-components. An activity-component
(denoted c�) can be represented as a subset of trajectories

c� = {τ�1 , τ�2 , . . . , τ�m},

here �1, �2, . . . , �m are the lengths of the m trajectories of c�. Note that any
two different activity-components are disjoint, i.e., c�∩cq = ∅ for � �= q. Con-
sidering C = {c�}

L
�=1 as the set of activity-components, the new hierarchical

representation of a video V becomes

{P (t)}Tt=1 −→ T −→ C −→ V . (2)

2.2. Extraction of activity-components

For a given video, we consider a bottom-up strategy in order to extract the
underlying activity-components. More precisely, trajectories are i) extracted
by linking densely sampled key-points, as shown in Figure 1, and ii) grouped
into different activity-components according to their appearance and motion
properties.
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2.2.1. Trajectory extraction

We propose to use densely sampled points from each frame rather than
sparse salient points. The latter, used in previous trajectory-based meth-
ods [2, 18, 19], do not necessarily capture sufficient details in order to group
similar trajectories into meaningful parts. Specifically, we start from dense
sampling on a regular grid, where each key-point in that grid is represented
by a SIFT descriptor [31]. The correspondence between key-points in succes-
sive frame grids is based on the nearest neighbor distance ratio matching [32]
and follows two steps:
i) A given key-point in the frame It, is constrained to match with key-points
located within a spatial window of size N ×N in the subsequent frame It+1;
here N depends on the maximum velocity of motion which is set in practice
to 15.
ii) Quasi-static and fast disappearing trajectories are discarded. Precisely, a

given trajectory τ = (p
(t)
i , p

(t+1)
j , . . . , p

(t+Δ−1)
k ) is discarded if its length Δ < 5

or if στ = ��∂p�22�p∈τ − ��∂p�2�
2
p∈τ is less than a fixed threshold; here στ is

the variance of successive displacements �∂p
(t)
i �2, . . . , �∂p

(t+Δ−1)
k �2 and �·� is

an average operator.

2.2.2. Grouping trajectories

Grouping trajectories T = {τn}
M
n=1 into consistent activity-components,

is similar to trajectory-based motion segmentation. As current motion seg-
mentation techniques basically rely on the 2D or the 3D locations of points
in trajectories (see for instance [33]), they may fail to obtain satisfactory
results on complex scenes including low motion contrast or cluttered back-
ground. In contrast to these methods, we use more discriminative features
to leverage trajectory description. Specifically, for a given trajectory τ , we
consider three informations:

- Location: {p
(t)
τ = (x

(t)
τ , y

(t)
τ )}

teτ
t=tsτ

, where tsτ and teτ are the starting and
ending times of a trajectory τ ;

- Displacement: {∂p
(t)
τ = p

(t)
τ − p

(t+1)
τ }

teτ−1
t=tsτ

are translation vectors be-
tween connected points on a trajectory τ ;

- Brightness profile: this is an N -dim histogram (denoted h
(t)
τ [n]Nn=1)

defined inside a small patch around p
(t)
τ in the frame It.
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Note that brightness profile in a given component is usually consistent,
and, when combined with location and displacement, it provides a complete
information in order to make clustering of trajectories into meaningful com-
ponents more effective.
Following the previous description, we define our dissimilarity between two
trajectories τ , τ � as

dist(τ, τ �)

|t1 − t2|
, (3)

with

dist(τ, τ �) =

t2�

t=t1

�
�p(t)τ − p

(t)
τ �

�
�
2

+ α1

t2�

t=t1

�
�∂p(t)τ − ∂p

(t)
τ �

�
�
2

+ α2

t2�

t=t1

exp
�
−

N�

n=1

min
�
h(t)
τ [n], h

(t)
τ � [n]

��
, (4)

here t1 = max(tsτ , t
s
υ), t2 = min(teτ , t

e
υ) are frame-start and frame-end of two

overlapping trajectories τ , τ �, and � · �2 is the L2-norm. In equation (4), the
first term favors trajectories that are spatially close; the second one mea-
sures the motion dissimilarity of trajectories; while the third term is the
intensity dissimilarity between two trajectories. In practice, the three terms
are equally weighted.

Considering the above dissimilarity between all the trajectory pairs in T ,
we use the graph-based clustering method in [34], in order to partition T
into components. This algorithm has comparable performances wrt others
(including normalized-cuts [35]), with an extra advantage of being compu-
tationally more efficient. Prior to achieve that clustering, we build a graph
where each node corresponds to a trajectory in T and connections between
trajectories are weighted by the dissimilarity defined in Equation (3). This
algorithm generates clusters where edges in the same component have rela-
tively low weights, while those in different components have high weights2.

2The approach in [34] relies on a threshold Tg which makes it possible to cut edges.
In practice, Tg = 0.6 generates activity-components with the best recognition rates.
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(a) Activity-components of ShakeHanding (b) Activity-components of Hugging

(c) Activity-components of Kicking (d) Activity-components of Pointing

(e) Activity-components of Pushing (f) Activity-components of Punching

Figure 1: Examples of extracted activity-components from the UT-Interaction dataset [36].
Only the largest components are shown. The left one of each subfigure shows the extracted
components in X-Y plane, and the right one displays the extracted components in 3-
dimensional (X-Y-t) space, where the time information is included (noted that the spatial-
temporal locations of points on right pictures may be rotated around X-Y plane for better
illustration.). Observe that each activity-component contains a collection of trajectories
that are of consistent motion and appearance. Different colors correspond to different
activity-components. The points in the same activity-component are displayed in the same
color. It is worth noticing the physical meanings of the extracted activity-components.
For instance, in Figures 1(a) the most meaningful extracted activity-components are two
shaking hands (in red and green) and moving arms (in blue and slight blue), which are
also consistent with our human observations.

9



Figure 1 shows several components obtained on different sequences of 6 activ-
ities in the UT-Interaction dataset [36]. These components are shown with
different colors and the underlying key-points are displayed with the same
color. Note that trajectories, in each extracted activity-component, have
consistent motion and appearance. Furthermore, they are easy to interpret;
for instance, Figure 1(a) clearly shows hand shaking components (in red and
green) and moving arm components (in blue and slight blue).

2.3. Description of activity-components

As shown in Figure 1, extracted activity components may be interpreted
as meaningful moving parts, such as moving arms and shaking hands, etc.
In order to characterize different features of these components, our descrip-
tion is based on three informations: appearance, shape and motion. The
first two cues are encoded using the bag-of-word model while the last one is
based on a descriptor referred to as translation matrix; as will be described
later, this translation matrix characterizes the local displacements of points
in trajectories and components.

Appearance. A codebook is first generated off-line by clustering a collection
of 128 dim SIFTs associated to key-points extracted on a large video set. In
practice, we use k-means for clustering and we set the size of the codebook
to 300. Then, the appearance information of a given activity-component c is
encoded using the bag-of-word model. The latter assigns each key-point in c
to an unique cluster and returns a normalized histogram (denoted happe(c));
the latter models the membership distribution of these key-points, in c, to
300 clusters.

Shape. Given an activity-component c, we describe its shape information in
successive frames using the bag-of-word model based on shape-context [37].
First, the spatial neighborhood of a given key-point p(t) in c is subdivided into
5× 12 cells using the log-polar coordinates (see Figure 2). Then, a key-point
shape descriptor associated to p(t) is computed; it models the membership of
the neighbors of p(t) to these cells.
Similar to appearance, a codebook, of size 300, is built on a collection of key-
point shape descriptors extracted on a large video set. Again, this codebook is
generated using k-means and finally, shape information of a given component
c is described by a normalized histogram (denoted hshape(c)) that models the
membership distribution of key-point shape descriptors, in c, to 300 clusters.
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Figure 2: Illustration of a key-point shape descriptor in an activity-component. The
spatial neighborhood of p(t) in frame It is subdivided into 5× 12 cells using the log-polar
coordinates. A histogram is used to describe the quantized spatial distribution of its
neighbors according to the log-polar partitions.

Figure 3: Illustration of the motion descriptor of an activity-component. For each trajec-
tory in an activity-component, we compute its transition matrix based on its line segments.
The final motion descriptor is the average of those of trajectories in an activity-component.
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Motion. Given an activity component c, we introduce a descriptor, referred
to as translation matrix, in order to characterize the motion information of c.
This descriptor was inspired by [2, 18] and its principle consists in smoothing
and extracting curvatures on each trajectory τ of c using anisotropic diffu-
sion [38]. The local extrema of these curvatures correspond to both changes
of speed and direction in c.
Following the approach in [39], each trajectory τ , in c, is split into several
segments joining the local curvature extrema. The orientation of these seg-
ments is quantized into S states, including a “no-motion” one. Thereby, for
each trajectory τ , a sparse transition matrix with S × S states is computed
(in practice S = 9). The transition matrices of all the trajectories in c are
paved together in a normalized motion descriptor (denoted as ψmotion(c)).
Figure 3 shows an example of this descriptor.

2.4. Activity description

For each activity-component c, the three descriptors mentioned earlier are
normalized and weighted in order to form one global component descriptor
f(c) = �αappehappe(c), αshapehshape(c), αmotionψmotion(c)�, here αappe + αshape +
αmotion = 1. The choice of these weights is described in Sec. 4.2. Finally, an
activity is encoded by i) quantizing its component descriptors using a learned
codebook and ii) computing a histogram which counts the occurrence of the
quantized component descriptors according to that codebook.

3. Spatio-temporal context for activity recognition

The activity description introduced so far relies on a strong assumption
that activity-components are independent, so this assumption ignores the
structural properties of human activity. These properties, including spatial,
temporal and causal relationships, are known to be important in activity
recognition [22, 23, 24, 25, 26, 27]. In this and the following sections, we
model these spatio-temporal structural properties and we study their influ-
ence in activity recognition.

3.1. Spatio-temporal context

The description of each activity component c is extended with a tuple

(f(c), x(c), y(c), t(c), sxy(c), st(c)),
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here f(c) stands for the feature of c (introduced in Section 2.3), x(c), y(c), t(c)
correspond to the centroid of key-points in c, and sxy(c), st(c) denote respec-
tively the spatial and temporal scale of c. In practice, sxy(c) is set to the
average spatial distance of key-points in c with respect to (x(c), y(c)) (i.e.,
standard deviation), and st(c) is similarly defined as the average temporal
distance of endpoints in all trajectories of c with respect to t(c).

Let Cv be the union of all components in a given video. We define the
asymmetric spatio-temporal neighborhood of a given component c ∈ Cv as

N (c) =
�
c� : c� ∈ Cv, dxy(c, c

�) < αxy · sxy(c), dt(c, c
�) < αt · st(c)

�
, (5)

with

dxy(c, c
�) =

�
�
�x(c)− x(c�)

�
�2

2
+
�
�y(c)− y(c�)

�
�2

2

� 1

2

dt(c, c
�) =

�
�t(c)− t(c�)

�
�
2
,

and αxy, αt being the parameters of a cylinder (of radius αxy · sxy(c) and
length 2αt · st(c)) enclosing components in N (c). These parameters are set
sufficiently large (αxy = 4 and αt = 6 in practice) in order to avoid sparse
neighborhoods.

Each component c� ∈ N (c) is assigned i) to an unique cell in the spatial
neighborhood (see Figure 4(a), left), depending on its relative spatial loca-
tion w.r.t c and ii) to an unique state in the temporal neighborhood (see
Figure 4(a), right), depending on the relative temporal position of the ex-
tremities of c and c�. In practice, five temporal states are combined with 5
spatial cells resulting into a final spatio-temporal neighborhood of 25 cells
(denoted {Nr(c)}

24
r=0). The latter reflect interactions between different com-

ponents for a better modeling of context in activity recognition as shown in
the subsequent sections.

3.2. Kernel design for context-dependent activity recognition

In this section, we adapt the context-dependent kernel, initially intro-
duced in Sahbi et al. [40], in order to capture spatial as well as temporal
context between components. The resulting kernel is referred to as spatio
temporal context kernel (STCK).
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(a) Spatial relationships (b) Temporal relationships

Figure 4: Illustration of spatio-temporal relationships. In (a), the spatial relationships are
quantized into 5 states. In (b), the locations of lines stand for the temporal locations of
components, and the lengths of lines stand for the temporal ranges components cover.

Let C = ∪v Cv be the union of all the components in the available (training
and testing) videos. Define our STCK kernelK as a Gram matrix where each
entry Kc,c� provides a similarity between c, c� ∈ C.
Using K, one may define the convolution kernel Kconv, between any two
activities Ap = {cpi }

m
i=1, Aq = {cqj}

n
j=1 as

Kconv(Ap, Aq) =
1

|Ap|.|Aq|

�

c∈Ap

�

c�∈Aq

Kc,c� ,

note that when K is positive (semi) definite, the convolution kernel Kconv

will also be positive (semi) definite. Our goal is to design K by taking into
account the local properties of components (i.e., their features) as well as
their spatio-temporal context.

Let’s define, for each cell r in the neighborhood system {Nr(c)}
24
r=0, an

adjacency matrix Pr; here Pr
c,c� = 1{c�∈Nr(c)}. Now, we propose to design the

kernel K by minimizing

min
K≥0,�K�1=1

tr
�
KD�

�
+ βtr

�
K logK�

�
− α

24�

r=0

tr
�
KPr(PrK)�

�
, (6)

here α, β ≥ 0, D is a dissimilarity matrix between (local) component fea-
tures (i.e., Dc,c� = ||f(c) − f(c�)||2), with D� being the transpose of D and
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tr(·) the trace operator. The operations “log”(natural) and “≥” are applied
individually to each entry of K.

The first term in the above constrained minimization problem measures
the fidelity of component alignments, i.e., the quality of matching compo-
nents using only their local features. The second term is a regularization
criterion that constrains the probability distribution {Kc,c�}c,c�∈C to be flat
when no any priori knowledge about the aligned components is available.
The third term captures the spatio-temporal context, where a high value of
Kc,c� should imply high kernel values between components in Nr(c)×Nr(c

�).

Solution. The optimization problem in Equation (6) admits a positive def-
inite kernel solution K̃, which is the limit of

K(η) =
G(K(η−1))

�
�G(K(η−1))

�
�
1

,

with

G(K) = exp
�
−
D

β
+

α

β

24�

r=0

�
PrKP

�r +P
�rKPr

��

K(0) =
exp(−D/β)

�
� exp(−D/β)

�
�
1

.

Detailed proof of this solution and its convergence to a positive definite
fixed-point (with respect to the setting of α, β) is out of the scope of this
paper and may be found in [40], for the same family of kernel solutions. Note
that, in practice, this kernel solution usually converges after 3 iterations only.

Finally, by replacing K̃ into the convolution kernel Kconv, we obtain a
Gram matrix that characterizes the similarity between any two activities
Ap, Aq. When plugging this kernel in SVMs, we obtain an effective activity
recognizer as shown in the following experiments.

4. Experiments

In this section, we evaluate the performance of our proposed method in
two aspects: we first compare activity components with local space-time fea-
tures [3, 4] and trajectory-based features [19], then we show the advantage of
spatio-temporal context in activity recognition when using the STCK kernel.
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(a) Snapshots of video sequences in the UT-Interaction Dataset [36], containing 6 classes of
activities and 20 samples in each class.

(b) Snapshots of video sequences in the Rochester Activities Dataset [19], containing 10 classes
of activities and 15 videos in each class.

Figure 5: Snapshot examples of video sequences in two activity datasets: the UT-
Interaction Dataset [36] and the Rochester Activities Dataset [19].
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4.1. Experimental Setups

All the comparisons were implemented on two recent activity datasets:
the UT-Interaction collection [36] including complex interactions and the
Rochester Activities dataset [19] containing more complex daily activities.

UT-Interaction dataset. It contains 6 classes of human-human interac-
tions: shake-hands, point, hug, push, kick and punch. Each class has 20
video sequences which are divided into two different sets: (1) the first one,
named set 1, includes 10 videos taken on a parking lot with slightly different
zoom rates and mostly static background with little camera jitter; (2) the
other 10 video sequences, named set 2, are taken on a lawn in a windy day
with a slightly moving background, e.g. tree moves, and the videos contain
more camera jitters. Note that background, scale, and illumination of the
videos in each set are different. Figure 5(a) shows one snapshot for each class.

Rochester Activities dataset. This dataset contains 10 classes of daily
living activities: answering a phone, chopping a banana, dialing a phone,
drinking water, eating a banana, eating snack chips, looking up a phone
number in a telephone book, peeling a banana, eating food with silverware
and writing on a white board. Each of these activities contains 15 different
videos that include five different persons of different shapes, sizes, genders,
and ethnicities3. Figure 5(b) shows one snapshot for each class on the dataset.

In order to evaluate and fairly compare the performance, we use the
same experimental setting as in [19] and [36]. Specifically, on the Rochester
Activities Dataset, 12 video sequences taken by four subjects (out of the five)
are used for training, and the remaining 3 videos for testing. The experiments
are repeated five times. As for the UT-Interaction dataset, a 10-fold leave-
one-out cross validation is used for each set (i.e., each time, 9 samples are
used for training and one for testing). The performance of different methods
is shown using the average recognition rates.

3It has been reported [19] that using only the motion information is not sufficient for
distinguishing these activities and some other information, such as appearance descrip-
tions, should be taken into account.
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Figure 6: Contribution of appearance, shape and motion features on UT-Interaction
dataset.

4.2. Comparison

In order to evaluate the effectiveness of the proposed mid-level activity
components, we consider three settings:

- Setting 1 (Bag-of-Components + SVMs): first, we generate a
codebook of activity-components using k-means, then we represent each
activity with the bag-of-component model (as described in Section 2),
finally we train a SVM classifier for each activity class using the RBF
kernel. As in [36], codebooks with 10 different sizes are generated, and
the underlying performance is averaged.

- Setting 2 (Components + STCK kernel + SVMs): for each ac-
tivity class, we train a SVM classifier using the STCK kernel . Accord-
ing to [40], higher values of α, in STCK, result into better performance
but following [40] this parameter should be upper-bounded in order
to guarantee convergence to a fixed-point. Note also that the setting
of β is the one used for the RBF kernel, as the latter corresponds to
the left-hand side term in STCK. In practice, we found that the best
setting of α, β is respectively 20 and 0.5.

- Setting 3 (Components + Context-free kernels + SVMs): the
setting is exactly the same as the previous one, but α = 0.

Comparison using Setting 1: first, we evaluate the influence of compo-
nent features on performance. Figure 6 shows activity recognition accuracy
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Figure 7: Comparison of classification accuracies of different features and models on UT-
Interaction dataset. Our activity-components outperform the local STIPs feature [3] and
Cuboid feature [4]. Moreover, our Component + STCK + SVM model is comparable to
state-of-the-art results.

of Bag-of-Component + SVMs using different features (appearance, shape
and motion) and their combination on the UT-Interaction dataset (sets 1
and 2). The average classification accuracies of appearance, shape and mo-
tion features on the two sets are 22%, 27.8% and 67.1% respectively; and
the performance of their combination reaches 73.3%, and outperforms our
original motion feature, in [30], by 6.2 points. Compared to appearance and
shape features, it is clear from experiments, that the contribution of motion
is substantial and this corroborates the fact that motion is the most critical
feature for activity recognition.

Second, we compare the proposed mid-level activity components against
local spatio-temporal features (STIPs) [3] and Cuboid [4]. The baseline re-
sults of Bag-of-STIPs + SVM and Bag-of-Cuboid + SVM are taken directly
from the ICPR 2010 Contest about Semantic Description of Human Activi-
ties [41], and of course implemented by the participants. Figure 7 shows these
results and comparison on the UT-Interaction dataset. It is clear that our
method (referred to as Component(ASM)) outperforms STIPs and Cuboid ;
indeed the average accuracy of our method on set 1 (resp. set 2) reaches
78.3% (resp. 68.2%) while for STIPs and Cuboid the accuracy does not
exceed 64.2% (resp. 59.7%) and 75.5% (resp. 62.7%). According to these
results, activity-components are more discriminative as they model appear-
ance, shape and motion in larger spatio-temporal areas. Notice also that,
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Figure 8: Comparison of classification accuracies of different features on Rochester Activ-
ities Dataset.

compared to dense cuboid and sparse STIPs, the proposed mid-level activity
components are much sparser. For instance, in different sequences of hand-
shaking, the number of activity components ranges from 30 to 60.

Comparison using Setting 2: when combining Component + STCK +
SVM, the average accuracy of our method (on sets 1 and 2) reaches 82.5%
which is comparable to Hough-Voting in [42]. Nevertheless, our method has
an extra advantage of being similarly performant on different activity classes
compared to Hough-Voting whose performance changes significantly from
one class to another (see for instance class Push in set 2).

We also compare our method against trajectory-based features [19]; fig-
ure 8 shows different accuracies on the Rochester Activities Dataset. Overall,
our mid-level activity-components with STCK outperform the velocity his-
tory feature by 28 points, and even the augmented velocity history feature4

by 2 points. Furthermore, our results are at least comparable to (or bet-

4Note that the augmented velocity history feature improves the velocity history of
tracked key-points using a set of rich information, such as absolute and relative positions
of human face, appearances and color.
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Figure 9: Comparison of classification accuracies of different context models on UT-
Interaction datasets.

ter than) the augmented velocity history feature on almost all the activity
classes, excepting Dial Phone and Use Silverware.

Comparison using Setting 3: finally, we show the performance of our
method with a particular setting of α (i.e., α = 0) and this kernel will be re-
ferred to as context-free kernel (CFK). We plug CFK into SVM and we com-
pare it against the bag-of-components model, the STCK kernel, and the bag-
of-co-components method [30]. The latter proposed in our previous work [30]
is based on pairwise interactions between components in mutual contexts.
Figures 9, 10 show the classification accuracies in the UT-Interaction and
the Rochester Activities datasets, respectively. It is clear that performance
of STCK is consistently better than the others on the two sets.

Compared to the context-free kernel, STCK shows much better perfor-
mance. Indeed, its average accuracy improves by 18.3 points compared to the
context-free kernel on UT-Interaction dataset (set 1). STCK outperforms the
bag-of-components, by 8.75 and 8 points respectively on the UT-Interaction
and the Rochester Activities datasets. Note also that STCK outperforms
the bag-of-co-components, in [30]. Even though the bag-of-co-components
approach models the mutual interaction (context) between components, its
influence is restricted to pairwise interactions, while STCK is able to recur-
sively diffuse the similarity from/to larger and more influencing contexts, so
it exploits the pairwise (local) as well as higher order interactions (resulting
from recursion).
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Figure 10: Comparison of classification accuracies of different context models on Rochester
Activities Dataset.

5. Conclusion

In this paper, we introduce a novel activity recognition method based on
two contributions. In the first contribution, we present a new mid-level activ-
ity representation based on clustering trajectories into consistent primitives
referred to as activity components. In the second contribution, we model
interactions between these components through a spatio-temporal context
kernel (STCK) very suitable for action recognition when plugged into sup-
port vector machines. Evaluations and comparisons show that these contri-
butions (when taken individually and when combined) bring substantial gain
with respect to baseline as well as related state of the art activity recognition
techniques.
Indeed, compared to local space-time features, the proposed mid-level activity-
components are more discriminant, as they include appearance, shape and
motion information in larger spatio-temporal areas. In contrast to trajectory-
based methods, the mid-level activity components not only capture motion
information but also appearance and shape. Moreover, when combined with
our STCK, the latter is able to diffuse the similarity not only to immediate
component neighbors but also to larger and more influencing contexts result-
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ing from the recursive definition of STCK.

As a future work, we are currently studying other algorithms in order to
extract activity components corresponding to better physically interpretable
moving parts while being robust to different sources of variability (back-
ground, illumination, etc.). We believe that this issue may bring further
substantial improvements.
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