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Urban traffic forecasting

IEEE Trans. on Intelligent Transporation Systems, 2021
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Objective

Objective: Given past observed data, we want to infer the
future traffic state in the forthcoming X minutes/hours/days
(typically X=1h).
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il Beijing traffic

WORKING DAY TRAVEL PATTERNS BY MONTH

How did the travel patterns look like during working days in 2020 and 2019?
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https://www.tomtom.com/en_gb/traffic-index/beijing-traffic/



Sensors and data

flow (in / Out)
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Why is it hard?
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Why is it hard?

t CALIFORNIA DEPARTMENT OF
awae TRANSPORTATION

T

Phelan Hesperia
/ pup. Wrightwood
Angeles. %
National f
Siluerwood
Uikestate
D Rec Area
Lake
Crestline Arrowhead 6
vall
Runnin
& Spring

Fontana

Junpa Rive
\aiey Rived

Torrance.

ypress.

Paios verdes Aogos Mamitosstanton
Peninsula. i G
cho
anchc Siverado ]
Verdes
clovela
Natiori
3143 ifee

1158

Speed (mph) as of 31 Jul 2019 16:14 PDT

DA



Related work (1/3)

Deep spatio-temporal residual net- works for citywide Modeling Spatial-Temporal Dynamics for Traffic Pre-
crowd flows prediction, Zhang & al., AAAI 2017

diction , Yao & al., arxiv:1803.01254 2018
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Related work (2/3)

Attention Based Spatial-Temporal Graph Convolu- Dynamic Spatial-Temporal Graph Convolutional
tional Networks for Traffic Flow Forecasting, Guo & Neural Networks for Traffic Forecasting, Diao & al.
al., AAAI 2019 AAAI 2019

convolution
__in temporal dimension

- graph convolution
in spatial dimension

E;gAugeT SG(;I‘;;C architecture of spatial-temporal convolutions Figure 1: The framework of DGCNN

Diffusion convolution RNN: data driven traffic
forecasting, Li and al, ICLR 2018

Diffusion Convolutional  Diffusion Convolutional  Diffusion Convolutional  Diffusion Convolutional
Recurrent Layer Recurrent Layer Recurrent Layer Recurrent Layer

Input Graph
, Signals «

Encoder Copy States Decoder

[X(r—T’Jrl)’ - X(t71)] N [X(‘), o X(t+T)]



Related work (3/3)

- Spectral graph convolution [Bruna'l3, Defferrard’'17, Kipf'17]
go*xx = UgyUTx
U: eigenvectors of the Laplacian L = Iy — D~Y/2AD~1/2 = UNUT

- Graph convolution on the spatial domain [Hamilton'18]
yi = folxi, {x|Vv; € N(vi)}),

AGGREGATION: y; = > . vy X W
UPDATE: y; = g(¥i, X;)

- Permutation invariance, independant of neigbor size,
spatially invariant (weight sharing)



Contributions

Our contributions:

- (Dilated attention) graph convolution operator,
accounting for short and long range spatial correlations,
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Contributions

Our contributions:

- (Dilated attention) graph convolution operator,
accounting for short and long range spatial correlations,

- Temporal integration, accounting for short and long range
time dependencies,

- Data fusion scheme, accounting for external (exhogenous)
factors.



Problem statement

Given a graph G = (V,€),
V= {V,'}, E = {GU S [0, 1]|e,J =1if 4 c N(V,)}
and nodes attribute X = {x;}:

Fo(G) : ({xPYPRE) — X

p:O )

© = argmin Ly(X:, X;)
6



Problem statement

Given a graph G = (V,€),

V= {V,'}, E= {GU c [0, 1]|e,J =1if 4 c N(V,)}
and nodes attribute X = {x;}:

Fo(G) : ({xPYPRE) — X

p:O )

e = argmjnﬁz()et,xt)
6

Observed historical traffic flow X(®) . p=0,... ,P —1, X(P) ¢ RNxT*xM
External factors E = {e", e, EP} at future time t,

E € RP"x{0,1}P"x NNxD*

Output the traffic flow on all nodes at the next time step t, Xy € RV*M



Graph convolution operator: DAGC #(.)

Given x; € R, a feature of dimension C on node v;, the
attention graph convolution, for a given /, is defined as follows,
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Graph convolution operator: DAGC #(.)

Given x; € R, a feature of dimension C on node v;, the
attention graph convolution, for a given /, is defined as follows,

for a one order neighborhood (single hop):

yi = D fulxx) W, + g(x)),
VjGN(V,',/)

Fu(xi, ;) = hy(x)" - hy(x;)

fi(xi, x;) = softmax(Fy(x;, x;))



Graph convolution operator: DAGC #(.)

Given x; € R, a feature of dimension C on node v;, the
attention graph convolution, for a given /, is defined as follows,

for a L order neighborhood (L-hop) with dilation d:

L

Y= 0 ) fulxix) - W, + g(xi),

I=1 \/J'E./\/—(V,',/'d)

Yi = U(yll)



Graph convolution operator: DAGC #(.)

Given x; € R, a feature of dimension C on node v;, the
attention graph convolution, for a given /, is defined as follows,

for a L order neighborhood (L-hop) with dilation d:

L

Y= 0 ) fulxix) - W, + g(xi),

I=1 \/J'E./\/—(V,',/'d)

Yi = U(yll)




Space and time integration

Space integrator: Given input traffic record X(P) ¢ RN*TM.

Y (P) :;4_[(p)()((:9)’g)7 p=0,---.P—1



Space and time integration

Space integrator: Given input traffic record X(P) ¢ RN*TM.

Y (P) :;4_[(P)()((p)’g)7 p=0,---.P—1

Time integrator: Given Y¢ = [Y(©) ... Y(P=1)] ¢ RNxFF:

YT =H"(Y,G),



External factors embedding

Time varying factors:
Weather (discrete and real-valued variables):

= FC"(e", et") ey = (&, e,
Holiday (categorical variable):

= FCh(e) éh e NF',



External factors embedding

Time varying factors:
Weather (discrete and real-valued variables):

&Y = FC (e, el"") &y = (&7 8",
Holiday (categorical variable):
A N h
éh = Fc(eh él e N7,

Space varying factors:
Points of interest (categorical variable):

EP = FCP(EP) EP c NVXF7,



What do we have so far

Space integration Time integration

[ Spatial Feature Extraction ‘ ‘ Temporal Feature Fusion ]

Input Features
Input Traffic DAGC DAGC
Data X (?) }f‘;—)}f‘
2 L=2d=1 L=2d=2 Concat d=1
! 2 DAGC | _ 5
DAGC |_ X DAGC
L=2d=6 L=2d=4

External (weather) factors embedding

Output Features

Y™

Output
FeaturesY (7)

‘ External Factors Embedding }




Overall fusion

1- Traffic flow and Pols features are first fet into a DAGC
module:

Y = H([Y",E"],G).

2- Weather features and holiday notifications, expanded to
space domain, are then fed into an multilayer perceptron:



Overall fusion

1- Traffic flow and Pols features are first fet into a DAGC
module:

Y = H([Y",E”], Q).
2- Weather features and holiday notifications, expanded to

space domain, are then fed into an multilayer perceptron:

Fusion

‘ Multi-Source Data Fusion ]

\: S-T Features

~ concat concat

| Ext Features DAGC F*ﬂ MLP |
[ Pols
[ Weather ; [ Prediction ‘
[ Holiday j|————— | Results |




Overall pipeline

[ Multi-Source Spatio-Temporal Network (MS-Net) ]

Spatial Feature
Extraction

T TR T [ [ [ T [T |

Historic Traffic Flow

Multi-Source
External Data

(Pols )

Time Axis

P Spatial Feature
X(

[Weather

Temporal
Feature Fusion

Multi-Source
Data Fusion

External Factors
Embedding

Prediction Results




Experiments: Data

Table: Dataset meta information

Properties Datasets -
Subway Bus Taxi
# traffic nodes 278 4219 300
time interval | 10 mins 1 hour 20 mins
time span  |2016/6/1 - 2016/6/29| 2015/11/28 -
2016/1/26
# train days 15 days 32 days
# valid & test 7 days 14 days
days
daily range 6:00-22:00




Experiments: Data

Table: Pols categories.

ID Pols categories 1D Pols categories

0 food & beverage service 7 automobile service

1 shopping center 8 education

2 hotel 9 medical treatment

3 public transportation service 10 tourism service

4 entertainment 11 enterprises and institutions

5 residence 12 finance & insurance

6 living service 13 government agency
Table: Weather categories.

1D categories 1D categories

0 cloudy 4 thunder

1 partly cloudy 5 fog

2 mostly cloudy 6 snow / hail

3 light rain 7 sunny




Experiments: Data - Beijing subway

— Passenger outflow on A x

—Passenger outflow on B \

— Passenger outflow on E / \
/)

—Passenger outflow on C
| —Passenger outflow on D

N =

0 .
600 1000  14:00  18:00  22:00 E \
(b) Traffic flow on five nodes
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Experiments: Results and comparison with SOTA

Table: Experimental results of the subway (top) and bus (bottom)
evaluation datasets.

MAE MAPE (%) RMSE
HA 45.08 31.02 94.94
GAT 36.68 + 2.58 | 28.97 £ 229 | 6535 + 6.31
GRU 2333+ 020 | 2029+ 0.67 | 41.92 + 0.33
ChebNet 2201 + 059 | 19.38 + 039 | 40.02 + 0.98
DCRNN 2249 + 022 | 1950 + 1.08 | 38.63 &+ 0.47
STGCN 21.69 4+ 062 | 19.13 + 1.74 | 36.49 + 0.48
STGCNAction 2165 + 027 | 18.97 £ 132 | 37.06 & 0.39
GSTNet 2133+ 013 | 18634072 | 36.08 + 0.22
MS-Net 19.44 + 0.14 | 16.97 + 030 | 32.19 + 0.17

MAE MAPE (%) RMSE
AA 35.03 55.47 7354
GAT 26.40 + 0.29 | 46.88 £ 3.00 | 5273 4 0.38
GRU 2407 +0.22 | 40.73 & 159 | 53.46 + 0.25
ChebNet 27.06 + 1.10 | 42.89 + 267 | 56.01 + 2.73
DCRNN 27.06 + 0.12 | 43.95 + 047 | 5523 + 0.09
STGCN 23.42 + 031 | 39.01 + 1.57 | 48.80 + 2.64
STGCNAction 21.05 + 072 | 3612+ 1.01 | 40.93 + 1.90
GSTNet N/A N/A N/A
MS-Net 19.15 + 0.28 | 33.12 + 1.19 | 36.42 + 0.39

Metrics: MAE (Mean average error), MAPE (Mean average percentage error), RMSE (root mean square-error)



Experiments: Results and comparison with SOTA

Table: Experimental results of the taxi evaluation datasets.

MAE MAPE (%) RMSE

HA 26.18 3024 55.05

GAT 2205+ 1.01 | 3527 & 147 | 45.44 % 1.66
GRU 2024 + 019 | 3277 £ 1.73 | 40.04 + 0.15
ChebNet 10.81 +0.07 | 31.97 +£0.38 | 3839 + 058
DCRNN 2046 + 0.34 | 31.58 + 1.38 | 42.03 + 0.18
STGCN 1034 + 024 | 31.34+1.16 | 37.30 + 0.26
STGCNAction 10.78 + 0.13 | 31.45 +1.90 | 30.41 + 0.14
GSTNet 1917 £ 032 | 3077 +£1.35 | 37.01 + 0.35
MS-Net 18.60 + 0.06 | 29.37 + 0.46 | 35.62 + 0.12

GRU: Gated Recurrent Unit

GAT: Graph Attention Network, Velickovic & al. , ICLR 2017

STGCN: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting, Yu & al.
1JCAI 2018



Experiments: Results on subway dataset
Prediction: Next time step

——MS-Net +DCRNN -=ChebNet ——STGCNAction| N

Mon.  Tues.  Wed.  Thur. Fri. Sat. Sun. Indices of nodes

Prediction: Multiple time steps

401 [-A-ChebNet
—%-DCRNN
35 |-B-STGCN
-©-MS-Net

1 2 3 4 5 6
Predicting future time steps

STGCNACction: Spatial Temporal Graph Conv. Networks for Skeleton-Based Action Recognition, Yan & al. , 2018
ChebNet: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, Defferrard & al. , 2016

DCRNN: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting, Li-& al. 2018



Experiments: Ablation study - Beijing subway

Table: Results of temporal feature fusion

Fusion Method Subway Dataset

MAE MAPE (%)  Time
(mins)
Weighted 20.85 +£ 0.05 18.08 + 0.31 0.07

Sum
Average 20.49 + 0.12 17.89 + 0.49 0.07
Proposed |19.44 + 0.14 16.97 + 0.30 0.08

Table: Results of external factors

Subway Dataset
MAE MAPE (%)  Time
(mins)
w/o factors | 20.71 £ 0.04 17.95 + 0.15 0.06
with factors |19.44 + 0.14 16.97 = 0.30  0.08

External Factors




Conclusion

- Dilated attention graph convolution operator
- Integration in space, time and exhogenous data fusion

- On going directions
Optimal architecture search (in space domain)
Meta learning for exhogenous data fusion



Towards autonomous parking [T-1TS'2019]
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Towards autonomous parking
A vision based system

IEEE Trans. on Intelligent Transporation Systems, sept. 2019

Stanislav Panev Francisco Vicente Fernando de la Torre




Motivation

- Advanced driver assistance systems (ADAS): to reduce
the number of fatalities on the road (Pedestrian
detection/avoidance, Lane departure warning/correction,
Traffic sign recognition, Automatic emergency braking,
Blind spot detection)

- Human Horizons (leading Chinese smart mobility and
autonomous driving research company) has already Level
4 Autonomous Valet Parking (AVP) system

- Full vision based

https://www.prnewswire.com /news-releases /world-first-level-4-fully-autonomous-vehicle-parking-system-rolled-out-
on-human-horizons-hiphi-x-301132815.html



Motivation

Surround view

W cacaronn

Suround

Surround view

LEVELS OF DRIVING AUTOMATION

i
3
N

1 2

ORIVER o AL
ASSISTANCE AUTOMATION AUTOMATION AUTOMATION

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT

https://www.synopsys.com/automotive/what-is-adas.html,
https://www.synopsys.com/automotive/autonomous-driving-levels.html




Method

- Objective: detect the curb —vehicle-to-curb distance, curb
height, angle

- Fully vision based system (single CDD fisheye camera
mouted near the front licence plate)

- Near real time, > 90% accuracy requirement

- Adversarial conditions: rainy/foggy weather, damaged
curb

- Perpendicular parking

Youtube video teaser (video teaser]


https://www.youtube.com/watch?v=FXCRh9W-_xo&list=PLeJQFxWyfCj7v1TNN0OOppD2KO8R3Zoib&index=5

Method: Setting and assumptions

Side view of the fu
camera’s image_
plane and FoV ™_

Road plane T

Dy=ft lu

Yyy Hy

(x, fy): cameral focal length

Hc: camera-to-road-plane vertical distance (i.e., along y axis)
hy: curb’s frontal projection face in the image

Py: point of the curb on the road plane

yu: vertical's coordinate of P's projection in the image

(10p view)

Dy AD; AD,

\ template
Vehicle

5
Dy

: curb’s to camera distance
: curb’s height

: curb's angle

: curb’s width

Curb Detection Domain

=]
a



Method: Simple concept

a) curb appearance in image

up
upper front

fower front-(base) curb’s edge — €1

¢) 3D curb template’s edges and faces

Py = [~ Winax, Hc, Dy + ADy],

Py = [Winax, He, Dy — ADy]
Py = [=Winax, He — Hy, Dy + ADy],

Ps = [Winax, Hc — Ay, Dy — AD]
P3 = [~ Winax, Hc — Ay, Dy + ADy + ADy],

P = [Wiax, Hc — Ay, Dy — ADy + AD,]

AD; = Winax tan Oy, AD, = U




Method: Pipeline
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Method: Pipeline

Input frame

IpcM mapping

Predicted label for 25" ¢

Predicted label for %"
csn_(1pon

Select best it as final curb
Predicted label for %3 &

Prodicted label for X3'; &

-

Classify
HOG

features
palches

Straight lines detection

Fit 3D template
0 each lines triplet

1), -+ 88

13. 1),

_

[URT)

o
3

Inverse IpcM transform
& construct triplet lines candidates set
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Method: Pipeline

3
= 1
™ pey
o
™
o
a) Positive sample (curb) HOG block size
8 X 8 px
A | I
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b) Negative sample (road/asphalt)
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Method: Pipeline

Temporal tracking asssuming small frame to frame
displacement:

Evolution of curb parameters in time
@ The samples from the prdiction sct Py _ | — Predicion fnes (1. 19+ 117+ 12} gy
O Predicted cu st %y X Curb candidate 5 X Curb e )

120} 6o

— select

Oy ()
o
G

Hy (cm)
=

Ey (cm)

)
lE

t—7 t—6 t-5 t—4 t—-3 t—2
Frame index



Experimental results: data

DATASET DETAILS

Vid. Curb Curb Weather Curb/road Frames

seq. | height | depth conditions physical count?
# (cm) (em) properties
1 11.1 20.6 Clear Co./As.® 702/374
2 133 20.6 Clear Co./JAs.® 665/344
3 10.6 20.6 Clear Co./JAs.® 626/378
4 16.2 15.9 Shadow Co./As.” 519/332
5 14.6 16.4 Shadow Co./As.* | 497/321
6 10.5 20.6 Clear Co./As.® 580/345
7 10.8 20.3 Shadow Co./As.* 545/318
8 9.8 21.6 Shadow Co./As.* 521/341
9 11.4 20.8 Shadow Pa./St.T 486/291
10 9.8 203 Shadow Pa/StT | 412/308
1 137 20.8 Clear Co./As.* | 555/360

* Concrete/Asphalt

1 Painted/Strained

 Total number of frames in the sequence/Number of the frames with
curb presented in the CCD




Experimental results videos

[Video 2] [Video 3] [Video 5] [Video 8] [Video 9]

https://www.youtube.com/playlist?list=PLeJQFxWyfCj7v1TNNOOOppD2KO8R3Zoib



Experimental results: quantitative evaluation

Classification rate

[ Video seq # [ Accuracy [ F'; score |
1 99.7% 0.997
2 99.1% 0.989
3 93.6% 0.926
4 97.4% 0.986
5 97.4% 0.819
6 83.9% 0.901
7 96.2% 0.974
8 81.7% 0.871
9 90.5% 0.940
10 91.6% 0.956
11 81.7% 0.798
[ Average: [ 914% T 0923 |

TP + TN
TP + TN + FP + FN

precision. recall

ACC =

Fr=2———
precision + recall

. TP TP
precision = ——— | recall =
TP + FP TP + FN




Experimental results: quantitative evaluation D,

Absolute error of Dy measurements
with respect to LIDAR Dy GT labels

Absolute error of Dy measurements
with respect to manual Dy GT labels
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Experimental results: quantitative evaluation

@UaEU

Absolute error of ©y measurements
with respect o manual ©y GT labels, related to manual Dy GT labels
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Conclusion



Conclusions and perspectives

- Deep learning, a powerful generic transversal toolbox

agnostic to the application
enables cross-modality data processing

- For many applications, in particular for large scale natural
phenomena/events modeling, numerical (mathematical)
models should be coupled with DL

- Many challenging and open problems in the field of
dynamic/time-series event analysis (medical, remote
sensing)
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