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Urban traffic forecasting

IEEE Trans. on Intelligent Transporation Systems, 2021

Shen Fang Jianlong Chang Michael Werman
ChunHong Pan Shiming Xiang



Objective

Objective: Given past observed data, we want to infer the
future traffic state in the forthcoming X minutes/hours/days
(typically X=1h).



https://www.tomtom.com/en gb/traffic-index/beijing-traffic/



Sensors and data

- flow (in / out)

- speed

- occupancy

- ...



Why is it hard?
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Related work (1/3)

Deep spatio-temporal residual net- works for citywide
crowd flows prediction, Zhang & al., AAAI 2017

Modeling Spatial-Temporal Dynamics for Traffic Pre-
diction , Yao & al., arxiv:1803.01254 2018



Related work (2/3)
Attention Based Spatial-Temporal Graph Convolu-
tional Networks for Traffic Flow Forecasting, Guo &
al., AAAI 2019

Dynamic Spatial-Temporal Graph Convolutional
Neural Networks for Traffic Forecasting, Diao & al.
AAAI 2019

Diffusion convolution RNN: data driven traffic
forecasting, Li and al, ICLR 2018

[X (t−T ′+1)
, ..., X (t−1)]→ [X (t)

, ..., X (t+T )]



Related work (3/3)

- Spectral graph convolution [Bruna‘13, Defferrard’17, Kipf’17]

gθ ? x = UgθU
Tx

U: eigenvectors of the Laplacian L = IN − D−1/2AD−1/2 = UΛUT

- Graph convolution on the spatial domain [Hamilton’18]

yi = fθ(xi , {xj |∀vj ∈ N (vi)}),
aggregation: ỹi =

∑
j∈N (i) xjW

update: yi = g(ỹi , xi)

- Permutation invariance, independant of neigbor size,
spatially invariant (weight sharing)



Contributions

Our contributions:

- (Dilated attention) graph convolution operator,
accounting for short and long range spatial correlations,

- Temporal integration, accounting for short and long range
time dependencies,

- Data fusion scheme, accounting for external (exhogenous)
factors.
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Problem statement

Given a graph G = (V , E),
V = {vi}, E = {eij ∈ [0, 1]|eij = 1 if vj ∈ N (vi)}
and nodes attribute X = {xi}:

FΘ(G) :
(
{X (p)}P−1

p=0 ,E
)
−→ X̂t

Θ = arg min
Θ̃
L2(X̂t,Xt)



Problem statement

Given a graph G = (V , E),
V = {vi}, E = {eij ∈ [0, 1]|eij = 1 if vj ∈ N (vi)}
and nodes attribute X = {xi}:

FΘ(G) :
(
{X (p)}P−1

p=0 ,E
)
−→ X̂t

Θ = arg min
Θ̃
L2(X̂t,Xt)

Observed historical traffic flow X (p), p = 0, · · · ,P − 1, X (p) ∈ RN×T×M

External factors E = {ew
t , eh

t ,E
p} at future time t,

E ∈ RDw×{0, 1}Dh×NN×Dp

Output the traffic flow on all nodes at the next time step t, X̂t ∈ RN×M



Graph convolution operator: DAGC H(.)

Given xi ∈ RC , a feature of dimension C on node vi , the
attention graph convolution, for a given l , is defined as follows,
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Graph convolution operator: DAGC H(.)

Given xi ∈ RC , a feature of dimension C on node vi , the
attention graph convolution, for a given l , is defined as follows,

for a one order neighborhood (single hop):

yi =
∑

vj∈N (vi ,l)

fψ(xi , xj) · xjWa + g(xi),

f̃ψ(xi , xj) = hψ(xi)
T · hψ(xj)

fψ(xi , xj) = softmax(f̃ψ(xi , xj))



Graph convolution operator: DAGC H(.)

Given xi ∈ RC , a feature of dimension C on node vi , the
attention graph convolution, for a given l , is defined as follows,

for a L order neighborhood (L-hop) with dilation d :

y
′
i =

L∑
l=1

θl
∑

vj∈N (vi ,l ·d)

fψ(xi , xj) · xjWa + g(xi),

yi = σ(y ′i )
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Space and time integration

Space integrator: Given input traffic record X(p) ∈ RN×TM :

Y(p) = H(p)(X(p),G), p = 0, · · · ,P − 1



Space and time integration

Space integrator: Given input traffic record X(p) ∈ RN×TM :

Y(p) = H(p)(X(p),G), p = 0, · · · ,P − 1

Time integrator: Given Yc = [Y(0), · · · ,Y(P−1)] ∈ RN×PF :

Yτ = Hτ (Yc ,G),



External factors embedding

Time varying factors:
Weather (discrete and real-valued variables):

ê
w
t = FCw (ew ,d

t , ew ,r
t ) ê

w
t = (êw ,d

t , êw ,r
t ),

Holiday (categorical variable):

ê
h
t = FC h(eh

t ) ê
h
t ∈ NF h
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External factors embedding

Time varying factors:
Weather (discrete and real-valued variables):

ê
w
t = FCw (ew ,d

t , ew ,r
t ) ê

w
t = (êw ,d

t , êw ,r
t ),

Holiday (categorical variable):

ê
h
t = FC h(eh

t ) ê
h
t ∈ NF h

,

Space varying factors:
Points of interest (categorical variable):

Êp = FC p(Ep) Êp ∈ NN×F p

.



What do we have so far
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Overall fusion

1- Traffic flow and PoIs features are first fet into a DAGC
module:

Y = H([Yτ , Êp],G).

2- Weather features and holiday notifications, expanded to
space domain, are then fed into an multilayer perceptron:

X̂t = MLP([Y, Êw
t , Ê

h
t ])



Overall fusion

1- Traffic flow and PoIs features are first fet into a DAGC
module:
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2- Weather features and holiday notifications, expanded to
space domain, are then fed into an multilayer perceptron:

X̂t = MLP([Y, Êw
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Overall pipeline

H
is

to
ri
c
 T

ra
ffi

c
 F

lo
w

Multi-Source 

Data Fusion

Time Axis

Prediction Results

Multi-Source Spatio-Temporal Network (MS-Net)

X(0)

X(P ) Spatial Feature 

Extraction

··· ··· Temporal 

Feature Fusion

Spatial Feature 

Extraction Y(0)

Y(P )

···
External Factors 

Embedding
Multi-Source 
External Data

PoIs

WeatherHoliday



Experiments: Data

Table: Dataset meta information

Properties
Datasets

Subway Bus Taxi
# traffic nodes 278 4219 300

time interval 10 mins 1 hour 20 mins
time span 2016/6/1 - 2016/6/29 2015/11/28 -

2016/1/26
# train days 15 days 32 days

# valid & test
days

7 days 14 days

daily range 6:00-22:00



Experiments: Data

Table: PoIs categories.

ID PoIs categories ID PoIs categories
0 food & beverage service 7 automobile service
1 shopping center 8 education
2 hotel 9 medical treatment
3 public transportation service 10 tourism service
4 entertainment 11 enterprises and institutions
5 residence 12 finance & insurance
6 living service 13 government agency

Table: Weather categories.

ID categories ID categories
0 cloudy 4 thunder
1 partly cloudy 5 fog
2 mostly cloudy 6 snow / hail
3 light rain 7 sunny



Experiments: Data - Beijing subway

[Inflow weekday] [Inflow weekend] [Outflow weekday] [Outflow weekend]



Experiments: Results and comparison with SOTA

Table: Experimental results of the subway (top) and bus (bottom)
evaluation datasets.

MAE MAPE (%) RMSE
HA 45.08 31.02 94.94
GAT 36.68 ± 2.58 28.97 ± 2.29 65.35 ± 6.31
GRU 23.33 ± 0.20 20.29 ± 0.67 41.92 ± 0.33
ChebNet 22.91 ± 0.59 19.38 ± 0.39 40.02 ± 0.98
DCRNN 22.49 ± 0.22 19.50 ± 1.08 38.63 ± 0.47
STGCN 21.69 ± 0.62 19.13 ± 1.74 36.49 ± 0.48
STGCNAction 21.65 ± 0.27 18.97 ± 1.32 37.06 ± 0.39
GSTNet 21.33 ± 0.13 18.63 ± 0.72 36.08 ± 0.22
MS-Net 19.44 ± 0.14 16.97 ± 0.30 32.19 ± 0.17

MAE MAPE (%) RMSE
HA 35.93 55.47 73.54
GAT 26.40 ± 0.29 46.88 ± 3.00 52.73 ± 0.38
GRU 24.07 ± 0.22 40.73 ± 1.59 53.46 ± 0.25
ChebNet 27.06 ± 1.10 42.89 ± 2.67 56.01 ± 2.73
DCRNN 27.06 ± 0.12 43.95 ± 0.47 55.23 ± 0.09
STGCN 23.42 ± 0.31 39.01 ± 1.57 48.80 ± 2.64
STGCNAction 21.05 ± 0.72 36.12 ± 1.01 40.93 ± 1.90
GSTNet N / A N / A N / A
MS-Net 19.15 ± 0.28 33.12 ± 1.19 36.42 ± 0.39

Metrics: MAE (Mean average error), MAPE (Mean average percentage error), RMSE (root mean square error)



Experiments: Results and comparison with SOTA

Table: Experimental results of the taxi evaluation datasets.

MAE MAPE (%) RMSE
HA 26.18 40.24 55.95
GAT 22.05 ± 1.01 35.27 ± 1.47 45.44 ± 1.66
GRU 20.24 ± 0.19 32.77 ± 1.73 40.04 ± 0.15
ChebNet 19.81 ± 0.07 31.97 ± 0.38 38.39 ± 0.58
DCRNN 20.46 ± 0.34 31.58 ± 1.38 42.03 ± 0.18
STGCN 19.34 ± 0.24 31.34 ± 1.16 37.30 ± 0.26
STGCNAction 19.78 ± 0.13 31.45 ± 1.90 39.41 ± 0.14
GSTNet 19.17 ± 0.32 30.77 ± 1.35 37.01 ± 0.35
MS-Net 18.60 ± 0.06 29.37 ± 0.46 35.62 ± 0.12

GRU: Gated Recurrent Unit
GAT: Graph Attention Network, Velickovic & al. , ICLR 2017
STGCN: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting, Yu & al.
IJCAI 2018



Experiments: Results on subway dataset
Prediction: Next time step
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Prediction: Multiple time steps
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MS-Net

STGCNAction: Spatial Temporal Graph Conv. Networks for Skeleton-Based Action Recognition, Yan & al. , 2018
ChebNet: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, Defferrard & al. , 2016

DCRNN: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting, Li & al. 2018



Experiments: Ablation study - Beijing subway

Table: Results of temporal feature fusion

Fusion Method
Subway Dataset

MAE MAPE (%) Time
(mins)

Weighted
Sum

20.85 ± 0.05 18.08 ± 0.31 0.07

Average 20.49 ± 0.12 17.89 ± 0.49 0.07
Proposed 19.44 ± 0.14 16.97 ± 0.30 0.08

Table: Results of external factors

External Factors
Subway Dataset

MAE MAPE (%) Time
(mins)

w/o factors 20.71 ± 0.04 17.95 ± 0.15 0.06
with factors 19.44 ± 0.14 16.97 ± 0.30 0.08



Conclusion

- Dilated attention graph convolution operator

- Integration in space, time and exhogenous data fusion

- On going directions

Optimal architecture search (in space domain)
Meta learning for exhogenous data fusion
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Towards autonomous parking
A vision based system

IEEE Trans. on Intelligent Transporation Systems, sept. 2019

Stanislav Panev Francisco Vicente Fernando de la Torre



Motivation

- Advanced driver assistance systems (ADAS): to reduce
the number of fatalities on the road (Pedestrian
detection/avoidance, Lane departure warning/correction,
Traffic sign recognition, Automatic emergency braking,
Blind spot detection)

- Human Horizons (leading Chinese smart mobility and
autonomous driving research company) has already Level
4 Autonomous Valet Parking (AVP) system

- Full vision based

https://www.prnewswire.com/news-releases/world-first-level-4-fully-autonomous-vehicle-parking-system-rolled-out-
on-human-horizons-hiphi-x-301132815.html



Motivation

https://www.synopsys.com/automotive/what-is-adas.html,
https://www.synopsys.com/automotive/autonomous-driving-levels.html



Method

- Objective: detect the curb –vehicle-to-curb distance, curb
height, angle

- Fully vision based system (single CDD fisheye camera
mouted near the front licence plate)

- Near real time, > 90% accuracy requirement

- Adversarial conditions: rainy/foggy weather, damaged
curb

- Perpendicular parking

Youtube video teaser [Video teaser]

https://www.youtube.com/watch?v=FXCRh9W-_xo&list=PLeJQFxWyfCj7v1TNN0OOppD2KO8R3Zoib&index=5


Method: Setting and assumptions

DU = fy
Hc

yU

hU
HU

= fy
DU

(fx , fy ): cameral focal length DU : curb’s to camera distance
Hc : camera-to-road-plane vertical distance (i.e., along y axis) HU : curb’s height
hU : curb’s frontal projection face in the image θU : curb’s angle
PU : point of the curb on the road plane EU : curb’s width
yU : vertical’s coordinate of PU ’s projection in the image



Method: Simple concept

P̂1 = [−Wmax ,HC , D̂U + ∆D1], P̂4 = [Wmax ,HC , D̂U − ∆D1]

P̂2 = [−Wmax ,HC − ĤU , D̂U + ∆D1], P̂5 = [Wmax ,HC − ĤU , D̂U − ∆D1]

P̂3 = [−Wmax ,HC − ĤU , D̂U + ∆D1 + ∆D2], P̂6 = [Wmax ,HC − ĤU , D̂U − ∆D1 + ∆D2]

∆D1 = Wmax tan θ̂U , ∆D2 =
ÊU

cos θ̂U



Method: Pipeline
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Method: Pipeline

Temporal tracking asssuming small frame to frame
displacement:



Experimental results: data



Experimental results videos

[Video 2] [Video 3] [Video 5] [Video 8] [Video 9]

https://www.youtube.com/playlist?list=PLeJQFxWyfCj7v1TNN0OOppD2KO8R3Zoib



Experimental results: quantitative evaluation

Classification rate

ACC =
TP + TN

TP + TN + FP + FN

F1 = 2
precision.recall

precision + recall

precision =
TP

TP + FP
, recall =

TP

TP + FN



Experimental results: quantitative evaluation Du
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ΘU ,EU



Conclusion



Conclusions and perspectives

- Deep learning, a powerful generic transversal toolbox

agnostic to the application
enables cross-modality data processing

- For many applications, in particular for large scale natural
phenomena/events modeling, numerical (mathematical)
models should be coupled with DL

- Many challenging and open problems in the field of
dynamic/time-series event analysis (medical, remote
sensing)
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