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ABSTRACT

We propose a novel approach for digital building map refinement based on the use of knowledge-driven active contours and very
high resolution panchromatic optical imagery. This methodology is designed to finely match each building symbolized in an urban
Geographical Information System (GIS) database onto its counterpart representation in remote sensing data. This method is GIS map-
driven: GIS data globally registered to the image allows to initialize an active contour near the target building in the image to achieve
subsequent refinement. Moreover the digital map provides valuable shape information about the object in the image we aim at matching.
This geometric and specific prior knowledge is embedded as a shape constraint into the active contour and enables to overcome urban
artifacts issues. Besides, we propose to embed a coarse Digital Surface Model (DSM) as well as a spatio-temporal shape prior constraint
within the active contour model. Experimental results carried out over Beijing city area and illustrated in this paper show how these latter
contributions improve the robustness and speed of the map refinement process. Map refinement addressed in this paper is becoming
an essential issue for urban planning, telecommunications, automobile navigation, crisis and pollution management, which all rely on
up-to-date and precise digital maps of a city.

1 INTRODUCTION

1.1 Context and focus

The era of sub-meter resolution satellite imagery presents new
opportunities for users of spatial data. Indeed high resolution
satellite imagery is becoming an affordable solution to add large-
scale and high level of geographic knowledge and detail to geospa-
tial databases. The more regular revisit capabilities of satellites
also enable a higher frequency of map revision and monitoring.
However the maintenance of such Geographical Information Sys-
tem (GIS) data is time and cost consuming when achieved man-
ually. Efforts have been undertaken for more than thirty years by
the Computer Vision and Image Processing communities to as-
sist and automate the photogrammetric processing chain in order
to shorten revision cycles and therefore improve the currency of
information. Image interpretation from very high resolution im-
ages raises difficulties and challenges that do not appear with low
and mid-resolution data: profusion of details makes automatic
analysis of images arduous, and causes traditional bottom-up ap-
proaches to fail. This is particularly critical for urban environ-
ments where shadows, occlusions and apparent perspective dis-
tortion of high buildings are common artifacts to cope with. In
order to ensure a reliable automatic image understanding of dense
urban environments, a recent trend is to use multiple sources of
information, which complementarity may disambiguate the anal-
ysis. Multiple sources of information can embody collateral im-
agery data of the same scene or prior knowledge towards the
target object to be extracted from the data, the input data to be
used as well as the processing methods to be applied (Baltsavias,
2002). Map revision comprehends three main aspects. The first
one deals with the detection of new objects to be incorporated
into the map from more recent imagery data. The second, which
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is also related to change detection applies to the issue of remov-
ing from the map any object that is no longer present in imagery
data. The last one focuses on improving the spatial quality of the
map from imagery as well as enhancing its level of information
(such as adding 3D information to a 2D map). In this paper we
address the latter aspect of map revision by proposing a novel
method based on the use of active contours and very high reso-
lution panchromatic optical satellite imagery in order to improve
the spatial location of cartographic buildings objects included in
a 2D digital map. This methodology is designed to automatically
improve the accuracy of urban GIS databases while overcoming
the difficulties of analyzing urban scenes sensed at a high resolu-
tion. We propose to take advantage of the geometric prior knowl-
edge derived from the map and adapt region-based and shape
constrained active contours models exposed in (Paragios and De-
riche, 2002, Chan and Zhu, 2003) in order to accurately match
each building symbolized in the map to its counterpart representa-
tion in the satellite image. Besides, we propose two approaches to
increase the robustness of the active contours matching. The first
deals with adding an exogenous source of information in the ac-
tive contour model. In our application, additional data is a coarse
orthoscopic Digital Surface Model (DSM) encoding the altitude
of the same scene as the satellite image. The second approach
consists in allowing a spatio-temporal change of the prior shape
constraint during the active contours convergence, which may ro-
bustly accelerate the refinement process. In the next sub-section
we briefly outline former works using active contours for roads
or buildings extraction from remote sensing data. In section 2,
we review the prerequisite background towards knowledge-based
active contours and how we adapt their use to building map re-
finement. We detail the contributions of our scheme as well as
its domain of application. In section 3, we present some results
achieved with 1:10,000 scale cartographic data and Quickbird im-
agery over Beijing area. We finally conclude in section 4 with a
discussion about future improvements of the proposed scheme.



1.2 Related works

Recently active contours or deformable models have raised the
interest of the Photogrammetric and Image Processing commu-
nities for the purpose of object extraction from remote sensing
imagery (Agouris et al., 2001, Vinson et al., 2001, Guo and Ya-
suoka, 2002, Péteri and Ranchin, 2003, Rochery et al., 2003,
Oriot, 2003). Active contours are attractive since they are flex-
ible, can be easily interfaced with the user in a semi-automatic
fashion, and can readily embed high level information, which
may be useful to ease the extraction process and make it more
reliable. High level information and a priori knowledge embrace
multiple aspects which are comprehensively reviewed in (Balt-
savias, 2002). In this paper we focus on the incorporation of geo-
metric prior knowledge within active contours based frameworks.
Geometric prior knowledge has two aspects: it can be generic
or specific. Generic information is derived from common sense
knowledge and empirical learning. Statements like ”buildings
roof outlines often have ninety degrees angles” or ”roads have
parallel borders” are examples of generic knowledge and are al-
ready extensively used to enable object extraction. In (Péteri and
Ranchin, 2003) double snakes are used to extract both sides of
roads from high resolution images of a dense urban environment.
The snakes (Kass et al., 1987) are initialized from an existing road
network graph which may be derived from a map or manually.
The snakes evolve according to parallelism inner constraints as
well as gradient-based external image forces in order to drive the
active contour close to the road borders. In (Rochery et al., 2003)
active contours derived from a variational approach are used for
road extraction from mid-resolution images. The authors propose
a novel quadratic energy to model non local interactions between
contour points. This enables to incorporate generic knowledge
towards the minimum width of the roads to be extracted. Unlike
the previously cited method, this scheme is not sensitive to initial-
isation and it naturally embeds roads geometrical properties and
intrinsically incorporates the concept of network. The authors of
(Agouris et al., 2001) use existing GIS data, aerial imagery and
snakes active contours to update and revise road digital maps.
The map accuracy is first quantified by the input of an image ac-
quired at the same time as the GIS data: snakes initialised on the
GIS road objects move to the actual road track of the image. Ac-
cording to the snake motion, and for each of its node, an accuracy
score is computed using fuzzy logic. This last score is the input of
an additional energy which is part of the total energy functional
of the active contour. This energy will constrain the motion of the
snake within a recent image. The final segmented road revises the
map from erroneous digitisation and updates it from changes. In
(Guo and Yasuoka, 2002) an Ikonos image and a laser scanning
DSM are jointly used for snake-based building extraction. The
snake is initialised from a multiple height bins thresholding of
the DSM and evolves according to edge information derived from
the image and the DSM. In (Oriot, 2003) some statistical snakes
are used for building extraction from aerial images. They em-
bed a correlation cost function from stereoscopic images, which
favors the inclusion within the active contour of higher disparity
measures than the background. Building extraction is simultane-
ously refined by edge information derived from the images and
by generic shape constraint favoring ninety degrees corners. Ini-
tialisation is achieved by human interaction while the optimisa-
tion process is based on insertion/updating/deletion of vertices.
Good results are demonstrated even if mistakes arise with veg-
etation closely surrounding buildings. In (Vinson et al., 2001)
deformable templates are used to finely extract rectangular build-
ings from the output of a former above-ground structures detec-
tion. Optimal rectangular model parameters are later found from
the edge information derived from an orthoimage.

Generic geometric knowledge includes social and cultural as-
pects which augment its variability across geographical locations
and therefore decrease the robustness of this information (roads
widths and buildings shapes may vary at a regional/national level
and even more at a worldwide scale). Unlike the aforementioned
works we propose to make use of specific geometric informa-
tion, which is derived from symbolized buildings contained in a
digital 2D map. Specific shape information is highly discrimi-
native, object and scene dependent and may enable better recog-
nition and matching performances. This specific and geometric
prior information derived from the map will be embedded as a
shape constraint within an active contours framework. Shape
constrained active contours have been extensively studied since
the early nineties, especially by the Medical Imaging community
which has to deal with data corrupted by noise, occlusions or low
contrast. Their use has been recently extended to natural scenes
or manufactured objects images and object tracking from video
sequences (Chen et al., 2001, Rousson and Paragios, 2002, Chan
and Zhu, 2003, Cremers et al., 2004). The next section describes
how prior shape knowledge has been incorporated within region-
based active contours as well as our contributions to increase their
robustness.

2 METHODOLOGY

2.1 Active contour model

We propose to adapt knowledge-driven active contours to digital
building map refinement from very high resolution optical satel-
lite imagery. Our goal is to finely match each building symbol-
ized in a map to its counterpart representation in a panchromatic
high resolution image. This image is assumed to be the ground
truth and has a higher geocoding accuracy than the map. Carto-
graphic objects are initially and coarsely registered to the satellite
image (this could be the result of rough registration process or the
input of a lower scale map). Their accuracy is later improved by
our proposed fine matching technique. The information provided
by the map is used to initialize active contours: initial location
is provided by the global map-to-image registration, and the ini-
tial shape is similar to the considered cartographic object. Since
region based active contours are known to be less sensitive to ini-
tialization than their gradient-based counterparts, we make use of
the region based formulation of the Bayesian MAP (Maximum
a Posteriori) deformable model formerly proposed in (Paragios
and Deriche, 2002) in order to drive the active contour to the
target building in the image. This approach best befits segmen-
tation of piecewise smooth components of an image. Since we
deal with buildings that exhibits shape singularities (such as cor-
ners) we choose to implicitly represent active contours by their
level set functions which naturally model sharp corners (Osher
and Sethian, 1988). Derived from a variational approach, such
active contours minimize the following energy functional:
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where Īs and σ2

s

respectively denote the image mean and vari-
ance grey level. Subscripts in and out refer to the computation of
these statistical quantities inside and outside the evolving active
contour. The active contour is embedded as a level set function
φ which is assumed to be positive inside the contour. The super-
script s refers to the satellite image to be analysed. H represents



the Heaviside function. Edge based and contour regularization
terms have been deliberately omitted in (1) since we only inves-
tigate region based active contours. Besides, the shape constraint
introduced in the next step will act as a contour regularizer. Shape
knowledge directly derived from the map is embedded as a shape
constraint within the active contour in order to make it akin the
considered cartographic reference template. The gain of shape
constraint is twofold: i) it enables to match the right building in
the image according to shape information. ii) it overcomes com-
mon urban artifacts such as occlusions or low contrast of the tar-
get building. We propose to use the shape constraint energy pro-
posed in (Chan and Zhu, 2003), which compares the area within
the active contour and the reference template :

Jshape (φ,ψ) =

∫

(H (φ (x)) −H (ψ (x)))2 dx (2)

ψ is the level set function embedding the prior shape. This term
is made invariant from any similarity transformation: ψ (x) =
ψ0 (Tsim(x)) where ψ0 is the level set function embedding the
static prior shape derived from the map. In addition to the active
contour evolution process, invariance from similarity transforma-
tion requires an additional optimization scheme to estimate the
best parameters (rotation, translation, scale), which minimize (2).
Shape prior incorporated into region based active contours yields
the functional JSC :

JSC (φ, ψ) = J
s (φ) + λJshape (φ,ψ) (3)

The constant weight λ balances the influence of the shape prior
regarding to image information. A gradient descent minimization
of (3) with respect to the level set function φ yields the iterative
evolution equation of the knowledge-driven active contour:
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whereHa and δa are regularized approximations of the Heaviside
and Dirac functions. The matching algorithm for map refinement
is as follows for each building: 1. Build the shape template level
set ψ0 from the map and initialise the active contour level set
function: φ(t = 0) = ψ0. 2. Compute the mean and variance
Īs

in, Īs
out, σ

2
s

in σ2
s

out. 3. Evolve the constrained active contour
according to (4). 4. Optimize the parameters of Tsim. 5. Loop
steps 2 to 4 until convergence. Besides the presented framework,
we propose two ways to improve the robustness of the active con-
tours matching:

Exogenous DSM fusion: First we propose to support building
map refinement with the input of an exogenous DSM. The DSM
data encoding the altitude of the scene components is not redun-
dant with the satellite image. Therefore we could make them
cooperatively drive the active contour to the building target to
achieve fine matching. Unlike the satellite image, the DSM en-
ables a good contrast of buildings from the rest of the scene,
which may be a desirable property for the piecewise smooth seg-
mentation model that we use. The joint use of DSM and op-
tical imagery data has already been achieved in (Guo and Ya-
suoka, 2002). Unlike the former method, we do not need a high
quality DSM since we do not use gradient-based active contours,
which are sensitive to noise and artifacts. Moreover the embed-
ded shape constraint and the implicit active contours representa-
tion of our scheme enable to overcome occlusions and manage

complex buildings shapes, which is not the case in (Guo and Ya-
suoka, 2002).

Flexible shape prior incorporation: The tuning of the shape
constraint weight that balances the influence of the shape prior
with respect to the image information is not trivial. Indeed, a too
low weight prevents from accurate matching and from overcom-
ing image corruption. Conversely a too high weight will weaken
the intrinsic property of flexibility of active contours. Besides,
a remote initialization of an active contour embodying a strong
shape constraint may be sensitive to local minima of the func-
tional: far from the target building the image based information,
which drives the active contour, may be penalized by the predom-
inant shape constraint. The active contour may converge to an
undesired solution, preventing from carrying out map-to-image
matching. We address this issue in turning the constant weight
λ into a monotonically increasing function of the iteration time
t. The weight is low at the beginning of the iterative process,
allowing more shape freedom to the active contour. As a result,
the active contour may converge more surely to the desired tar-
get in the image. As time goes by, the shape prior is enforced
to recover contour regularisation and to overcome image corrup-
tion. Additionally, λ is also a function of the shape prior ψ to
confine the active contour freedom within a restricted space: λ
is lower close to the reference template, and asymptotically tends
to a higher constant far away from the reference. This freedom
space is gradually reduced as the amplitude of λ increases.

In summary, the two proposed contributions are formalized as
additional terms in the original energy functional:

Jfus,flex (φ,ψ) = J
s + λ

d
J

d + λflex (ψ (x) , t)Jshape (5)

Superscript d refers to the DSM data, which influence is balanced
by the constant weight λd.

2.2 Application scope

Implicit assumptions have been made for the design of the newly
proposed methodology. We intend to detail them in this section in
order to define the application scope of our scheme. First the im-
age based terms of (5) partition image data into piecewise smooth
components, which may limit our study to buildings with a quite
smooth and homogeneous roof reflectance. Second, exogenous
data to be merged must fulfill two consistency criteria:

1. Data must be superimposable. This raises the issue of data
geometry and registration accuracy. Ideally both satellite im-
age and DSM might be projected into the same geometry and
may have a high registration precision in order to ensure that a
given pixel in both data represents the same part of the consid-
ered building.

2. Data must depict the same scene. This raises the issue of
data acquisition time. Since the DSM is made from different
acquisition means from the image ones, it may be possible that
some changes (building removal) happened between the acquisi-
tion times of the satellite image and the DSM. This will constrain
DSM data fusion to be solely applicable to unchanged areas.

Cartographic data projection is orthoscopic. As a result, the ini-
tial active contour derived from the map will be closer to the
target building footprint than its roof that we aim at matching.
Matching the building roof is the most tractable solution since it
is the most visible part of a building, which is moreover the part
represented in the map. A too high footprint-to-roof discrepancy
may be problematic since active contours techniques are intrin-
sically local and may not be able to match a too remote target



building roof. This effect is non-existent in case we deal with or-
thoscopic remote sensing data. Otherwise it is significant for high
buildings which exhibit sharp perspective distortion but negligi-
ble for low buildings. As a consequence, our scheme is applica-
ble to nearly orthoscopic data or low buildings areas. Last but
not least, we assume that the map is free from mistaken shape
objects and from generalisation effect. A mistaken prior shape
derived from the map may bias the matching process since the
shape is not consistent with its representation in the image data
(figure 8). Generalisation effect embodies two aspects. The first
one deals with the simplification in the map of a single building
outline. This may have the same side effect as a mistaken carto-
graphic object. The second is the inclusion of a group of buildings
within the same cartographic object. In that case the entity to be
matched in the image might not be homogeneous, which violates
our first assumption toward piecewise smooth buildings roofs.

3 RESULTS

3.1 Data and preprocessing

In our application, additional exogenous data is an orthoscopic
DSM encoding the altitude of the same scene as a panchromatic
Quickbird satellite image of Beijing city (0.6 m/pixel). Both data
depict a dense urban area. This DSM was computed by edge pre-
serving correlation of digitized stereoscopic aerial images cou-
ples (Paparoditis et al., 1998). The subsequent DSM was next
orthorectified and reached 1 m planimetric and altimetric geocod-
ing accuracy. The satellite image was rectified from terrain varia-
tions by the Beijing Institute of Surveying and Mapping (BISM)
to reach 0.4 m geocoding accuracy. Since both data are geocoded
in the same cartographic system, overlay is straight-forward, sat-
isfying the first exogenous consistency requirement. However we
may stress that the satellite image is not in orthoscopic geome-
try, which obliges us to carry out experiments over low buildings
areas. The second data fusion requisite dictates data to repre-
sent the same object, and therefore raises the issue of data ac-
quisition time. Indeed, the DSM we used in experiments was
generated from 1999 aerial images whereas the satellite image is
from year 2002. This anachronism constrained us to carry out ex-
periments on areas where no change is noticeable between these
dates. GIS data were manually generated from aerial imagery of
the same area by the BISM. Buildings represented in the 2D map
are vectorized polygons. The satellite image is preprocessed by
anisotropic diffusion to enhance piecewise homogeneity.

Figure 1: U-shaped building represented in a satellite image (left)
and a DSM, which contrast has been enhanced by nonlinear clip-
ping (right).

3.2 Experimental results

Shape and location informations from the GIS map enable a good
global initial superimposition between the initial active contour

and its counterpart representation in the image. However, we in-
tentionally corrupted it in order to examine how well our method
could manage inaccurate initial overlay of the data and to illus-
trate fine map-to-image matching. The first experiment illus-
trated in figure 2 shows the need for prior shape knowledge in
the matching process. We deliberately initialize the active con-
tour very close to the matching solution of a U-shaped building.
The matching task performs poorly without shape prior derived
from the map, even though the initialisation is close to the de-
sired solution: lack of contrast at the building borders makes the
active contour “leak” all over the image, segmenting areas having
similar statistical features.

Figure 2: Matching without shape prior. Left: initial state close
to the desired solution. Right: result without shape prior, “leak”
of the active contour.

This problem is solved in incorporating shape prior (figure 3). A
more remote initialization than figure 2 is possible since shape
constraint incorporation is invariant from similarity transforma-
tion in order to achieve building fine matching. Figures 4 to 6

Figure 3: Matching with shape prior and remote initialization
(λ = 10). Left: initial state. Right: successful matching result
even with remote initialisation.

illustrate experiments results carried out with two kinds of build-
ings and a remote initialization. The figures compare the con-
strained active contours model of (3) with our improved scheme
(5). We notice that our scheme outperforms the model without
exogenous data fusion or flexible shape prior constraint, enabling
in both cases a satisfying matching (figures 5-6). The active con-
tour driven by the model of (3) fails in matching the target build-
ing in the image (figure 4). Lack of discrimination of the building
in the image as well as a predominant shape constraint are the two
main reasons which may trap the energy functional minimization
in a local minimum. The input of a soften shape constraint (figure
5) conveys more flexibility to the active contour while globally
preserving the reference template shape in order to reach the tar-
get building. As we can see on the convergence sequence, the ac-
tive contour topology may change at the beginning of the iterative
process due to a low shape constraint. At the end of the matching
action, extra blobs are naturally erased by a stronger shape con-



Figure 4: U-shaped and rectangular buildings: failed matching
with the model of equation (3) and λ = 10. Left: initial state.
Right: result.

Figure 5: Convergence sequence (from top to bottom and left
to right) illustrating the matching process with a flexible shape
constraint (5 < λflex < 30, λd = 0).

straint. Figure 1 shows the DSM integrated into our model. This
DSM looks rough, which is inherent to the method that generated
it as well as the complexity of urban scenes. We may notice that
some parts of the buildings are not well reconstructed, especially
at the boundaries. However this representation of the building
is not corrupted by shadows or peripheral objects located on the
ground and allows a better discrimination of the building from the
background. On the other hand, the representation from the satel-
lite image yields quite clear building boundaries but with lack
of discrimination and presence of artifacts. Figure 6 shows how
the complementarity of both satellite and DSM representations

Figure 6: Matching with DSM fusion (λflex = cst, λd = 0.75).
Left: initial state. Right: successful matching with DSM fusion.

overcomes far initialization to carry out a successful matching.
Since the DSM has a lower geocoding accuracy than the satellite
image and exhibits reconstruction artifacts, we choose to drasti-
cally lower its contribution at the end of the convergence process
(λd

� 1) to favor the satellite image where the building outline is
better defined. The use of our full model incorporating both flex-
ible shape constraint and DSM data fusion would yield the same
results as figures 5-6. The only difference arises in the conver-
gence time (this issue will be investigated in the next sub-section).
The result of figure 3 showed there is no restriction towards the

Figure 7: Matching with flexible shape prior (5 < λflex < 30,
λd = 0) and complex topology. Left: initial state. Right: suc-
cessful matching result with complex topology.

shape convexity of the target building to be matched in imagery
data. The figure 7 illustrates this aspect further with a more com-
plex topology of the building which contains an inner courtyard.
As a consequence the cartographic object includes a hole, which
is naturally handled by the flexible topology of the active contour
implicitly represented by its level set function. Finally the fig-
ure 8 shows the matching result with the U-shaped building and
a locally mistaken cartographic object. The result is then a com-
promise between image and erroneous shape informations. In
this case local discrepancies between the target building and the
reference template are too large at the top of the U branches to be
recovered. This prevents from a completely successful matching.

3.3 Convergence time

The table 1 displays the computational convergence time ratio of
the method in equation (3) with respect to our scheme perfor-
mance (5). We investigate computational time distinction with
the U-shaped and rectangular buildings and two different initial-
isations. Time comparisons are shown with the sole fusion of
DSM data, with the sole flexible shape constraint and finally our
full model. The results demonstrate that DSM data fusion enables
a faster convergence time than the model of equation (3). The



Figure 8: Matching with flexible shape prior and DSM fusion
and a locally mistaken cartographic object (5 < λflex < 30,
λd = 0.75). Left: initial state derived from the map. Right:
unsuccessful complete matching result.

Time ratio
DSM data

fusion
Flexible shape

constraint
DSM +

flexible shape

U-shaped,1 1.4 1.8 1.6
Rect,1 1.3 3.1 1.8

U-shaped,2 2.5 4.3 2.1
Rect,2 1.3 2.0 2.0

Table 1: Convergence time comparison.

DSM represents more obviously the target building and drives
more surely the active contour, which may explain the conver-
gence time gain. The input of a flexible shape constraint increases
even more the convergence efficiency. A lower shape constraint
allows to increase the active contour evolution speed while glob-
ally keeping the prior shape information. This enables to quickly
reach a rough and close solution to the target before the prior
shape is gradually enforced. The flexible shape constraint always
performs faster results, however while coupled with the DSM
data it makes the active contour more sensitive to the DSM re-
construction artifacts and drives it away from the final solution
before the DSM weight is relaxed and the prior shape enforced.
As a result we obtain a slower convergence with the full model
than the sole input of a flexible shape constraint. It is important
to stress that the convergence time gain is image and initialisa-
tion dependent and can not be stated theoretically from algorith-
mic considerations. However the results of table 1 empirically
show an obvious trend of computational cost decrease compared
to model of equation (3). Statistics over a high number of cases
would be needed to indubitably confirm this inclination.

4 CONCLUSIONS

We have introduced a novel scheme based on the use of active
contours to refine digital building map using a high resolution
satellite image. Our method is supported by data fusion: ac-
tive contours are initialised and constrained by a GIS map and
make use of an exogenous DSM to achieve successful match-
ing. We demonstrated how the input of the DSM and a flexi-
ble spatio-temporal shape constraint could outperform traditional
knowledge-based active contours while decreasing the computa-
tional cost. Future works will attempt to get rid of the limita-
tions of the presented approach. Extension of our methodology
to non-homogeneous or clustered buildings will be tackled with
the incorporation of edge information in the active contours func-
tional. Presence of mistakes or simplifications in the map is still
an open and challenging question that we may consider by incor-
porating a new class of flexible shape constraint allowing larger
discrepancies from the reference template.
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