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Abstract—Predicting urban traffic flow is a challenging task,
due to the complicated spatio-temporal dependencies on traf-
fic networks. Urban traffic flow usually has both short-term
neighboring and long-term periodic temporal dependencies. It
is also noticed that the spatial correlations over different traffic
nodes are both local and non-local. What’s more, the traffic
flow is affected by various external factors. To capture the
non-local spatial correlations, we propose a Dilated Attentional
Graph Convolution (DAGC). The DAGC utilizes a dilated graph
convolution kernel to expand the nodes’ receptive field and
exploit multi-order neighborhood. Technically, the lower-order
neighborhood corresponds to local spatial dependencies, while
the higher-order neighborhood corresponds to non-local spatial
dependencies between nodes. Based on DAGC, a Multi-Source
Spatio-Temporal Network (MS-Net) is designed, which suffices
to integrate long-range historical traffic data as well as multi-
modal external information. MS-Net consists of four components:
a spatial feature extraction module, a temporal feature fusion
module, an external factors embedding module, and a multi-
source data fusion module. Extensive experiments on three real
traffic datasets demonstrates that the proposed model performs
well on both the public transportation networks, road networks,
and can handle large-scale traffic networks in particular the
Beijing bus network which has more than 4,000 traffic nodes.

Index Terms—Graph Convolution, Deep Attention Mechanism,
Traffic Network, Traffic Flow Prediction, Artificial Intelligence,
Deep Learning.

I. INTRODUCTION

DUE to urbanization and growth of public travel demand,
urban transportation system is under tremendous pres-

sure. Traffic flow prediction is viewed as a critical component
of Intelligent Transportation Systems (ITS) [1], providing
significant value in alleviating traffic congestion [2], [3],
reducing traffic accident risk [4]–[6], improving traffic control
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efficiency and enhancing the dispatch of resources in a timely
manner [7]–[9]. It could also be adopted to recommend more
convenient routes for car drivers, providing information to help
residents avoid crowded roads when scheduling trips [10].

Early work regarded traffic forecasting was based on time
series analysis [11]. Technically, most methods adopted clas-
sical time series models [2], [12], or shallow machine learning
algorithms [13], [14]. However, these conventional approaches
were restricted to few traffic nodes [12], or traffic networks
with a simple topology, such as several sequential nodes on
urban freeway [14]. Moreover, prediction accuracy of the
models was not satisfactory due to the scarcity of traffic data
available for training the models [15].

Recently, inspired by the impressive performance over the
past decade of deep learning (DL) in various tasks [16]–[18],
and an increasing amount of available traffic data, obtained
from vehicles or roads now equipped with sensors [19], DL
based traffic prediction models have attracted much atten-
tion [20]. Compared with traditional methods, DL based pre-
diction models exhibit higher model capacity in learning the
complicated spatio-temporal features on traffic networks [21].
As a result, traffic flow prediction is not restricted to a few
traffic nodes, but can be applied to the entire network [7].
Unfortunately, most of the existing DL models do not fully
handle the unique spatio-temporal patterns on traffic networks
and still fall short in practice.

First, urban traffic flow usually possesses both short-term
neighboring (one or two hours) and long-term periodic depen-
dencies (daily, weekly, or monthly) [15]. Therefore, the feature
fusion strategy needs to be carefully designed in order to fully
exploit these two temporal patterns. Second, it has been found
that both local and non-local spatial correlations exist on traffic
networks [22], illustrated in Figure 1. However, most current
works mainly only focus on the local spatial dependencies
while neglecting the non-local components. Third, various
external factors from different sources can affect traffic flow,
which should be comprehensively considered to improve the
prediction, such as weather, holidays, and the distribution of
Points of Interests (PoIs). For instance, traffic patterns on
holidays are different from those on weekdays [23]. Extreme
weather, such as heavy rain or fog, impacts the traffic flow
in a short term [24], [25]. Spatial distribution of PoIs, which
reflects the urban functions of different regions, can also have
an impact [26]. For instance, traffic flow in residential and
office areas usually show different patterns [27].

In order to capture local and non-local spatial correlations,
we propose a Dilated Attentional Graph Convolution opera-
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Fig. 1: Passenger flow of five selected nodes on Beijing subway
network. The traffic flow of A, B, and E could be highly correlated
while E is far from A and B. Nodes C, D, and E are adjacent but the
traffic flow of E and that of C, D could express different patterns.

tor (DAGC). As illustrated in Figure 2, our DAGC makes use
of a dilated graph convolution kernel to expand the nodes’
receptive field and exploit multi-order neighborhood. The
lower-order neighborhood corresponds to local spatial depen-
dencies, while the higher-order neighborhood corresponds to
non-local spatial dependencies between nodes. Multiple layers
of DAGC can be stacked. Stacking layers not only enhances
model capacity but also expands the receptive field, taking into
account the non-local correlations between traffic nodes that
are far apart.

By taking advantage of the DAGC, a Multi-Source Spatio-
Temporal Network (MS-Net) is proposed, which is illustrated
in Figure 3. The MS-Net consists of four main components:
the Spatial Feature Extraction Module (SFM), the Temporal
Feature Fusion Module (TFM), the External Factors Em-
bedding Module (EFM), and the Multi-Source Data Fusion
Module (MFM). The SFM extracts local and non-local spatial
features by stacking multi-layers of DAGC. In TFM, the
spatio-temporal features are obtained by a DAGC operation
with the concatenated spatial features from different historic
days. The EFM embeds various external data, of discrete and
continuous nature. Finally, the external data features and traffic
data features are integrated into the MFM on spatial and
temporal dimensions to further improve predictions.

The main contributions of the MS-Net are as follows:
• We develop a novel dilated attentional graph convolution.

It enables one to capture local and non-local spatial
features, accounting for correlations between far apart
nodes.

• Traffic data from different historical days are integrated,
which endows MS-Net with the capability of learning
from both short-term neighboring and long-term periodic
temporal dependencies.

• Various external factors from different sources, including
both discrete and continuous nature, as well as data
variously distributed on temporal and spatial dimensions,
can be integrated into our overall model.

• Extensive experiments prove that our model is competi-
tive w.r.t. state-of-the-art approaches on both the public
transportation network and the road network.

A preliminary version of this work appears in [22]. Here
we carry forward the idea of learning multi-resolution tem-
poral dependencies and global spatial correlations on traffic
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Fig. 2: Structure of DAGC. DAGC first expands the receptive field
through a dilated kernel to consider multi-order neighborhoods. The
lower-order neighborhood and the higher-order neighborhood corre-
spond to the local and non-local spatial dependencies, respectively.
Convolution results of different neighborhoods are aggregated by
learnable parameters θ1, θ3, and θ5.

networks and substantially improve the previous model. First,
our multi-period temporal feature fusion module replaces the
temporal convolution. It reduces running time while preserving
the capability of the model to simultaneously learn both short-
term dynamics and long-term periodic dependencies. Second,
in terms of spatial feature extraction, the original global
correlated spatial module does not consider the topological
information of the traffic network very well. As a result, it
is replaced with the proposed DAGC. Furthermore, several
external factors (distribution of PoIs, weather information, and
holiday notification) are also taken into consideration to further
improve performance.

The remaining parts of this paper are organized as follows.
In Section II, related works of traffic flow prediction are
reviewed. Section III gives mathematical notations and the
problem statement of traffic flow prediction. Then, the novel
graph convolution DAGC is formally presented in Section IV,
and the specific structure of the whole prediction model MS-
Net is introduced in Section V and Section VI. The last two
sections, Section VII and Section VIII present the experimental
results and the conclusion of the paper.

II. RELATED WORK

A. Traffic Flow Prediction

Traditional methods adopt time series models or shal-
low machine learning models to predict future road traffic
flow. The autoregressive integrated moving average (ARIMA)
model [28]–[30] and the Kalman filter [31] as well as their
variants [32]–[35], are widely employed in traffic flow predic-
tion task. However, due to the limited model capacity, these
conventional methods handle each traffic observation node
individually [11], or a few sequential nodes on one urban
major road [14] where the topology of the traffic network and
the spatial correlations are simple and intuitive.

Recently, as a large amount of traffic data has become
available, deep learning (DL) based traffic prediction models
have been developed. Compared with previous methods, DL
models exhibit higher model capacity and better capability in
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Fig. 3: Structure of MS-Net. MS-Net consists of four components: spatial feature extraction, temporal feature fusion, external factors
embedding, and multi-source data fusion. The spatial feature extraction module is composed of stacked DAGCs. Features of different
historical days are then concatenated and fed into the temporal feature fusion module. External factors are embedded and integrated with
traffic spatio-temporal features to predict urban traffic flow.

learning the spatio-temporal features on traffic networks [15].
The stacked auto-encoders (SAEs) [36] are adopted to predict
traffic flow on multiple nodes. While the model in [36]
can learn spatio-temporal features of traffic data, there is no
explicit modeling of spatial correlations, and the chronological
order of historical data is not maintained.

To take into account the temporal dependencies of traffic
data, several approaches make use of a long short term
memory network (LSTM) [37]–[40]. LSTM and SAEs are
combined to predict urban traffic data under abnormal con-
ditions (e.g., extreme congestion or traffic accidents) [40].
Different from the LSTM based models, convolutional neural
networks (CNNs) are first adopted to predict urban crowd
flow in [15]. Specifically, the city map is divided into non-
overlapping grids to form a pseudo image, where the pixel
values are determined by the crowd flow through each grid
at each time interval. Then CNNs equipped with residual
connections [41] are employed to extract the spatial features.
One of the main contributions of [15] is to convert traffic data
into image-like data in order to utilize image based CNNs in
the field of urban computing.

Inspired by [15], subsequent works have adopted similar
data transformations [21], some of which combines LSTM
and the attention mechanism [27], [42]–[44]. LSTMs are
either embedded with the CNNs to construct ConvLSTM
module [42], [43], or embedded with attention mechanism to
take into account historical data at different times [27], [44].
While the above CNNs based models can take advantage of
a large amount of traffic data, the prediction results of these
methods are not of high granularity: The strategy of converting
traffic data into images may distort the spatial and topological
correlations between traffic nodes.

B. Deep Learning on Graph Structured Data
To achieve high-granularity traffic prediction results, traffic

prediction methods based on deep graph convolution models
have been recently favored [45]. Formally, graph convolu-
tion aims to perform similar convolutional operations like

traditional CNNs where the model aggregates features of
neighboring nodes [46]. However, due to the irregular structure
of graph data, it is not intuitive to define a convolutional kernel
with a fixed shape and size similar to the ordinary CNNs [47].
There are two dominant approaches to solve this problem:
spectral approach [47]–[53] and spatial approach [54]–[59].

The spectral approach utilizes the Convolution Theorem to
transform nodes’ features into spectral domain, where multi-
plication on spectral domain is equivalent to the convolution
on spatial domain. Formally, a graph can be represented by
G = {V, E}, where V = {vi}, (i = 1, · · · , N) is the set of
nodes, and E = {ei,j} is the edges between nodes vi and vj .
Let xi ∈ R be the vi’s feature, x ∈ RN be the feature vector
on all N nodes, and A ∈ RN×N be the adjacent matrix of
graph (i.e., Ai,j = 1 if ei,j ∈ E else Ai,j = 0), the spectral
approach operates as follows:

y = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx, (1)

where y ∈ RN is the convolution result, and gθ(Λ) = diag(θ)
is the filter of a diagonal matrix with learnable parameter
θ. In Eq. (1), U ∈ RN×N is the eigenvectors of the
normalized Laplacian L = IN − D−

1
2 AD−

1
2 = UΛUT,

where Λ ∈ RN×N are the corresponding eigenvalues, IN is
the N × N identity matrix, and D is the diagonal matrix
with Di,i =

∑
j Ai,j . Since graph laplacians are positive

semi-definite, the eigenvectors constitute an orthonormal basis
for the Fourier domain [47]. As a result, spectral graph
convolution is theoretically guaranteed, but not applicable in
practice due to the calculation complexity of graph Laplacian
decomposition [49].

On the other hand, spatial graph convolution is directly de-
veloped on graph, and is mainly devoted to designing localized
convolutional kernels which can be shared to different nodes
in the graph. In general, spatial approach operates as follows:

yi = fθ(xi, {xj |∀vj ∈ N (vi)}), (2)

where yi ∈ R is output feature on node vi, and θ is the learn-
able convolutional kernel. In Eq. (2), N (vi) = {vj |ei,j ∈ E}
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is the neighborhood of node vi, and xj ∈ R is the features on
vj which is adjacent to node vi.

In general, compared with spectral methods, spatial graph
convolution is more efficient and flexible in constructing con-
volutional kernels and choosing neighborhoods. It has become
more and more popular in recent researches [46].

Recently, graph convolution has been applied to traffic flow
prediction [45], [60]–[67]. For instance, the DCNN [54] is
embedded in the GRU to construct the Diffusion Convolutional
Recurrent Neural Network (DCRNN) [60]. An integrated
model based on multi priori graphs is proposed to predict
urban bike flow [61]. A fully convolutional model [64], which
combines ChebNet [49] and one-dimensional temporal convo-
lution, is developed to capture the localized spatio-temporal
patterns. Attention mechanism [63], high-order graph convo-
lution [65], and data fusion of different modalities [66] have
also been widely adopted to predict urban traffic flow. A meta-
learning strategy is employed to extract spatial dependencies
between adjacent traffic nodes [67]. However, most existing
methods focus on local spatial correlations while ignoring the
non-local spatial dependencies on traffic networks.

III. PRELIMINARIES

A. Notations
Traffic Network. The traffic network can be represented by

a graph G = (V, E), where V is the set of traffic nodes and E
is the edges between these nodes. eij ∈ E indicates that there
is a direct path between two traffic nodes vi and vj .

Neighborhood of Nodes. The neighborhood of node vi,
N (vi), contains all the nodes directly connected to vi. If vj ∈
N (vi), there is an edge eij ∈ E , and vice versa.

Multi-order Neighborhood of Nodes. The multi-order
neighborhood of node vi refers to a set of nodes, which are not
directly connected to vi, but can be reached through a series
of intermediate nodes. Formally, the l-th order neighborhood
of node vi, N (vi, l), is recursively defined as follows:

N (vi, l) =
⋃

vj∈N (vi,l−1)

N (vj) \ N (vi, l − 2),

N (vi, 0) = {vi} and N (vi, 1) = N (vi).
Historical Traffic Flow. Historical traffic flow is divided

into two categories, i.e., immediate past traffic flow (short
term) and periodic (daily) traffic flow. Suppose there are N
traffic nodes and M types of traffic data (typically, inflow
and outflow), the m-th type of traffic flow observed on node
vi at time t can be noted as xi,t,m. Assuming that there
are rd traffic records at regular interval each day, then the
vector {xi,t−rd·p−τ,m|τ = 1, 2, · · · , T} ∈ RT represents the
traffic flow captured during τ time steps preceding t at the p-th
day in past. The traffic flow on all nodes at the p-th historical
day constitutes a tensor X (p) ∈ RN×T×M . If p = 0, X (0)

stands for the short-term neighboring traffic flow; if p > 0,
X (p) represents the long-term periodic traffic flow on the p-th
day in history.

External factors. We use three external factors: two global
of weather1 and holiday notifications2; one local factor, Points

1https://www.wunderground.com
2https://pypi.org/project/chinesecalendar

of Interests3 (PoIs) around each traffic node. Weather informa-
tion includes temperature, wind speed, visibility, precipitation,
and weather condition. Holiday notifications indicate whether
the recording is acquired during a working day or a holiday.
The number of different categories of PoIs around each
traffic node is additional features. Mathematically, the weather
information and holiday notifications at time t are represented
by vectors ewt ∈ RDw

and eht ∈ RDh

, respectively, where Dw

and Dh stand for the feature dimensions. The PoIs on node
vi is epi ∈ RDp

. Considering all traffic nodes, the data of PoIs
is represented by a matrix Ep ∈ RN×Dp

.

B. Problem Statement

Our aim is to learn a function FΘ(·), which takes as
input the traffic network G, the observed historical traffic flow
X (p), p = 0, 1, · · · , P − 1, the external factors E = {ewt ,
eht ,E

p} at future time t, and outputs the traffic flow on all
nodes at the next time step t. FΘ(·) is defined by its learnable
parameter Θ. It can be written as follows:

X̂ = FΘ({X (p)}P−1
p=0 ,E,G), (3)

where X̂ ∈ RN×M stands for the predicted flow values, of
dimension M , estimated at each of the N nodes. For the
multi-step prediction, the weather information and holiday
notifications are adjusted to the corresponding time interval,
and the function FΘ(·) is trained to predict the traffic flow at
k-time step ahead.

IV. DILATED ATTENTIONAL GRAPH CONVOLUTION

The main principle of our Dilated Attentional Graph Con-
volution (DAGC) is to equip the graph convolution operator
with a flexible receptive field on spatial domain, so that graph
convolution can account for both local and non-local spatial
dependencies between nodes.

To effectively aggregate spatial information on the graph,
DAGC expands the receptive field through a dilated convolu-
tion graph kernel. Specifically, message passing is performed
in two stages. Nodes are first passed through graph convolution
operators of various receptive field size independently. This
operation is coupled with an attention mechanism. The outputs
of graph convolution at each order of neighborhood are then
aggregated with a weighted summation. The detailed structure
of our graph convolution operator is shown in Figure 2.

A. Attentional Graph Convolution

Given xi ∈ RC , a feature of dimension C on node vi, the
attentional graph convolution is defined as follows:

yi =
∑

vj∈N (vi,l)

fψ(xi,xj) · xjWa + g(xi), (4)

where yi ∈ RD is the output features on node vi, D is the
number of output channels, and N (vi, l) is the l-th order
neighbors around node vi. fψ(·, ·) is a learnable correlation
function between two nodes. Wa ∈ RC×D is a learnable pro-
jection matrix, and “+g(xi)” denotes the residual connection

3https://lbs.amap.com
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on the central node vi. If C is equal to D, then g(xi) is an
identity function, i.e., g(xi) = xi, otherwise g(xi) = xiWg ,
where Wg ∈ RC×D is a learnable matrix. Through the
attention mechanism, the value of the convolutional kernel is
not fixed but determined by the correlations between nodes.
Therefore, adjacent nodes with stronger spatial correlations
are assigned larger weights, which facilitates the information
propagation in the graph G.

Generally speaking, the neighborhood size of different
nodes is inconsistent, i.e., nodes of the graph do not necessarily
have the same degree. If this imbalance is not accounted for,
a few nodes with large connectivity might receive more and
more messages during the diffusion process. Eventually, the
features on these nodes will dominate the features on other
nodes having a smaller degree, and thus occupy a dominant
position in expressing the patterns of the whole graph. A
simple solution is to normalize the attention function when
summing over nodes’ features in Equation (4):

fψ(xi,xj) =
exp(f̃ψ(xi,xj))∑

vk∈N (vi,l)
exp(f̃ψ(xi,xk))

, (5)

so that
∑
vj∈N (vi,l)

fψ(xi,xj) = 1. Here, exp(·) is an
exponential function to ensure the non-negativity. Concretely,
we define f̃ψ(xi,xj) = hψ(xi)

T · hψ(xj), where hψ(·) :
RC → RF is a multilayer perceptron defined by parameters
ψ, transforming the node features into a latent space.

Note that the model size so far is determined by the
parameters ψ, Wa, and Wg , which are independent of the
number of nodes in the graph. This is in contrast with spectral
graph convolution approaches, whose parametrization depends
on the graph structure itself [47].

B. Higher-order Attentional Graph Convolution

The attentional graph convolution operator proposed in
Equation (4) is defined on one order of neighborhood. We
can extend it to a higher-order operator:

y′i =

L∑
l=1

θl

 ∑
vj∈N (vi,l·d)

fψ(xi,xj) · xjWa

+ g(xi), (6)

yi = σ (y′i) , (7)

where N (vi, l · d) represents the (l · d)-th order neighborhood
of node vi, d is the dilation rate, {θl ∈ R|l = 1, 2, · · · , L}
are learnable weighting factors of the l-th hop, and σ(·) is the
non-linear activation function.

In Equation (6), each order of neighborhood is processed
separately and assigned with a learnable parameter θl, so
that both the static topological information (θl for the l-th
hop) and the dynamic feature dependencies (adaptive weight
factors determined by fψ(xi,xj)) are modeled in the same
framework. What’s more, the size of the receptive field on
spatial domain is given by L and d, two hyper-parameters
that can be adjusted.

Hence, compared with most existing methods that only
notice the localized features [54]–[58], our DAGC can not
only capture the features on adjacent nodes, but also learn
spatial dependencies between distant nodes.

DAGC
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Fig. 4: Spatial feature extraction module.

V. SPATIO-TEMPORAL FEATURE EXTRACTION

Equipped with the proposed DAGC, our forecasting model
MS-Net can learn the spatio-temporal features on traffic flow
data, which include two main modules, spatial feature extrac-
tion module and temporal feature fusion module.

A. Spatial Feature Extraction

The spatial feature extraction module is designed to extract
the local and non-local spatial correlations of traffic data in
different historical days. It is composed of multiple stacked
layers of DAGC, as shown in Figure 4. Each layer of DAGC
has a corresponding dilation rate d and a maximal hop number
L. The number of hops L of different layers remains the same,
but the dilation rate d gradually increases, so that the module
can gradually transit from capturing local spatial dependencies
to extracting non-local spatial correlations. In addition, the
output feature of the first layer of DAGC is added as a skip
connection to the input features of the last layer. It has the
effect to not only integrate the local and non-local spatial
relationships together, but also alleviate the potential problem
of gradient vanishing in multi-layer networks.

The traffic flow at the p-th historical day is denoted by
a tensor X (p) ∈ RN×T×M and further transformed into
a matrix X(p) ∈ RN×TM , where T is the length of the
immediate past traffic data vector. There are three reasons
for this conversion process. (i) Although the chronological
order is ignored (temporal information is transformed into the
feature dimensions), all historical data is retained. Meanwhile,
ignoring the chronological order can accelerate the running
time of the model and reduce memory consumption (the
graph convolution does not need to be repeated for T times),
and consequently make the model applicable to large-scale
graph structure. (ii) Traffic data recorded at different historical
days are selected and processed separately, so the temporal
dependencies can still be extracted on a larger scale. (iii)
Finally, the value of T is usually not large. Formally, the
spatial feature extraction result on the p-th historical day is
formulated as follows:

Y(p) = H(p)(X(p),G), p = 0, 1, · · · , P − 1 (8)

where Y(p) ∈ RN×F is the output features, F is the feature
dimension, and H(p)(·) is the spatial feature extraction module
corresponding to the traffic data on the p-th day in history. The
detailed structure of H(p) is shown in Figure 4.
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B. Temporal Feature Fusion

The spatial features of the historical context can then be
integrated altogether to capture the temporal dynamic of the
traffic flow. It is pointed out in [66] that temporal features
might be fused with a weighted summation:

Y = w(0) ·Y(0) + · · ·+ w(P−1) ·Y(P−1), (9)

where w(p) ∈ R is a learnable weight parameter. This enables
to assign different weights to observations acquired at different
days, but applies the same weight to all traffic nodes. It might
not be the best strategy. For instance, the traffic flow on some
nodes have a relatively stable one-day periodicity, while the
periodicity of traffic flow on other nodes is less obvious; it does
not seem appropriate to assign the same weight factor to these
two kinds of nodes. On the other hand, directly assigning a
fusion weight to each traffic node produces too many learnable
parameters, which could potentially result in over-fitting.

Instead, we adopt a feature concatenating approach. As
illustrated in Figure 5, our temporal fusion module first
concatenates the output features of the spatial module along
the channel dimension: Yc = [Y(0),Y(1), · · · ,Y(P−1)] ∈
RN×PF . Then a DAGC operator is employed to transform
the node features:

Yτ = Hτ (Yc,G), (10)

where Yτ ∈ RN×Q is the Q dimensional output of a one-
layer DAGC applied to the N nodes, Hτ (·). Hence, the spatio-
temporal features Yτ are processed according to their inherent
characteristics, instead of sharing the same summation weight.
In the next section, we consider integrating traffic spatio-
temporal features with external data.

VI. DATA FUSION AND FORECASTING MODEL

A. External Factors Embedding

We employ three kinds of external data, weather information
ewt ∈ RDw

and holiday notifications eht ∈ RDh

at the
prediction time t, as well as the Points of Interests (PoIs)
Ep ∈ RN×Dp

around all the traffic nodes.
1) Weather Information: The weather information ewt in-

cludes both continuous data (e.g., temperature, wind speed)
and discrete data such as weather condition (cloudy or rainy).
These two types of data cannot be seen as the same, nor can
they be directly fed into an embedding module as a whole.
Therefore, as shown in Figure 6, external factors are separated
into two categories based on their attributes. Discrete data is
encoded as a one-hot vector and then embedded with a fully
connected (FC) layer, whereas continuous data can be directly

External Factors Embedding

One-Hot
Encoder

Discrete 
Data 

Continuous 
Data

FC-2

FC-1

FC-3Concat
Input  Ext 

Data
Ouput Ext 
Features

Fig. 6: External factors embedding module.

fed into a FC layer. Finally, the embedded features of these
two types of data are fused through another FC network:

êwt = extw(ewt ), (11)

where êwt ∈ RFw

is the embedding result, Fw is the number
of output channels, and extw(·) denotes the external factors
embedding module for processing weather information.

2) Holiday Notifications: The holiday notification eht indi-
cates whether the prediction time is on holiday or workday. It
is a discrete categorical value. It is again embedded using a
FC block:

êht = exth(eht ), (12)

where êht ∈ RFh

is the embedding result, Fh is the number
of channel, and exth(·) denotes the embedding module for
processing holiday notification data.

3) PoIs Distribution: Assuming there are Dp − 1 PoIs
categories, and the number of dp-th PoIs around node vi
is denoted by ẽi,dp . Generally, the number of PoIs around
different nodes is usually quite different, so the features are
normalized before being fed into the embedding module:

ei,dp =
ẽi,dp∑N
j=1 ẽj,dp

, dp = 1, 2, · · · , Dp − 1. (13)

The vector of {ei,dp |dp = 1, 2, · · · , Dp − 1} ∈ RDp−1

constitutes the first Dp − 1 elements of the feature epi .
The last element is reserved for the number of all kinds of
PoIs around the node —it has been shown experimentally to
have significant correlations with the urban traffic flow [26].
Normalization is again applied to obtain the feature ei,Dp ∈ R
of the last dimension. Hence, PoIs’ feature vector is denoted
by epi = [ei,dp , ei,Dp ] ∈ RDp

at each node vi , where [, ]
is a concatenation. Considering all traffic nodes, the PoIs’
features is represented by a matrix Ep ∈ RN×Dp

. Now the
data embedding can write:

Êp = extp(Ep), (14)

where Êp ∈ RN×Fp

is the embedding result of dimension
F p, and extp(·) represents the FC embedding function. Note
that the FC layers processing different external factors do not
share the same parameters.

B. Multi-Source Data Fusion

Because some of the external factors are local (PoIs) while
others are global (weather, holidays), we adopt a two-stage
fusion procedure to combine external factors with the traffic
spatio-temporal features, which is shown in Figure 7.
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Fig. 7: Multi-source data fusion module.

In the first stage, the PoIs features Êp are concatenated
with the traffic flow features Yτ defined in Equation (10).
The concatenated feature is then fed into a DAGC module:

Y = H([Yτ , Êp],G), (15)

where Y ∈ RN×Q̃ is the spatio-temporal output of dimension
Q̃, and H(·) is a one layer of DAGC operator.

In the second stage, the weather features êwt and holiday no-
tifications êht are first expanded into matrices Êw

t ∈ RN×Fw

,
Êh
t ∈ RN×Fh

, respectively, by copying the features êwt , êht
to each row. The two features are then concatenated with the
spatio-temporal feature Y and sent to a multi-layer perceptron
MLP (·) to produce the prediction results:

X̂ = MLP ([Y, Êw
t , Ê

h
t ]), (16)

where X̂ ∈ RN×M is the prediction results, and M is the data
dimension defined in Section III-A.

C. Model Summarization

The loss function of Mean Square Error is adopted to train
the model:

L(Θ) =
∥∥∥X̃− X̂

∥∥∥2

F
, (17)

where X̃ ∈ RN×M is the ground-truth at the prediction time t,
and ‖·‖F is the Frobenius norm. We now summarize the key
principles of our model as follows:

• Spatial features are generated for each of the traffic data
vectors of the past and current days (historical events)
independently. To this end, we employ a multi-layer
DAGC. It enables to extract both local and non-local
features on spatial domain.

• Temporal features are obtained by processing altogether
the spatial features computed at past and current days
with a DAGC operation. This fusion step results in spatio-
temporal features.

• Various External factors (both global or local, continuous
or discrete) are embedded into feature vectors, then
integrated with the traffic spatio-temporal features using
again a DAGC operation.

• Using the multi-source spatio-temporal features as input,
a multi-layer perception generates predictions at time t.

• The model is trained end-to-end to forecast traffic flow
at the next time step.

VII. EXPERIMENTS

A. Dataset Description

We evaluate the performance of our model on three real-
world traffic datasets: Beijing Subway Dataset, Beijing Bus
Dataset, and Beijing Taxi trajectories Dataset. The original
records of the first two datasets are the transaction records of
Beijing Municipal Transportation Card, and that of the third
dataset is the taxi GPS trajectories information in Beijing. The
meta information of these datasets is given in Table I.

Subway Transaction Dataset: The transaction records of
Subway Dataset contains the entering and exiting stations as
well as the corresponding entering and exiting timestamps
of each travel record. From these records, we can infer the
number of passengers entering and exiting each station at each
time interval of 10 minutes. There were 18 subway lines and
278 stations until 2016. The nodes are the 278 subway stations,
and edges are the subway lines between two adjacent nodes.
Since most of the subway lines are closed at night, only the
transaction records between 6:00 and 22:00 are taken into
consideration. Prediction value is the number of passengers
entering and exiting each node at further times. Figures 8(a)
and 8(b) illustrate the traffic network (with partial nodes) and
the heat map of the passenger outflow at one time interval.

Bus Transaction Dataset: The original records of the
Beijing Bus Transaction Dataset are the same as those in
Subway Dataset. There are totally more than 800 bus lines
and 4,500 bus stops, where 4,219 stops have valid transaction
records. Therefore, nodes are the 4,219 bus stops and edges are
the bus lines between two adjacent nodes. Prediction value is
the the passenger flow entering and exiting each node at future
time interval of 1 hour. Figure 8(c) shows several bus stops
within the fifth ring road.

Taxi Trajectories Dataset: Original content of the taxi
dataset is the GPS trajectories of all taxis collected with about
30,000 taxis in Beijing. The taxi traffic data does not reflect
overall road features. We only employ it as a closed (platform)
dataset to evaluate the proposed model. Actually, there are
about 20 million people working or living in Beijing [68],
constituting a great taxi travel demand. On Taxi Dataset, nodes
are the 300 main road segments (red lines in Figure 8(d))
within the fourth ring road of Beijing, and edges are the
topological connections between two adjacent road segments.
Prediction value is the number of taxis on each road segments
at each time interval of 20 minutes.

External Factors: (1) Weather information. Weather infor-
mation data consists of five record types: temperature, wind
speed, visibility, precipitation, and weather condition. Weather

TABLE I: Dataset meta information.

Properties Datasets
Subway Bus Taxi

# traffic nodes 278 4219 300
time interval 10 mins 1 hour 20 mins

time span 2016/6/1 - 2016/6/29 2015/11/28 - 2016/1/26
# train days 15 days 32 days

# valid & test days 7 days 14 days
daily range 06:00-22:00
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TABLE II: Weather categories.

ID Categories ID Categories
0 cloudy 4 thunder
1 partly cloudy 5 fog
2 mostly cloudy 6 snow / hail
3 light rain 7 sunny

TABLE III: PoIs categories.

ID PoIs categories ID PoIs categories
0 food & beverage service 7 automobile service
1 shopping center 8 education
2 hotel 9 medical treatment
3 public transportation service 10 tourism service
4 entertainment 11 enterprises & institutions
5 residence 12 finance & insurance
6 living service 13 government agency

condition is determined by the time span of three traffic
datasets, with up to eight categories, which is reported in Table
II. Note that weather information comes from forecasts. (2)
Holiday notifications. The holiday notification data indicates
whether the prediction time is on holiday or workday and
thus is binary variable. (3) PoIs’ distribution. With reference
to [26], urban PoIs facilities are classified into 14 categories,
as shown in Table III. The categories from ID 0 to ID 7 contain
most of the daily travel demand, and the remaining depict the
detailed social travel purposes of education, medical treatment,
government management, and commercial activities. Through
the above categories, main functions of different regions are
described in detail, which benefit more accurate predictions.

B. Experimental Settings

We predict the traffic flow at the next time step. For the
Subway and Bus Dataset, the transaction data of the first
15 days is used as the training set, and that of the last 14
days is equally divided into two parts, which are adopted as
the validation and testing datasets, respectively. In the Taxi
Dataset, the training dataset is the trajectories of the first
32 days, and the validation and testing datasets are equally
divided from the data at last 28 days.

1) Baselines: We compare our model with eight algorithms,
including both shallow models and state-of-the-art deep learn-
ing models.
• HA: Historical Average. It computes the average value

of all historical data as the prediction result.
• GRU: Gated Recurrent Unit. GRU model is a commonly

used time series processing model and can also be used
for urban traffic prediction. In the experiments, for a fair
comparison of model parameters, all traffic nodes share
the same GRU unit.

• GAT4 [58]: Graph Attention Network. GAT adopts the
attentional mechanism to construct the convolutional
kernel on graph structure.

• ChebNet5 [49]: Graph Convolution with Chebyshev
polynomial kernel. It is spectral approach that employs
Chebyshev polynomials as an orthogonal basis.

4https://github.com/Diego999/pyGAT
5https://github.com/mdeff/cnn graph

(a) nodes on subway network (b) subway passenger heatmap

(c) bus network (partial nodes) (d) road segments on taxi dataset

Fig. 8: Dataset Description. Figure 8a and Figure 8b illustrate the
graph structure of the Beijing subway network and the passenger
flow heat map on one time interval, respectively. Figure 8c shows
the bus stops within the fifth ring road of Beijing, while Figure 8d
is the road segments of taxi network.

• DCRNN6 [60]: Diffusion Convolution Recurrent Neural
Network. It embeds the diffusion convolution [54] into
the RNN unit to jointly handle temporal dependencies
and spatial graph structure.

• STGCN7 [64]: Spatio-Temporal Graph Convolution
Network. It adopts the ChebNet [49] to extract spatial
features and captures temporal patterns with one dimen-
sional convolution on temporal axis.

• STGCNAction8 [69]: Spatio-Temporal Graph Convolu-
tion Network for skeleton-based human action recogni-
tion, where the last layer is modified for regression.

• GSTNet9 [22]: Global Spatial-Temporal Network is
our previous work to directly consider non-local spatial
correlations.

2) Implementation Details: Data preprocessing. We use
historical data from the past two days, i.e., P = 3 in
Equation (3). The temporal length T at each day is set to
T = 6. The type of traffic flow data M is set to M = 2 for
the subway and bus datasets (inflow and outflow), and M = 1
for the taxi dataset. All input data are first normalized to [0, 1]
with the min-max normalization method.

Experimental environment. We use the Adam opti-
mizer [70] and set the learning rate to α = 1e−3. The size
of one mini-batch is set to 32 or 64 for the Subway or Taxi
Dataset. Since the number of nodes in the Bus Dataset is very
large (more than 4,000), the size of mini-batch is set to 4. The
PyTorch toolbox is adopted to implement our model and all

6https://github.com/chnsh/DCRNN PyTorch
7https://github.com/VeritasYin/STGCN IJCAI-18
8https://github.com/yysijie/st-gcn
9https://github.com/WoodSugar/GSTNet
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TABLE IV: Experimental results of the three evaluation datasets.

Models Subway Dataset Bus Dataset Taxi Dataset
MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

HA 45.08 31.02 94.94 35.93 55.47 73.54 26.18 40.24 55.95
GAT 36.68 ± 2.58 28.97 ± 2.29 65.35 ± 6.31 26.40 ± 0.29 46.88 ± 3.00 52.73 ± 0.38 22.05 ± 1.01 35.27 ± 1.47 45.44 ± 1.66
GRU 23.33 ± 0.20 20.29 ± 0.67 41.92 ± 0.33 24.07 ± 0.22 40.73 ± 1.59 53.46 ± 0.25 20.24 ± 0.19 32.77 ± 1.73 40.04 ± 0.15
ChebNet 22.91 ± 0.59 19.38 ± 0.39 40.02 ± 0.98 27.06 ± 1.10 42.89 ± 2.67 56.01 ± 2.73 19.81 ± 0.07 31.97 ± 0.38 38.39 ± 0.58
DCRNN 22.49 ± 0.22 19.50 ± 1.08 38.63 ± 0.47 27.06 ± 0.12 43.95 ± 0.47 55.23 ± 0.09 20.46 ± 0.34 31.58 ± 1.38 42.03 ± 0.18
STGCN 21.69 ± 0.62 19.13 ± 1.74 36.49 ± 0.48 23.42 ± 0.31 39.01 ± 1.57 48.80 ± 2.64 19.34 ± 0.24 31.34 ± 1.16 37.30 ± 0.26
STGCNAction 21.65 ± 0.27 18.97 ± 1.32 37.06 ± 0.39 21.05 ± 0.72 36.12 ± 1.01 40.93 ± 1.90 19.78 ± 0.13 31.45 ± 1.90 39.41 ± 0.14
GSTNet 21.33 ± 0.13 18.63 ± 0.72 36.08 ± 0.22 N / A N / A N / A 19.17 ± 0.32 30.77 ± 1.35 37.01 ± 0.35
MS-Net 19.44 ± 0.14 16.97 ± 0.30 32.19 ± 0.17 19.15 ± 0.28 33.12 ± 1.19 36.42 ± 0.39 18.60 ± 0.06 29.37 ± 0.46 35.62 ± 0.12

the comparative methods. All the models are implemented on
one TITAN XP GPU with 12 GB memory.

3) Model hyper-parameters: The architecture of spatial
feature extraction module in our model is shown in Figure 4.
The spatial feature extraction model has 4 layers, and the
connection hops L of each layer is set to the same value L = 2.
The dilation rate d increases linearly. The feature dimension of
each layer is 12. The 36 output channels from historical three
days are then fed into the temporal feature fusion module and
the output dimension is also set to 12. As for the external
factors embedding module, the input dimension of weather
part is 12, and the output dimension is 4. The input dimension
of holiday notification part is 2, which is the same as the output
dimension. The number of input channels of PoIs embedding
part is 15 (14 categories plus 1 for the sum of the number of
PoIs), and the number of output channels is 15. The hyper-
parameters of the proposed model and all comparison methods
are searched on the validation dataset.

4) Evaluation Metric: We use the three most-widely
adopted metrics [60]–[66], MAE (Mean Absolute Error),
MAPE (Mean Absolute Percentage Error), and RMSE (Root
Mean Square Error) to evaluate the prediction accuracy of
different models. MAE reflects the overall prediction accuracy,
MAPE is susceptible to traffic nodes with small flow, while
RMSE is more sensitive to nodes with larger traffic flow:

MAE =
1

n

n∑
i=1

|x̂i − xi| , (18)

MAPE =
100%

n

n∑
i=1

∣∣∣∣ x̂i − xixi + ε

∣∣∣∣ , (19)

RMSE =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2, (20)

where n is the number of samples, ε = 5 ensures the validity
of division, x̂i is prediction result, and xi is ground truth.

C. Experimental Results.

1) Model performance: Table IV reports the next time-step
prediction accuracy of the different models on all datasets.
All the uncertainties are computed by re-training the models
randomly and modified by a Student’s t-distribution with a
confidence probability of Pr = 0.9. Our model achieves the
best prediction accuracy on all the metrics and all the datasets.

HA model provides the worst results due to the inca-
pacity of extracting the spatio-temporal dependencies. The
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(b) Prediction error during one week

Fig. 9: Detailed prediction results of Subway Dataset.

prediction accuracy of the models considering only the spatial
correlations (GAT, ChebNet) are usually inferior to that of
the methods which combine both the spatial and temporal
modules (see the results of STGCN and STGCNAction). The
DCRNN model performs better than the GRU model on the
Subway Dataset, but are worse on the other two datasets,
indicating the generalization of DCRNN is not satisfactory.

Our previous work GSTNet achieves the second best results,
but the computational complexity of non-local spatial correla-
tions are O(N2), which makes it not applicable on Bus Dataset
with more than 4,000 traffic nodes. Besides, the proposed
MS-Net is better than the original GAT model, although
both of them employ the attention mechanism. This illustrates
that the non-local spatial correlations extracted by the dilated
convolution kernel can enhance the model performance.

To further illustrate the effectiveness of our model, we report
the average MAPE results of each traffic node among all
testing samples on the Subway Dataset. Figure 9(a) shows
the results. Only 30 randomly selected nodes are displayed
here for clarity. Similar results can be shown for the other
two datasets. The MAPE results are computed by averaging
the MAPE of each station at all test samples. Our model
outperforms consistently other comparable methods on these
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Fig. 10: Results on multi-step prediction.
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Fig. 11: Results of the employment with periodic traffic data.

traffic nodes. Similarly, Figure 9(b) shows the average MAPE
results on each day during one week. The MAPE results are
calculated by averaging the MAPE of all stations at all time
intervals on each day. In the figure, our model consistently
achieves best results on all days.

It is noticed that the prediction accuracy on weekends is
worse than that on weekdays. The possible reason is that the
number of transaction records on weekends is less than that
on the weekdays. In addition, the behavior of traveling on
weekends is more complicated and less regular. For instance,
traveling characteristics on weekdays are mainly dominated
by the migration between working regions and residence.
During holidays, residents may go shopping, go hiking, or
work overtime. These two factors make it difficult to extract
the intrinsic traffic patterns on weekends.

2) Multi-step prediction: We report MAE results on Sub-
way and Taxi Datasets, for time steps from one to six —see
Figure 10(a) and Figure 10(b), respectively. The input histori-
cal data remains unchanged, and the models are independently
trained for each prediction step. Our model achieves the best
prediction accuracy on these datasets for all prediction steps,
demonstrating that it is also robust on long-term forecast. The
ChebNet has the worst long-term predictions since the tempo-
ral dependencies are not considered. STGCN and DCRNN,
both of which consider the spatio-temporal features, show
similar performance, still inferior to our model.

3) Training time: We evaluate and compare the running
time of different models. Table V reports the training time
and test time on the Subway and Bus Datasets, respectively.
For a fair comparison, the training time is calculated on one
epoch, while the test time is performed on all of the test
samples. Besides, all models are evaluated under the same
computing resources. Hence, GAT and STGCNAction have the
best running time on both datasets, while our model presents
different properties on these two datasets. Specifically, on the
Subway Dataset, our model almost obtains the best running
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Fig. 12: Results on different historical days.
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Fig. 13: Results of different layers with different prediction steps.

time; on the Bus Dataset, it achieves a compromise between
the graph convolutional model (GAT) and the RNN based
model (DCRNN). The GRU model gets the slowest running
speed on Subway Dataset and on Bus Dataset (excluding
GSTNet, since GSTNet is not applicable on Bus Dataset).

D. Ablation Study for Model Components.

Three types of ablation studies are performed to test the
following components: (1) use of historical traffic data; (2)
temporal fusion method from historical data; (3) use of ex-
ternal factors. The experiments are performed on the Subway
and the Taxi Datasets. Similar conclusions can be drawn for
the Bus Dataset.

1) Adoption of past historical data: Figure 11 reports the
model performance resulting from different historical data
settings. “N” represents the immediate past data (related to the
parameter T ), and “P1” , “P2” stand for daily periodicity traffic
flow for one day and two day, respectively. From Figure 11(a),
it can be observed that when only one type of traffic data is
employed, the experiment with immediate past data achieves
the best prediction accuracy on both the Subway and Taxi
Datasets, confirming (unsurprisingly) that the past neighboring
information constitutes the most important information for
an accurate prediction. Adding traffic data recorded during

TABLE V: Time comparison of the two datasets.

Models Subway Dataset (mins) Bus Dataset (mins)
Training Test Training Test

GAT 0.06 0.03 0.68 0.28
STGCNAction 0.08 0.04 0.32 0.14
MS-Net 0.08 0.04 4.32 2.29
ChebNet 0.14 0.07 0.88 0.44
GSTNet 0.36 0.18 N / A N / A
DCRNN 0.37 0.15 8.08 4.36
STGCN 0.42 0.21 6.17 3.43
GRU 0.71 0.35 24.22 5.50
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TABLE VI: Average results of temporal feature fusion.

Fusion Method Subway Dataset
MAE MAPE (%) Time (mins)

Weighted Sum 20.85 ± 0.05 18.08 ± 0.31 0.07
Average 20.49 ± 0.12 17.89 ± 0.49 0.07
Proposed 19.44 ± 0.14 16.97 ± 0.30 0.08

Taxi Dataset
MAE MAPE (%) Time (mins)

Weighted Sum 19.23 ± 0.17 30.93 ± 0.78 0.09
Average 19.24 ± 0.07 31.26 ± 0.35 0.09
Proposed 18.60 ± 0.06 29.37 ± 0.46 0.09

TABLE VII: Average results of external factors embedding.

External Factors Subway Dataset
MAE MAPE (%) Time (mins)

w/o factors 20.71 ± 0.04 17.95 ± 0.15 0.06
with factors 19.44 ± 0.14 16.97 ± 0.30 0.08

Taxi Dataset
MAE MAPE (%) Time (mins)

w/o factors 19.25 ± 0.16 30.64 ± 0.45 0.08
with factors 18.60 ± 0.06 29.37 ± 0.46 0.09

previous days can be employed as supplementary information
to further improve the performance; it serves to smooth out
the input signal —see Figure 11(b).

Figure 12 further explores the results of different historical
days P on several comparison methods. It is observed that
when P > 2, adding more history data could not significantly
improve the performance, but bringing more computational
overhead. Hence, the experimental setup of P = 2 is appropri-
ate. Furthermore, all results of different methods on different
history days do not exceed the results of MS-Net at P = 2 (red
dot in the figure), which further demonstrates the effectiveness
of our method.

2) Temporal features fusion methods: To evaluate the ef-
fectiveness of the proposed temporal features fusion method,
we compare it with two other methods. The first one is
the weighted summation mentioned in Equation (9), and the
second one is to directly average the temporal features at
different historical days. The experimental results of Subway
and Taxi Datasets are reported in Table VI. The first two
columns of each dataset are MAE and MAPE results averaged
on all nodes of the testing dataset, and the third column is
the computing time of each epoch when training each model.
All the uncertainties are computed by re-training the models
randomly and modified by a Student’s t-distribution with a
confidence probability of Pr = 0.9.

Indeed, our fusion method obtains best accuracy with sta-
tistical test on both datasets but not bring obvious computing
burden, indicating that the proposed temporal fusion module
is a simple but effective method. The weighted summation and
the average method are not conclusive: The average method
performs better on the Subway Dataset, while it is the opposite
on the Taxi Dataset, suggesting that it is not a good choice to
assign equal weight to all traffic nodes. However, our feature
concatenating approach can consider the inherent temporal
characteristics of each node, achieving a better generalization
ability on different datasets.

3) Impact of external factors: Table VII shows that with the
addition of external factors, and the computing procedure is
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Fig. 14: Results of connection hops with two prediction steps.
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Fig. 15: Results of dilation rate with two prediction steps.

the same as in Table VI. It is observed that with considering
external data, the model performance improves to a certain
extent. This demonstrates the embedding module for external
factors and the proposed data fusion strategy benefit more ac-
curate predictions, without obviously increasing computational
burden to the whole model.

E. Evaluation of Hyper-parameters.

Different choices of hyper-parameters could affect the
prediction accuracy. This subsection studies three hyper-
parameters in the spatial feature extraction module: the number
of module layers, the number of connection hops L and the
dilation rate d defined in Equation (6). Models with different
hyper-parameters are trained independently, and the results
are reported on testing dataset. Without loss of generality,
the experiments are handled on the Subway Dataset; similar
conclusions can be generalized to the other two datasets.

1) Number of layers: Figure 13 illustrates the results of
different module layers with different prediction steps. To
make the graphs clearer, the results of the first three steps
are shown in Figure 13(a), and that of the last three steps are
shown in Figure 13(b). For all experiments, the hops L = 2. In
the short-term prediction task, the 4-layer model performs best.
The shallow network has weak feature extraction capabilities,
while the overly deep network could cause over-fitting. As
the prediction step increases, deeper networks can achieve
better performance. For instance, in Figure 13(b), the 6-layer
network works best in the six-step prediction task. Deeper
networks having higher capacity, have indeed stronger feature
extraction capabilities and the ability to capture the non-local
spatial correlations.

2) Hops L: We compare the impact of different hop values
L on the task of short-term prediction (next step prediction)
and long-term prediction (six step prediction), respectively.
For simplicity, L is fixed to the same value for all layers.
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Fig. 16: Pair-wise score map at 08:00 on Jun. 23, 2016.

The results are shown in Figure 14. In this figure, the light
blue histogram stands for the average prediction error, and the
dark blue line indicates the standard deviation of the prediction
results. All experiments of each L are trained six times with
random seeds. The best four results are selected for calculating
the average value and the standard deviation. A larger number
of hops can enhance the performance of the model within a
certain range. A long-term prediction task usually requires a
larger number of hops to capture the spatial correlations with
distant traffic nodes. For example, in the one-step prediction
task, the setting of L = 4 performs best, while in the six-step
prediction task, the setting of L = 7 achieves the lowest error.

3) Dilation rate d: For simplicity, we fix the dilation rate
to the same value for all layers, and make experiments for d
taking values from 1 to 8. Figure 15 shows the MAE results
for the next-step prediction task and long-term prediction task.
In the figures, the MAE curves (MAE value as a function
of d) show different characteristics in the two tasks. In the
next-step prediction task, the prediction error first increases
and then decreases, reaching the minimum value when the
dilation rate is 4. As for the long-term prediction, a larger
dilation rate can monotonically reduce the prediction error
and the MAE is minimal when the dilation rate is equal
to 7. The experimental results shown in Figure 15 suggest
an interesting phenomenon, in the long-term prediction task,
as temporal dependencies become weak, non-local spatial
correlations carry more weights. As a result, a model with
a larger receptive field on spatial domain can achieve better
prediction accuracy. On the other hand, the traffic flow of a
given node will affect the traffic flow of its adjacent nodes
in the immediate future, as well as the traffic flow of distant
nodes in the far future. Indeed, urban traffic flow reflects a
dynamic spatial diffusion process.

F. Case Study.
To further investigate the mechanism of our approach, we

perform a case study over the Subway Dataset during the
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Fig. 17: Locations of three representative nodes and the traffic flow
of the nodes during the morning rush hours on June 23, 2016.

morning rush hours on Jun. 23, 2016. Figure 16 illustrates
the normalized score of all pair-wise nodes’ features at 08:00
in the spatial module that handles neighboring history data:

scorei,j =
exp(yT

i yj)∑N
k=1,k 6=i exp(yT

i yk)
,∀vi, vj ∈ V, i 6= j, (21)

where yi is the node vi’ feature vector on a specific layer.
From Figure 16(a) to Figure 16(d), the score map from the
first layer to the fourth layer is respectively presented. It is
observed that in the first layer, the intensity of the score
map is not obvious, with the highest value being only about
0.04 (see the color bar), and the whole graph does not show
clear features. However, as the number of layer increases,
a few nodes are gradually getting more attention by other
nodes (see each column in the score map), which not only
reflects that the traffic network has come to represent certain
characteristics, but also proves the existence of non-local
spatial correlations (node pairs that get high scores may not
be adjacent on graph).

To further explore the nodes’ functions, three representative
nodes (ID 95, ID 162, and ID 207) that gain key attentions are
selected and highlighted with red dotted box in Figure 16(c)
and Figure 16(d). The passenger flow of the three nodes during
the morning rush hours is shown in Figure 17. The red lines
are the Beijing Subway Network, and the blue points are the
locations of each subway node (station). It is observed that
although these nodes are far away and located at different
directions around the city, they all express similar temporal
patterns, that is, a large number of passengers are entering the
subway system around 08:00, indicating the subway system is
under the patterns of morning peaks on weekdays. Indeed, our
model does also capture significant nodes that can represent
the morning peaks features.

VIII. CONCLUSION

In this paper, we address the problem of urban traffic flow
prediction. To capture both the local and non-local spatial
dependencies, we propose a Dilated Attentional Graph Con-
volution (DAGC). Based on DAGC, the Multi-Source Spatio-
Temporal Network (MS-Net) is designed. Experiments on real
traffic datasets prove that our model is successful when applied
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to both public transportation networks and road networks, and
performs well in large-scale traffic networks.

There are two takeaways from our work. First, the proposed
DAGC gears to the requirement of capturing non-local spatial
dependencies. Second, multi-source data fusion is one of the
key issues in computer science community. Heterogeneous
data with different metrics usually cannot be directly measured
in Euclidean space. Fortunately, this issue is addressed in the
MS-Net. The design of two-stream external data embedding
and two-phase feature learning can integrate various hetero-
geneous data, of both static (PoIs’ distribution) and dynamic
(weather, holiday) nature. As a result, the MS-Net constructs
a general framework for multi-source data fusion.

In the future, we will extend our model to multi-step
prediction task and further explore the issue of heterogeneous
data fusion from different sources.
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[58] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. ICLR, 2017.

[59] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. V. Steeg, and A. Galstyan, “Mixhop: Higher-order
graph convolutional architectures via sparsified neighborhood mixing,”
in Proc. 36th ICML, 2019, pp. 21–29.

[60] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proc. ICLR, 2018.

[61] D. Chai, L. Wang, and Q. Yang, “Bike flow prediction with multi-graph
convolutional networks,” in Proc. 26th ACM SIGSPATIAL, 2018, pp.
397–400.

[62] Z. Lv, J. Xu, K. Zheng, H. Yin, P. Zhao, and X. Zhou, “LC-RNN: A
deep learning model for traffic speed prediction,” in Proc. 27th IJCAI,
2018, pp. 3470–3476.

[63] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. 33rd AAAI, 2019, pp. 922–929.

[64] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in Proc.
27th IJCAI, 2018, pp. 3634–3640.

[65] ——, “St-unet: A spatio-temporal u-network for graph-structured time
series modeling,” arXiv preprint arXiv:1903.05631, 2019.

[66] J. Sun, J. Zhang, Q. Li, X. Yi, and Y. Zheng, “Predicting citywide
crowd flows in irregular regions using multi-view graph convolutional
networks,” arXiv preprint arXiv:1903.07789, 2019.

[67] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban
traffic prediction from spatio-temporal data using deep meta learning,”
in Proc. SIGKDD, 2019, pp. 1720–1730.

[68] En.wikipedia.org. Beijing wikipedia. (2020, November 25). [Online].
Available: https://en.wikipedia.org/wiki/Beijing

[69] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. 32nd AAAI,
2018, pp. 7444–7452.

[70] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Shen Fang received the B.S. degree in School of
Automation from Huazhong University of Science
and Technology of China, Wuhan, China, in 2016.
He is currently pursuing the Ph.D. degree at the
National Laboratory of Pattern Recognition, Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing, China. His research interests include pattern
recognition, deep learning, and urban computing.
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