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Motivation




Motivation

» Most scenes are illuminated by several (global or local)
illuminants (eg. outdoor scene at sunset).

» Color cast or strong specularities can cause vision
algorithms (eg. segmentation, recognition) to produce
erroneous results.



Related work

[Shafer 85], [Klinker & al. 88], [Lee & Bajcsy 92], [Tan & al.
2003], [Robles-Kelly & al. 2010], [Yang & al. 2011]
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Related work

v

Gray-Edge [Weijer & al. 2007], Generalised Gamut
Mapping [Gijsenij & al. 2010],

v

Multi-illuminant [Gijsenij & al. 2012, Ebner 2004],

v

White balance correction [Hsu & al. 2008].

v

llluminant in video sequences [Wang & al. 2011],
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Image Formation Model & Hypothesis
Dichromatic reflection model for dieletric objects [Shafer 85] in time

space.
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Image Formation Model & Hypothesis
Dichromatic reflection model for dieletric objects [Shafer 85] in time

space.

J(p. t) = D(p. t) + ms(p, t)L(p)

Hypothesis

» Incident light L is uniformly distributed over time.

» Object body reflectance D is time invariant.



Single Global llluminant T

J(p, t) = D(p, t) + ms(p, t)L
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Single Global llluminant T

J(p, t) = D(p, t) + ms(p, t)L
= J(p+Ap,t+At)—J(p,t) = Amy(p,t) L

L. AJ(p,t)
Zc LC Zc AJC(p7 t)

ce{r g, b}

with L = (L,, Lg, L), 3 = (J;, Jg, Jp) and
Al(p,t) = J(p + Ap. t + At) — I(p, t).

The dispacement field, Ap, is assumed to be known.



Single Global llluminant T

Define x.(p) = %, x = {x.(p),ce{r,b,g},Vpe&}.

We observe empirically that h(x.) has the following (Laplace)
distribution:

h(x) . h(xg) . h(x) .

This suggests to cast the problem of I' = {I'.} estimation in a

MAP framework, where:

I' = arg max P(I|x)
r



Two Dominant llluminants {I';, I}
» Assume now:
L(p) = ki(p) M1 + ko(p) .

» For locally uniform incident light L(p) = cst = L*,Vp € s,
where s is a small space-time patch, then:

LS
rS — o
DI

with o = ki /(ki + k3).
» Re-parametrisation:

= O[s r17c + (]. — Oés) |—27¢.

o®=b.+ali Vcedr g, b},

: _ 1 _ ,
with a. = Frofos and b, = Froofs



Two Dominant llluminants {I'!, I}

» Define the quadratic cost function:
E(a,a,b) =3 (0 =X acls — b)* + ¢la]|*
E(a,w) =]la— Kwl?
with @ = (a,...,a°,0) , w = (a, ag, ap, b)*,
R N |

g
K =

€l/2,, 61/2.;9; et/23, 0
» Solve for &. We can show that, for the optimal value of w
([Levin & al. 2008]):
E(a) = a*Ma.
» Solve for ['1, 5. Finally:
(F1, F2) =argmin > [las Ty + (1 —as) Mol
s



Experimental setting

Dataset :

- One illuminant : benchmark dataset (GrayBall) and
in-house datasets (13 sequences, acquired under normal
and extrem lighting conditions);

- Two illuminants : in-house dataset (3 sequences).

v

v

Ground truth : from gray-card placed in the scene during
acquisition.

v

Temporal window : 3-5 frames ;
Tiles size (2 illuminants): 100x100 pixels.

v

Evaluation : err = arccos(FEst.¢T)



Results : Single llluminant

Figure :

Video dataset recorded under normaldllight'ing conditions.

Average Best 1/3  Worst 1/3

GE-1 [Weijer & al. 2007 6.572 2.1787 11.271
GE-2 [Weijer & al. 2007 7.150 2.958 11.723
GGM [Gijsenij & al. 2010] | 7.013  6.208 9.166
IIC [Tan & al. 2003] 8303  3.984 12.540
Our approach 5.389 2.402 8.784

Table :  Average angular errors (in degrees) .




Figure : Video dataset simulating extreme lighting conditions:

and bluish.

reddish

Reddish  Bluish
GE-1 [Weijer & al. 2007] 8.907 13.052
GE-2 [Weijer & al. 2007] 10.246 13.657
GGM [Gijsenij & al. 2010] | 15.544 25.505
IIC [Tan & al. 2003] — 19.675
Our approach 7.708 6.236

Table :  Average angular errors (in degrees).



Figure : Sample frames from the Grayball database (out of a total of
11,136 images).

Mean Median
GrayWorld 7.9 7.0
GGM [Gijsenij & al. 2010] | 6.9 5.8
GE-2 [Wang & al. 2011] 5.4 4.1
Ours 5.4 4.6

Table :  Angular errors.



Application: White balance correction

(a) Input sequence  (b) Our approach  (c) Ground truth



Two illuminants

Figure : Three sequences captured with two lights sources.

Ours [Gijsenij & al. 2012]  Local GW

r I r r M r
Seq. (a) | 9.65 5.14 | 31.69 4.8 12.94 10.49
Seq. (b) | 5.74 4.76 | 9.69 9.82 5.89 8.81
Seq. (¢) | 7.35 6.49 | 179 5.65 7.63 _ 5.74




Input J(p, t)







Application: Color cast correction




Application: Relighting

fTwo lights
correction

Enhancement X r One-fight
correction

Twotone
lights
correction

Correction from
luminance map






Specularity Enhancement from Image Sequence
[ ICIP 2013 ]
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Results



Specularity map m(p, t)

Recall:

JC(p + Ap: t+ At) - JC(pv t)
=m(p+ Ap, t + At) — m(p, t)

» Displacement Ap is known or estimated accurately,
» White illuminant: L(p,t) =L =(1,1,1),

» Body reflectance D is invariant over time.



Approach 1: a 1™ order integration

Ap #0

with initial conditions: D;—q (p) = Je(p(to), to) — m(p(to), to).



Approach 2: a 2" order integration
Minimise:
| [ o dt {8(p.1) = (m(p + 2.t + 80) — m(p. )

tJp

with respect to m(.).

= A%*J (p,t) =
Mpp(P, t)AP? + me(p, t) A% + 2 m,(p, t) ApAt

- discretize using (central) finite differences
- appropriate boundary/initial conditions
= solve a linear system of the form: Am = B.



Results: Static Scenes
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Camera motion
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Conclusion

Summary

- Physically-based model for illuminant estimation or
specularity detection,

- Leverage temporal information.

Limitations
- Physically-based model is an approximation of the real
world,
- Displacement flow accuracy is a limiting factor for local
estimation of incident light,

- Light sources should not be too close (in space and
spectral domain).



Future work

» Improvement of the white balance correction task (two
light sources),

» Extension to multiple light sources,

» Estimation of scene structure and intrinsic images.



Thanks for your attention.
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