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About image classification ...

BirdBird CatCat

?

Source:http://www.migueldearriba.es/index2.html

http://www.migueldearriba.es/index2.html
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About image classification ...
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About supervised learning ...

Given ...

Source: http://www.image-net.org/, ... ...
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Some Applications

● Image indexing
● Huge quantity of data recorded daily
● Indexed by date and location only
●  index them by visual content

● Visual search
● Tags as defined by users, if any, do not necessary 

reflect the visual content of the image. 

Tags by user: Milou, Sydney Categories: dog, sea
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Challenges 

- Low inter-class variability
- High intra-class variability
- Semantic gap : image → concepts

P
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Classification tasks 

✗  Description & representation
- Descriptors (local) : SIFT (Lowe99), HOG [Dalal05], Shape Context 
[Belongie]…

- Representation : Bag of Feature [Schmid01],  proximity distribution 
[Ling07],....

Classifier 
- Generative models (e.g: MRF/CRF [Lafferty01], pLSA [Hofmann01], ...)

- Discriminative models (e.g.: SVM [Vapnik95], Boosting[Viola01], ...)

...

✗  Learning



12/30/20
11

BoF + SVM pipeline

1- Learning a visual vocabulary
from image (training) set

…

Feature
 space

Vocabulary
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2- Representing each image by a
histogram (bag) of word

3- Classification via SVM

hyperplane separation 
in feature space

Local 
descriptors
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Bags of features for action recognition

Source : Niebles, Wang, Fei-Fei, Unsupervised learning of Human action category using 
spatio-temporal words, IJCV 2008.
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In defense of Nearest Neighbor 
based image classification
(Boiman, Shechtman, Irani. CVPR 2008 ) 

BOF + SVM : drawback
✗ Quantization (codebook creation)

- descriptors discriminative power drop

- rare but discriminative information is lost

→ no quantization

✗ Image-to-image classification (SVM)

→ Image-to-class classification 
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+ Class - Class

Compute features from all images 
from the training set ; create a 
“feature space” for class +, 

and for class - . 

… …

=… f
i

•Given a new image I, compute its 
feature points {f

i
}

i={1...N},

and find nearest neighbor NN(f
i 
) in 

each class pool. 

• Compute feature-to-class distance 

d i
±.
=∥ f i−NN

±.
 f i∥

•  Classifying rule :

D±. I =∑i=1

N
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
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i
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

... ...
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Why does it work ok ?

➢ No quantization

➢ “NBNN” classifier approximates  the 
optimal MAP Naive-Bayes classifier 
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Improvement of NBNN
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➢ New (parametric) distance 

➢ Generalises to multi-channel 
(features)

➢ Parameters estimation by hinge loss 
minimisation

➢ Applies to object detection 



12/30/20 19

Impact of data sample size ...

Features of the N images

Features of the 2N 
images
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f_i

f_i

NN1

NN2

Basic NN distance depends on the number of 'training' feature 
points

=> Classification is biased toward the most densely sampled 
class in the training set.
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 Distance correction

d i
±.
=∥ f i−NN

±.
 f i∥

d i
±.
=

±.
∥ f i−NN

±.
 f i ∥

±.
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Basic 

Classification rule

Density approximation

c  I =arg maxc∈ p  I∣c  , for p c=cst

.=arg max c∈∏i=1

N I

p f i∣c 

p f ∣c=pc  f =
1
Z∑e∈c

∥ f −e∥, , ∀ f ∈ℝ
d


c
={ f j

I
∈ℝ

D
∣c=c  I  ,∀ I ∈Dt ,1 jN I }

Training set
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 Density approximation

Define  feature-to-class distance

… and  classification rule 

pc  f ≈
1
Z
max e∈c exp−∥ f−e∥

2
/2  

2


−log pc  f ≈mine∈ c∥ f −e∥
2

c  I =arg minc∑i=1

N I

∥ f i−NN
c
 f i∥

2

- Kernel density : exp()

- SUM approximated by 
MAX 

- Naïve bayes 
assumption

Underlying hypothesis :
 density parameters are
 class independant

[Boiman & al. 08]
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Density approximation

Define  feature-to-class distance

… and  Image-to-Class distance

pc  x ≈
1

Z c
max e∈c exp−∥x−e∥

2
/2 

c

2



c
 f =−log pc  f .= 

cmin
e∈c
∥ f −e∥2c


c
 I =∑i=1

N I


c
∥ f i−NN

c
 f i ∥  

c

- Density parameters are 
class  dependent  !!!

- Reparametrisation

NN distance revisited

- Linear in the model
parameters
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Multi-channel

• Image = multiple points cloud 
More descriptors → better results 

I~n I n n∈ℕ

n . : nth  feature channel

c  I =arg minc∑n∑ f i∈n  I 
−log p f i∣c 

 n
c
 f i=n

c
∥ f i−NN

c
 f i∥   n

c

'measure' of channel discriminative power
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Parameter estimation

● Binary classification : c={+,-}
● Hinge loss minimisation
● Cross-validation  

E=∑I∈D
max  0, 1−c  I  −.  I −.  I   

Ground truth
c \in {+,-}

Distance to negative
 feature set

Distance to positive
 feature setTraining dataset
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Parameter estimation

● Constrained linear program
(using off-the-shell library )

● Distance correction parameters are 
'optimal'

● Overfitting if number of channels is large
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Results



12/30/20 30

● Dataset : Caltech101, Gratz02, SceneClass13

● Rate of good classification 
(per class or averaged)

● Locality-sensitive 
hashing 
for NN search

Experimental setting
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BoW/SVM BoW-Chi2/SVM  NaiveBayes 
[Boiman08]

oNBNN

SceneClass
13 

67.85 
(±0.78) 76.7 (±0.60)

48.52 (±1.53) 75.35 (±0.79)

Graz02 68.18 
(± 4.21) 77.91 (±2.43)

61.13 (± 5.61) 78.98 (± 2.37)

Caltech101 59.2 
(± 11.89) 89.13 (±2.53) 73.07 (± 4.02) 89.77 (± 2.31)

Single-channel classification (using SIFT)

Correct classification  rate and associated variance
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Caltech 105 (detail per class)
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Caltech 105 (color features)
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Classification by detection (Gratz02)
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Conclusion

• Optimal nearest neighbor distance
- generalises  to  multi-channel classification
- 'optimal' parameters estimation 
- nearest neighbour search using multi-probe LSH
- classification by detection.

• Limitations
→ model overfitting
→ NN search
→ spatial dependency between feature points
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Limitations

Features of the N images

Features of the 2N 
images
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f_i

f_i

NN1

NN2
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A new channel

•  Oriented graph
● Features (SIFTs) as 

nodes
● Connectivity rule

•
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Multi-class classifier

c  I =arg maxc∑c '≠c
H E c , c'  I 

H  x =.
1 if x1
−1 if x−1
x otherwise

Multi-class classifier 
decision rule

Score function

E c , c' =c  I − c '  I 

 Binary prediction function
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Classification by detection 

∏ f i∈
p  f i∣c , ∏ f i∈

p  f i∣c , 

∏ i∈ I p  f i∣background 

● Goal : finding position w and class c of 
an object 

● Prediction rule 

Object location w
(sub-window)

c
'non-object' classc
object class

I

 : rest of the image


